Acid-Base Balance

Seminar No. 11

Parameters of acid base balance

Measured in arterial blood

- $pH = 7.40 \pm 0.04 = 7.36 7.44$
- $pCO_2 = 4.8 5.8 \text{ kPa}$
- supporting data: pO₂, tHb, sO₂, HbO₂, COHb, MetHb

Calculated

- $[HCO_3^-] = 24 \pm 3 \text{ mmol/l (from H.-H. eq.)}$
- BE = 0 ± 3 mmol/l (from S.-A. nomogram, see physilogy)
- $BB_s = 42 \pm 3 \text{ mmol/l}$
- $BB_b = 48 \pm 3 \text{ mmol/l}$

Buffer bases in (arterial) plasma

Buffer base	mmol/l	
HCO ₃ -	24	
Protein-His	17*	
HPO_4^2	1	
Total	42	

^{*} Molarity of negative charge \approx binding sites for H⁺

A. 2

$$BB_s = 42 \pm 3 \text{ mmol/l}$$

$$BB_b = 48 \pm 3 \text{ mmol/l}$$

hemoglobin in erythrocytes

increases BB_b by 6-8 mmol/l

Oxygen parameters and hemoglobin derivatives

Abr.	Name	Reference values
sO_2		
tHb		
СОНЬ		
MetHb		
HbA _{1c}		

Oxygen parameters and hemoglobin derivatives

Abr.	Name	Reference values
sO_2	saturation of Hb by oxygen	94 – 99 %
tHb	total Hb	2.15 – 2.65 mmol/l (tetramer) 120-175 g/l (diff. males × females)
СОНЬ	carbonylHb	1-2 % (nonsmokers)
MetHb	methemoglobin	0.5 – 1.5 %
HbA _{1c}	glycated Hb	2.8 - 4 %

Tissue hypoxia of any origin leads to lactic acidosis

A. 4

$$7.4 = 6.1 + \log [HCO_3^-] / 0.22 \times 5.3$$

$$1.3 = \log [HCO_3^-] / 1.2$$

$$10^{1.3} = [HCO_3^-] / 1.2$$

$$20 = [HCO_3^-] / 1.2$$

$$[HCO_3^-] = 24 \text{ mmol/l}$$

Four types of acid-base disorders

$$pH = 6.1 + log \frac{[HCO_3]}{0.22 \times pCO_2}$$

Changes in [HCO₃-]

- **↓** metabolic acidosis
- **1** metabolic alkalosis

Changes in pCO₂

- **↓** respiratory alkalosis
- 1 respiratory acidosis

Maintanance of constant pH in body

System / Organ	What is altered?	How quickly?
Buffers in ECF/ICF	pН	sec / min
Lungs	pCO_2	hours
Liver	way of NH ₃ detoxication	days
Kidney	NH ₄ ⁺ /H ₂ PO ₄ ⁻ excretion HCO ₃ ⁻ resorption	days

Responses to acute change

- compensation
- correction

A. 6

Feature	Plasma	ICF
Main cation	Na^+	K^+
Main anion	C1-	HPO ₄ ² -
Protein content	*	* * *
Main buffer base	HCO ₃ -	HPO ₄ ² -

Metabolic acidosis is the most common condition

Metabolic alkalosis is the most dangerous condition

normal status

hyperchloremic MAC normochloremic MAC

normal status Cl- Na^+ HCO₃-AG \mathbf{K}^{+}

hyperchloremic MAC

NaCl infusions

normochloremic MAC

HCO₃⁻↓

AG↑

A. 9 Excessive infusions of NaCl isotonic solution lead to metabolic acidosis

Blood plasma (mmol/l)		
Na ⁺	C1-	
133-150	97-108	
Ratio ~ 1 : 0.7		

Isotonic solution (mmol/l)		
Na ⁺	Cl-	
154	154	
Ratio 1:1		

Isotonic solution of NaCl has elevated concentration of Cl⁻ compared to plasma

Blood plasma is diluted by infusion solution \Rightarrow [HCO₃-] decreases

pCO₂ in alveolar air is the same

the ratio [A⁻] / [HA] in H.-H. equation decreases \Rightarrow pH < 7.40 (acidosis)

Hyperchloremic MAc

excessive infusions of NaCl solution

- the loss of $HCO_3^- + Na^+ + water$ (diarrhoea, renal disorders)
 - ⇒ relative higher concentration of chlorides in plasma

How is AG calculated?

AG

AG calculation =
$$[Na^+] + [K^+] - [Cl^-] - [HCO_3^-]$$

AG composition =
$$HPO_4^{2-} + Prot^{-} + SO_4^{2-} + OA$$

A. 11 MAc with increased AG

- Hypoxia of tissues insufficient supply of $O_2 \Rightarrow$ anaerobic glycolysis: glucose $\rightarrow 2$ lactate
- elevated AG lactoacidosis
- Starvation, diabetes
- TAG \rightarrow FA (β -oxidation in liver) \rightarrow acetyl-CoA (excess, over the capacity of CAC) \Rightarrow KB production
- elevated AG ketoacidosis
- Renal insufficiency elevated phosphates, sulfates
- Various intoxications

A. 12

- AG normal values
- SID buffer bases (mainly HCO₃-) decreased
- compare Q. 8a)

Q. 13 Metabolic acidosis

Parameter	Physiol. st.	Ac. change	Compensation	Correction
[HCO ₃ -]	24 mmol/l	→		\rightarrow N
pCO ₂	5.3 kPa	N	→	
[A-] / [HA]	20:1	< 20:1		
рН	7.40 ± 0.04	< 7.36		
		System	lungs	kidney
		Process	hyperventilation	\uparrow HCO ₃ ⁻ resorption \uparrow NH ₄ ⁺ / H ₂ PO ₄ ⁻ excr.

Methanol intoxication

Metabolic oxidation of methanol provides a rather strong formic acid

Consequences:

- formate in plasma \Rightarrow elevated AG \Rightarrow acidosis
- excess of NADH ⇒ lactoacidosis

Compare two acids

ethanol

acetic acid

$$pK_A = 4.75$$

$$K_{\Delta} = 1.8 \times 10^{-5}$$

methanol

formic acid

$$pK_A = 3.75$$

$$K_{\Delta} = 1.8 \times 10^{-4}$$

 K_A (formic ac.) : K_A (acetic ac.) = 10 : 1

formic acid is $10 \times \text{stronger}$ than acetic acid

ethylene glycol intoxication

Intoxication by ethylene glycol

Consequences:

- oxalic acid is rather strong acid (p $K_{A1} = 1.25$, p $K_{A2} = 4.29$)
- oxalate in plasma \Rightarrow elevated AG \Rightarrow acidosis
- excess of NADH ⇒ lactoacidosis
- in urine \Rightarrow calcium oxalate concrements

Calcium oxalate is insoluble chelate

Draw formula

Calcium oxalate is insoluble chelate

Why MAc occurs in anemia?

Not enough hemoglobin \Rightarrow insufficient supply of O_2

⇒ hypoxia ⇒ anaerobic glycolysis to lactate

elevated AG – lactoacidosis

Metabolic oxidation of ethanol leads to excess of NADH

acetaldehyde dehydrogenase

Metabolic consequences of EtOH biotransformation

CH_3 -CO-COOH + CoA-SH + NAD⁺ \rightarrow CO_2 + CH_3 -CO-S-CoA + NADH+H⁺

- thiamine is the cofactor of aerobic decarboxylation of pyruvate
- thiamine deficit \Rightarrow pyruvate cannot be converted to acetyl-CoA
- therefore pyruvate is hydrogenated to lactate
- even in aerobic conditions: glucose \rightarrow lactate
- increased plasma lactate \Rightarrow elevated AG \Rightarrow lactoacidosis
 - 1. Thiamin diphosphate
 - 2. Lipoate
 - 3. Coenzym A
 - 4. FAD
 - $5. NAD^+$

- calcium cations make electrostatic interactions with carboxylate anions in side chains of glutamate and aspartate (in various proteins)
- increased [H⁺] (= decreased pH) of plasma leads to a partial cation exchange
- one calcium ion is liberated and replaced by two protons

Causes of metabolic alkalosis

- Repeated vomiting the loss of chloride (Cl⁻) anion ⇒ hypochloremic alkalosis
- Direct administration of buffer base HCO₃⁻ per os: baking soda, some mineral waters intravenous infusions of sodium bicarbonate
- Hypoalbuminemia
 severe malnutrition
 liver damage, kidney damage

NaHCO₃

sodium hydrogen carbonate (sodium bicarbonate)

sold in pharmacy

How is SID calculated?

SID corresponds to buffer bases of plasma

SID calculation =
$$[Na^+] + [K^+] - [Cl^-]$$

SID composition =
$$HCO_3^- + HPO_4^{2-} + Prot^-$$

In MAlk \Rightarrow SID increases

Q. 21 Metabolic alkalosis

Parameter	Physiol. st.	Ac. change	Compensation	Correction
[HCO ₃ -]	24 mmol/l	↑		\rightarrow N
pCO ₂	5.3 kPa	N	↑	
[A-] / [HA]	20:1	> 20:1		
рН	7.40 ± 0.04	> 7.44		
		System	lungs	kidney
		Process	hypoventilation	↑ HCO ₃ - excretion

Solution	Effect	Explanation
NaCl		
KHCO ₃		
NH ₄ Cl		
NaHCO ₃		
Na lactate		

Solution	Effect	Explanation	
NaCl	acid.	plasma dilution \Rightarrow [HCO ₃ -] \downarrow while pCO ₂ is constant	
KHCO ₃	alkal.	direct addition of the main buffer base	
NH ₄ C1	acid.	NH_4^+ excreted by urine, Cl^- remains in plasma $\Rightarrow [HCO_3^-] \downarrow$	
NaHCO ₃	alkal.	direct addition of the main buffer base	
Na lactate	alkal.	lactate anion goes from plasma to liver (gluconeogenesis), Na ⁺ remains in plasma \Rightarrow its pos. charge is balanced by extr HCO_3^- (similar effect like in vegetarian diet)	

Q. 26 Respiratory acidosis

Parameter	Physiol. st.	Ac. change	Compensation	Correction
[HCO ₃ -]	24 mmol/l	Ν,↑	↑	-
pCO ₂	5.3 kPa	↑		\rightarrow N
[A ⁻] / [HA]	20:1			
рН	7.40 ± 0.04			
		System	kidney	lungs
		Process	HCO_3^- resorption $NH_4^+ / H_2PO_4^-$ excr.	hyperventilation

Describe the scheme on p. 5

- Excess of CO₂ in the body produces more H₂CO₃ in blood
- Carbonic acid in buffering reaction with proteins gives HCO_3^- ion
- Hydrogen carbonate ion is driven to ICF
- Therefore the level of HCO₃⁻ in ECF is normal or slightly elevated

Conclusion: compensated RAc

Q. 30 Respiratory alkalosis

Parameter	Physiol. st.	Ac. change	Compensation	Correction
[HCO ₃ -]	24 mmol/l	Ν, ↓	\	-
pCO_2	5.3 kPa	+	_	\rightarrow N
[A-] / [HA]	20:1			
рН	7.40 ± 0.04			
		System	kidney	lungs
		Process	Excretion of HCO ₃ -	hypoventilation (if possible)

Combined disorders

$$AG = 140 + 4.6 - 25 - 89 = 30.6 \text{ mmol/l} \dots$$

SID =
$$140 + 4.6 - 89 = 55.6 \text{ mmol/l} \dots$$

Conclusion: MAc + MAlk

Q.	Explanation
a)	MAc - lactoacidosis (alcohol) + loss of Cl ⁻ (vomiting) - MAlk
b)	MAc - ketoacidosis (starvation) + loss of Cl ⁻ (vomiting after overeating) - MAlk
c)	RAlk (stimulation of resp. centre) + MAc (salicylate – AG ↑)
d)	MAc (ketoacidosis) + RAc (heart failure – circulation insuff.)