Metabolism of xenobiotics

Seminar No. 8

1. Phase of biotransformation = mainly oxidations

Reaction	Xenobiotic (example)
Hydroxylation	aromatic hydrocarbons
Sulfooxidation <u>oxidations</u>	disulfides (R-S-R)
Dehydrogenation	alcohols
Reduction	nitro compounds (R-NO ₂)
Hydrolysis	esters

Reactions occur mainly in ER, some in cytosol

The system of cytochrome P-450 is composed from:

- two enzymes (cytochrome reductase, cytochrome P-450)
- three cofactors (NADPH, FAD, hem)
- in ER, mitochondria

$R-H + O_2 +$

A. 4 + 5 Hydroxylation

 $R-H + O_2 + NADPH + H^+ \rightarrow R-OH + H_2O + NADP^+$

- substrate R-H reacts with O₂
- <u>mono</u>oxygenase = from O₂ one atom O is inserted into substrate
 (between carbon and hydrogen atom)
- the second O atom makes H_2O , 2H come from NADPH+H⁺
- dioxygen is reduced to -OH group and water

A. 6

- Inducer may act on several levels:
- Inducer in complex with intracellular receptor enters nucleus and binds to DNA ⇒ enhances the transcription of mRNA
- Decreases the degradation of mRNA and/or CYP
- Influences the poststranscription modifications of mRNA
- May cause the hypertrophy of ER

A. 7

• if concurrently aplied inducer + medicament metabolized with

the same CYP isoform \Rightarrow remedy is catabolized faster \Rightarrow

is less effective

• diclofenac is less effective

A. 8

• if concurrently aplied inhibitor + medicament metabolized

with the same CYP isoform \Rightarrow remedy is catabolized more

slowly \Rightarrow higher concentration in blood \Rightarrow adverse effects

(overdosing)

A.9 - II. Phase of biotransformation

- conjugation synthetic character
- xenobiotic after I. phase reacts with conjugation reagent
- the product is more polar easily excreated by urine
- conjugation reactions are endergonnic they require energy
- reagent or xenobiotic has to be activated

A. 9 Overview of conjugation reactions

Conjugation	Reagent	Group in xenobiotic
Glucuronidation		-ОН, -СООН, -NH ₂
Sulfatation		-OH, -NH ₂ , -SH
Methylation		-OH, -NH ₂
Acetylation		-OH, -NH ₂
By GSH		Ar-halogen
By amino acid		-COOH

A. 9 Overview of conjugation reactions

Conjugation	Reagent	Group in xenobiotic
Glucuronidation	UDP-glucuronate	-ОН, -СООН, -NH ₂
Sulfatation	PAPS	-OH, -NH ₂ , -SH
Methylation	SAM	-OH, -NH ₂
Acetylation	acetyl-CoA	-OH, -NH ₂
By GSH	glutathione	Ar-halogen
By amino acid	glycine, taurine	-COOH

GSH = glutathione, PAPS = phosphoadenosine phosphosulfate

SAM = S-adenosyl methionine

PAPS is sulfatation reagent

<u>p</u>hospho <u>a</u>denosine <u>p</u>hospho <u>s</u>ulfate

The conjugation reactions of phenol

Glutathione (GSH)

 $R-X + GSH \rightarrow R-SG + XH$

R-X halogen alkanes (arenes)

Conjugation with aminoacids

- glycine, taurine
- xenobiotics with -COOH groups
- the products of conjugation are <u>amides</u>
- endogenous substrates bile acids

Ethanol

How can you calculate the level of alcohol in blood?

Per milles of alcohol in blood % = per mille = 1/1000 $\frac{m_{alcohol}(g)}{m_{body}(kg) \times f}$ alcohol in blood ($\%_0$) = 0.67 (males)How do you calculate *m*_{alcohol}? 0.55 (females)

Metabolism of ethanol

Enzyme	Subcellular localization
Alcohol dehydrogenase (AD)	cytosol
MEOS	endoplasmic reticulum (ER)
Catalase (hem)	peroxisome
Acetaldehyde dehydrogenase	cytosol / mitochondria

Write AD and AcD reactions

Alternative pathway of alcohol biotransformation occurs in <u>endoplasmic reticulum</u>

MEOS (microsomal ethanol oxidizing system, CYP2E1)

 $CH_3-CH_2-OH+O_2 + NADPH+H^+ \rightarrow CH_3-CH=O + 2 H_2O + NADP^+$

activated at higher consumption of alcohol = higher blood level of alcohol

(> 0.5 %) - chronic alcoholics

⇒ increased production of acetaldehyde

A. 11

Acetate is converted to acetyl-CoA

A) in liver \Rightarrow synthesis of FA \rightarrow TAG \rightarrow VLDL

B) in other tissues \Rightarrow CAC \rightarrow CO₂ + energy

A. 13

$$M_{\rm r} = 46$$
 density = 0,8 g/ml

$$\frac{1(\text{mmol})}{1(\text{l})} = \frac{0,046(\text{g})}{1(\text{l})} = \frac{0,058(\text{ml})}{1(\text{l})} = 0,058 \times \frac{1\,\text{ml}}{1000\,\text{ml}}$$

Metab. feature	Change	Explanation
NADH/NAD ⁺		
Lactate/pyruvate		
CAC		
Glycolysis		
Gluconeogenesis		

A. 14

Metab. feature	Change	Explanation
NADH/NAD+	\uparrow	NADH overproduction in AD/AcD reactions
Lactate/pyruvate	\uparrow	NADH excess in cytosol in removed by LD reaction
CAC	\downarrow	NADH is allost. inhibitor of ICDH and 2-OGDH
Glycolysis	\downarrow	shortage of NAD ⁺
Gluconeogenesis	\downarrow	shortage of pyruvate + OA (= predominate lactate + malate)

A. 15

A) Decreased gluconeogenesis due to lack of oxaloacetate –

hypoglycemia especially after fasting ingestion of alcohol

(+ usually poor dietary habits in chronic alcoholics)

B) Excess of lactate in cytosol \Rightarrow increased lactate in blood plasma \Rightarrow lactic acidosis

C) Excess of acetyl-CoA \Rightarrow synthesis of FA +TAG \Rightarrow liver steatosis

Consider that

- ethanol is soluble both in polar water and non-polar lipids
- easily penetrates cell membranes
- goes through hydrophilic protein channels or pores
- as well as hydrophobic phospholipid bilayer

Acetaldehyde reacts with biogenic amines to tetrahydroisoquinoline derivatives

Nicotine - the main alkaloid of tobacco

On cigarette box:

Nicotine: 0.9 mg/cig. Tar: 11 mg/cig.

3-(1-methylpyrrolidin-2-yl)pyridine

Cigarette smoke contains a number of different compounds

- **free nicotine** binds to nicotine receptors in brain and other tissues
- **CO** binds to hemoglobin \rightarrow carbonylhemoglobin
- **nitrogen oxides** can generate free radicals
- polycyclic aromatic hydrocarbons (PAH)
 (pyrene, chrysene), main components of tar, attack and damage
 DNA, carcinogens
- other substances (N₂, CO₂, HCN, CH₄, terpenes, esters ...)

Biochemical markers of liver diseases

Liver function / condition	Biochemical marker
Integrity of hepatocyte membrane	
Necrosis of liver	
Bile excretion	
Proteosynthesis disorder	
Detoxification functions	
Disorder of AA metabolism	
Disorder of glucose metabolism	
Disorder of lipid metabolism	

Biochemical markers of liver diseases

Liver function / condition	Biochemical marker
Integrity of hepatocyte membrane	ALT, GMT, ALP
Necrosis of liver	AST, GMD
Bile excretion	ALP, bilirubin, bile ac., urobilinogen
Proteosynthesis disorder	(pre)albumin, CHS, coag. factors
Detoxification functions	caffeine test (p.o.) – metabolites in urine
Disorder of AA metabolism	urea, NH ₄ ⁺
Disorder of glucose metabolism	glucose
Disorder of lipid metabolism	TAG, HDL

Selected biochem. markers of liver damage (in serum)

Serum analyte	Reference values	Change
ALT	0,1 - 0,8 µkat/l	•
GMD	0,1 - 0,7 µkat/l	
GMT	0,1 - 0,7 µkat/l	†
Bilirubin	5 - 20 µmol/l	
Ammonia	5 - 50 µmol/l	
Urobilinogens (urine)	up to 17 µmol/l	
Pseudocholinesterase	65 - 200 µkat/l	➡
Urea	3 - 8 mmol/l	•
Albumin	35 - 53 g/l	₽