Factors influencing laboratory tests Enzyme assays in clinical chemistry

Seminar No. 2

- No physical activity
- Fasting 10-12 hours
- The day before blood collection limited fats in diet
- Ample drinking simple water (prevention of dehydration)
- No smoking
- No alcohol
- No drugs if possible
- No stress if possible

after the change of position: lying \rightarrow sitting

intravasal fluid (= ECF) moves partially to interstitial space

as the consequence of gravitation

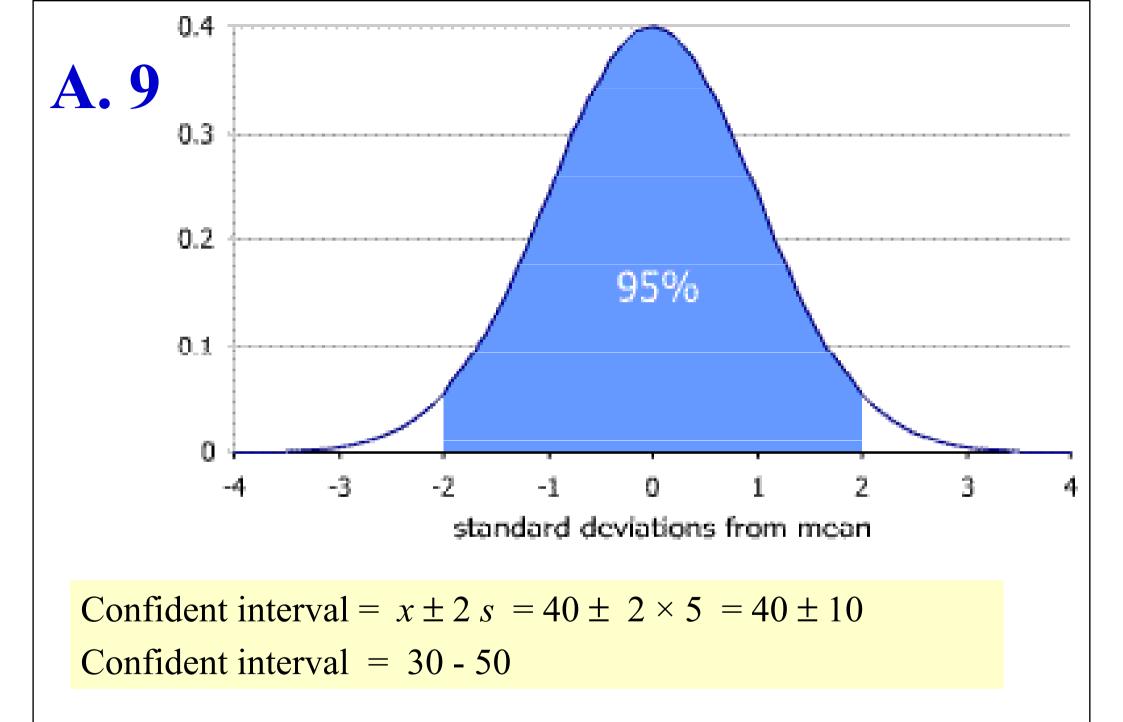
 \Rightarrow the ECF becomes more concentrated

⇒ protein-bound analytes exhibit higher concentration

• Dehydration \Rightarrow concentrated blood \Rightarrow elevated Prot + Hb

• Hypoglycemia – most probably from not sufficient food intake before match

Insufficient supply of oxygen into muscles ⇒ anaerobic glycolysis ⇒ production and export of lactate ⇒ accumulation of lactate in ECF ⇒ acidosis



The albumin concentration decreases

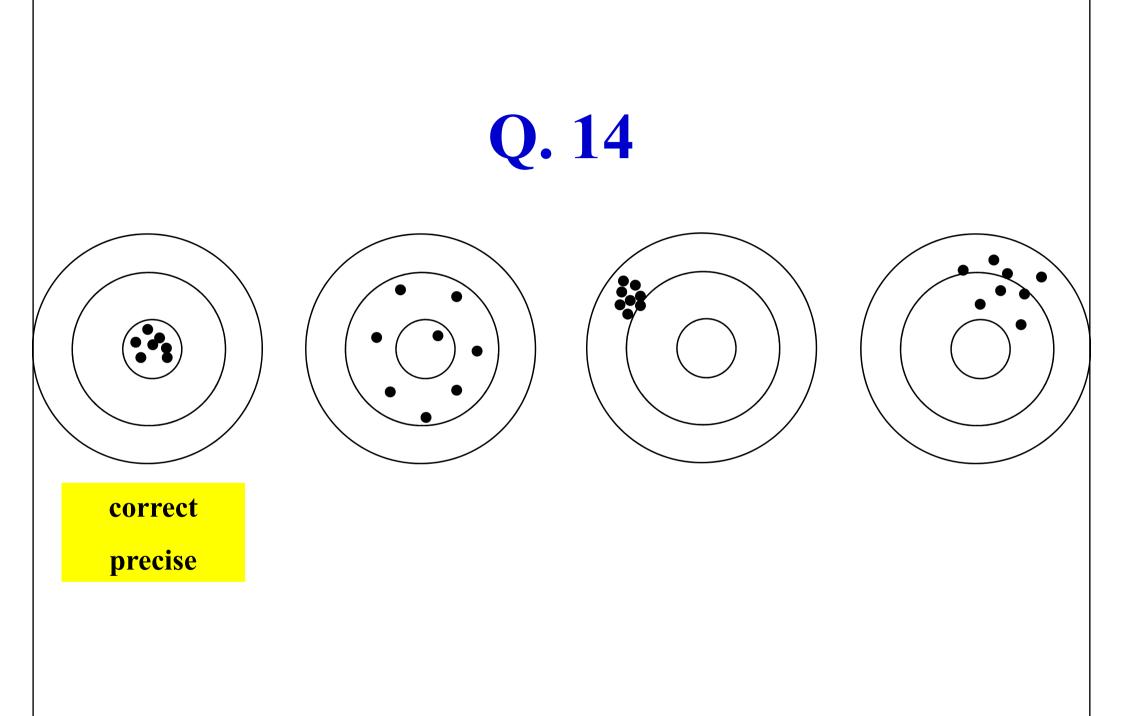
Hemolysis = disintegration of erythrocytes

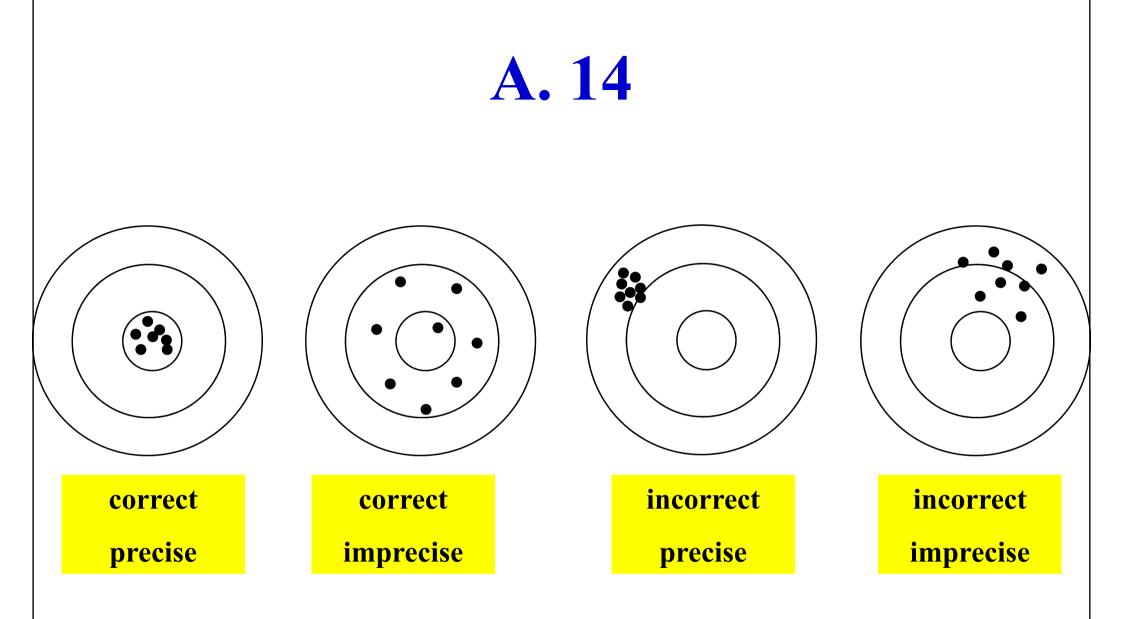
Causes:

- Improper needle size
- Rapid evacuation of syringe
- Shaking blood
- Moisture and/or detergents in test tube
- Improper centrifugation

The same as the unit of quantity measured

The range: 55 - 36 = 19 g/l


The mean: 45 g/l


95 % confident interval: $x \pm 2 s = 45 \pm 2 \times 6.3 = 32.4 - 57.6 \text{ g/l}$

Data are ordered from minimal value to maximal value:

3.8, 3.9, 4.1, 4.5, 5.4, 5.5, 5.6, 6.1, 8.2

If odd number of data – the middle value is median If even number of data – the average of two middle values

calculator at

www.cskb.cz

Analyte	CV _i (%)	CV _a (%)	CD (%)
pH of blood	0,2	0,1	0,62
S-Natrium	0,7	0,4	2,23
S-Albumin	3,1	0,8	8,87
U-Albumin	36	18	111,5
S-Glucose	5,7	2,9	17,72
S-Cholesterol total	6,0	3,0	18,6
S-ALT, catal. conc.	24,3	0,9	67,36
S-Cortisol	21	11	65,67
S-Adrenaline	48	24	148,65

The parameter CV_i

Intra-individual biological variation varies the most

7 100 % 1.33 19 % = CD

Significant difference: $7 \pm 19 \% = 7 \pm 1.33 = 5.67 - 8.33 \text{ mmol/l}$

The cholesterol concentration over 8.33 mmol/l or lower than 5.67 mmol/l means a clinical change.

2,8 mmol/1 100 %

x = CD = 0,73

the difference between two tests: 3,2-2,8=0,4

Conclusion:

0,4 < 0,73 (CD) \Rightarrow no change in clinical status

Enzymes of clinical significance

You are supposed to know

- Enzymes main features, properties, coenzymes
- Enzyme kinetics, enzyme activity

Indirect determination

- catalytic concentration
- µkat/l
- product of enzyme reaction is determined
- most enzymes (ALT, AST)

Direct determination

- mass concentration
- µg/l
- enzyme molecules are determined as antigens (immunochemical assays)
- only few enzymes,
 - e.g. tumour markers (PSA)

- Temperature
- pH
- The presence of all necessary activators
- The absence of inhibitors
- Concentration of substrate 0. order kinetics, the great excess of substrate so that the enzyme is saturated – the reaction proceeds with maximal velocity

How do you set constant pH 7.4 of enzyme solution at laboratory conditions?

- Hydrogen phosphate buffer is the best choice
- Corresponds to physiological conditions
- Solutions of Na_2HPO_4 and NaH_2PO_4 of the same concentration

(e.g. 0.1 mol/l) are mixed together

• Their ratio is calculated from H.-H. equation:

$$pH = pK_A + \log \frac{[hydrogenphosphate]}{[dihydrogenphosphate]}$$

Enzymes in Blood

Feature	Plasmatic enzymes	Secretory enzymes	Intracellular enzymes
Example	coag. factors	amylase, lipase	AST,
Source organ	liver	pancreas	various
Site of action	blood	GIT	cells
Enzyme activity in blood after source organ damage			

Enzymes in Blood

Feature	Plasmatic enzymes	Secretory enzymes	Intracellular enzymes
Example	coag. factors	amylase, lipase	AST,
Source organ	liver	pancreas	various
Site of action	blood	GIT	cells
Enzyme activity in blood after source organ damage	Ļ		

Why are low activities of cellular enzymes detected even in serum of healthy people?

Low activities of *intracellular* enzymes

in **<u>extracellular</u>** fluid (blood serum)

are the consequence

of physiological cell disintegration.

Tissue distribution of important enzymes

- AST liver, myocard
- ALT liver
- LD not specific
- CK myocard, muscles
- GMT liver
- ALP biliary tract, bones
- ACP prostate
- AMS pancreas
- LPS pancreas
- CHS liver

A. 26 Isoenzymes

- Genetically determined differences in primary structure
- Catalyze the same reaction
- May have <u>different subcellular distribution</u> (cytoplasm × mitochondria)
- May have different tissue distribution
- May be combined from more subunits (quarternary structure)
- May differ in kinetic properties $(K_{\rm M})$
- Usually are determined by electrophoresis
- Elevated blood values specific markers of tissue damages

Intracellular location of enzymes

Intracellular Location	Enzymes	
Cytoplasm	LD, ALT, 30 % AST	
Mitochondria	70 % AST	
Golgi complex, ER	CHS, AMS	
Lysosome	ACP	
Membrane	GMT, ALP	

What enzymes might appear in blood:

- a) in mild hepatocellular damage
- b) in serious hepatocellular damage

A. 28

a) Mild hepatocellular damage:

enzymes from **cytoplasm and/or membrane** are released into ECF – ALT, GMT, ALP

b) Severe hepatocellular damage:

enzymes from **mitochondria** are released into ECF – AST, GMD

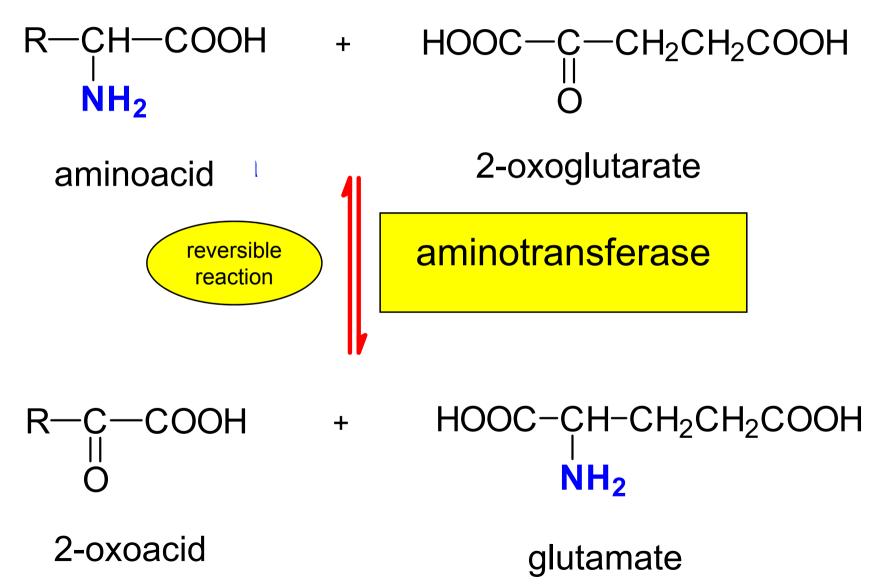
• AST/ALT > 1 severe liver damage

• AST/ALT < 1 mild liver damage

Q. 31+32

The levels of most blood enzymes are increased in newborns and infants. What enzyme persists elevated till puberty?

A. 31+32


ALP – the bone isoenzyme activity persists till puberty

Write equations of reactions catalyzed by: ALT AST LD

ALT Reaction

alanine + 2-oxoglutarate 5 pyruvate + glutamate

AST reaction

aspartate + 2-oxoglutarate 🖛 oxaloacetate + glutamate

LD reaction

lactate + NAD⁺ \leftrightarrows pyruvate + NADH + H⁺

Lactate dehydrogenase (LD)

- Tetramer, two different chains (H heart, M muscle)
- Five isoenzymes:

 $LD_{1}(H_{4}), LD_{2}(H_{3}M), LD_{3}(H_{2}M_{2}), LD_{4}(HM_{3}), LD_{5}(M_{4})$

- Widely distributed in body
- Total activity determination nonspecific finding
- $LD_1 + LD_2$ marker of myocardial infarction (MI)
- Today is LD assay considered out-of-date

Creatine kinase (CK)

- **Dimer**, two different chains (M muscle, B brain)
- Three isoenzymes: **MM** (muscle), **MB** (heart), **BB** (brain)
- Major isoenzyme in blood is MM (95 %)
- MB form in blood: 0 6 %
- BB in blood: traces (BB cannot pass across blood-brain barrier)
- MB isoenzyme marker of myocardial infarction

Amylase (AMS)

A. 38

- Osteoblasts ALP
- Osteoclasts ACP
- Prostate ACP
- Cardiomyocytes CK-MB
- Liver ALT, CHS, GMT

Enzymes of Clinical Significance

Enzyme	Source of blood elevation
ALT	hepatopathy
AST	MI, hepatopathy
GMT	hepatopathy (alcohol, drugs)
ALP	biliary tract diseases, bone diseases
ACP	prostatic cancer
CK	MI (CK-MB), muscle diseases
AMS	pancreatitis
LPS	pancreatitis
CHS	hepatopathy (alcohol, drugs) – decreased values