

Social mobility - measurement

- Social mobility indicates "societal openness"
- Aggregated data and mobility tables
 - Social classes
 - Resources, barriers, desirability
 - Mobility paths
 - Macro-level of social analysis
 - The first and third generation of SSR
- Individual data and path analysis
 - Social statuses, employment, socioeconomic indexes
 - Aspirations, motivations
 - Social variables influence labor market positions
 - Micro-level of social analysis
 - Second generation of SSR

Blau and Duncan's basic social stratification model

- Regression analysis
- Path analysis
- Structural Equation Modeling (SEM)

Mobility table

- Intergeneration and intragenerational mobility
- Social reproduction
- Upward and downward social mobility
 - long distance, short distance

TABLE THREE-CLASS MOBILITY TABLE: MEN IN ENGLAND AND WALES 1972

		Current (destination) class			
		t	2	3	Total
ORIGIN CLASS	1	731	322	189	1242
(1) (1) Malaina a	2	857	1140	1109	3106
1994. 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	787	1386	2915	5088
	Total	2375	2848	4213	9436

Note: Classes are: 1 = Service: 2 = Intermediate: 3 = Working.

SOURCE: Calculated from Goldthorpe et al. (1980/87), Table 2.2.

Outflow mobility

- calculation of percentages in rows
- interpretation I: of all men originating in class Y, X% moved into class Z
- interpretation II: the probability of a man born into class Y, moving into class Z, was X%

TABLE 2 PERCENTAGE OUTFLOW MOBILITY TABLE: MEN IN ENGLAND AND WALES 1972

		Destination class			
		1	2	3	Total
ORIGIN CLASS	1	59	26	15	100
	2	28	37	36	101
	3	15	27	57	99

NOTE: Classes as Table 1. Percentages are by row—row totals may not add to 100 because of rounding. **Source:** As Table 1.

Inflow mobility

- calculation of percentages in columns
- interpretation: X% of all men in class Y came from class Z
- social composition of classes, "social heterogeneity"

TABLE 3 PERCENTAGE INFLOW MOBILITY TABLE: MEN IN ENGLAND AND WALES 1972

		Destination class		
		I	3	3
ORIGIN CLASS	1	31	11	5
	2	36	40	26
	3	33	49	69
	Total	100	100	100

NOTE: Percentages are by column—column totals may not add to 100 because of rounding. source: As Table 1.

Structural and net mobility I

- Social Mobility = structural mobility + net mobility
- Structural (forced) mobility is given by
 - economic and technological changes
 - demographic changes (class difference in fertility, mortality, migration...)
- Net mobility is real mobility
 - how different class origins influenced destinations
 - inequality in mobility chances stems from differences in:
 - class resources
 - class bariers
 - class desirabilities
- Identification structural mobility by Dissimilarity index

Dissimilarity index - DI, D, or Δ

- DI is computed as sum of positive differences between two percent distributions divided by number 2:
- Values <0;1>
- Interpretation: what proportion is needed for the situation in which two distributions are identical?

$$\Delta = \sum_{i=1}^{n} A_{i} - A_{i}$$

		Current (destination) class			
		1	2	3	Total
ORIGIN CLASS	1	731	322	189	1242
ORIGIN CLASS	2	857	1140	1109	3106
1975.4 1975.4 1985.7	3	787	1386	2915	5088

2848

4213

9436

2375

THREE-CLASS MOBILITY TABLE: MEN IN ENGLAND AND WALES 1972

NOTE: Classes are: 1 = Service; 2 = Intermediate; 3 = Working.

Total

Structural and net mobility II

- Problems in identification structural mobility by DI
 - two class structures are incomparable because of "career mobility"
 - "age problem" in SM research
- Many efforts to empirically identify net mobility with the help of "mobility indexes"
 - no proper way
- Solution: change in conceptualization of intergenerational mobility
- Social origin vs. social destination (SO SD) (no intergenerational mobility)
- Structural and Exchange mobility are replaced by concepts absolute and relative mobility
 - It is not possible to measure structural and exchange mobility in data ex post
- Contingency table: Father, Son and The Holy Ghost (the core of mobility table) (R. Erikson, J. Golthorpe: Constant Flux, 1992)

Absolute and relative social mobility I

- Absolute mobility is probability of ending up in a different social class from the one a person was born into.
- Usually the movements are often small: from class 2 to 1, say, or from class 5 to 6.
- Measured in percent (%)

- Relative mobility is *chance*, if a person started in, say, class 6 or 7, of making it to, say, class 1 or 2 compared with those who started at the top.
- It is an answer to the question: if a person starts at the bottom, how many times less likely to make it to the top than somebody born there
- Measured in odds ratios (OR)

Absolute and relative social mobility II

Key questions:

- 1. How strong is the relationship between where you start out (origin) and where you go to (destination)?
- 2. What is the chance of a man from class Y to end up in class Z rather than in another class?

OR (odds ratio) is the convential meassure of inequality in access to particular class destinations from different class origins.

TABLE THREE-CLASS MOBILITY TABLE: MEN IN ENGLAND AND WALES 1972

		Current (destination) class			
24 54 54 54 54 54 54 54		t	2	3	Total
ORIGIN CLASS	1	731	322	189	1242
(4.7) (4.05)	2	857	1140	1109	3106
79.4 15.4 14.4 14.4	3	787	1386	2915	5088
	Total	2375	2848	4213	9436

NOTE: Classes are: 1 = Service; 2 = Intermediate; 3 = Working. source: Calculated from Goldthorpe et al. (1980/87), Table 2.2.

TABLE 4 ALL POSSIBLE ODDS RATIO IN THE
THREE-CLASS ENGLAND AND WALES
MOBILITY TABLE

Destination class	Origin class	Odds ratio	
1 v 2	1 v 2	3.03	
1 v 2	1 v 3	3.98	
î v 2	2 v 3	1.32	
1 v 3	1 v 2	5.03	
1 v 3	1 v 3	14.33	
1 v 3	2 v 3	2.85	
2 v 3	1 v 2	1.65	
2 v 3	1 v 3	3.54	
2 v 3	2 v 3	2.15	