V kterém roce byla získána Nobelova cer\a Molekulární diagnostika Vrozené genetické choroby - DNA změny vrozené (monogenní onemocnění, chromozomální poruchy, multifaktoriální poruchy) Onkologické choroby - DNA změny získané Diagnostika patogenu - DNA cizorodá Přímá-nepřímá diagnostika Molekulární diagnostika Detekce prenašeču patologické alely Prenatální diagnostika Stanovení genetického rizika Včasné stanovení diagnózy Včasné stanovení oportunních patogenů Diferenciální diagnostika Minimální zbytkové onemocnění Včasná detekce relapsu choroby Molekulární diagnostika • Specif icita a senzitivita • Rychlost výsledku a možnost správné a rychlé terapeutické intervence i Podle klasické Omranovy teorie z roku 1971 všechny společnosti procházejí třemi stádii souvisejícími s procesem modernizace: 1. Stadium moru a hladomoru 2.Stadium poklesu frekvence výskytu pandemií infekčních nemocí 3.Stadium rozvoje degenerativních a civilizačních chorob (novotvary a nemoci oběhové soustavy) Omran, A.R.: The epidemiologie transition: a theory of the epidemiology of population change. Milbank memorial Fund Quaterly, 1971, 29 Původ hematoonkologických onemocnění Systémová klonální onemocnění, vznik neregulovaným dělením jediné nádorově transformované buňky nižší počet genetických změn nutných pro vznik, někdy stačí narušení kontroly buněčného dělení změna zahrnující cca 10 6-10 7 bp se muže projevit bez viditelné změny morfologie chromozomu Dělení hematoonkologických onemocnění Stem Cell Myeloid stem «N 3> udali 9 ;.vT:)hůid sr&mcéll /Myeloid blast \ Red blood cells Plareleis A) Podle charakteru ■ Difúzni (leukémie) ■ Ložisková (lymf omy)-s nádorovými ložisky v lymfatické tkáni B) Podle postižené krevní vývojové řady ■ myeloidní prekurzorova buňka (CML nebo AML) -nádorová choroba vlastního krvetvorného systému ■ lymf oidní prekurzorova buňka (CLL nebo ALL nebo lymfomy) -nádorová onemocnění imunitního systému LympiKüd Mast O e While blood celľs Hematoonkologická diagnóza 1. Specifické markery pro daný sub/typ 2. Nespecifické (nezávislé) markery 3. Diferenciální diagnostika 4. Stratifikace podle rizika 5. Minimální reziduálni choroba 6. Detekce oportunních patogenu Molekulárne biologické vyšetření oportunních patogenu IHOK FN BRNO •CM V •HHV6 •HSV-1,-2 •EBV, VZV •BK virus, JC virus •Respirační viry (RSV, PIV1-3, AĎV1-7, Flu-A, -B •Adenoviry •Detekce mutací vedoucích k rezistenci na léčbu Q>CM •Pneumocystis jirovecii •My kozy 15 ^Tftrs week's citation Classic Nov/eU P C & Hungerfard D A. A minule chromosome in human chronic granulocytic leukemia. Science 141:1-497, I960, fSctioul of Medicine. Universiiv of Pennsylvania, and Insihure lor Cancer Research. Philadelphia, PA] COHUMBEBS FESBUARY 15. I?SJ This abstract descibed seven patient' (five m^le. tw,o female) *Yi(h chronic (rírtyl^íytic leuJt^mia (CGI) in ^rioni a íimifir miriuts ífir the chromosome abnormality and CGL [The SCI* indicates 1hat this briei "paper" has been cued rn ever 510 publications since 19b0 J Pet« C. Nowell Pathology VMedicti Tilinucr ť hrflnnrMiňlí Ľlininic ííťjrtukiĹ|H iu [.rjtiLflllil In rfwn d^ iTiiií fur in\fJip.,l*J 'rive miilíi. Lwn ľtmi(*i,rr j minule rh.ŕ«rtíUTMmt ha.* Oírn il*nr>fJ rfpfj^inf btc Ľ.Il:Iu «r c E tu (too ľ-1 utjIc Iculc/iua in ľJuldŕcŕi Thíir hive h«f- ^MfiLl r«cm rfpanu of ŕhŕultuŕrtolri* a*r»ŕrYi;ilhLiri in i rtu rtthŕf (M '.i-'^ ol hniitijn IijijL(-jtíIj |jncljiling Ewa oľ ;tit '.ci.en cilyüy KpLgfoii rtrrr Nuinell J!*J HliAfC-l foŕlj, J- ŕ*W, fdnriT /niť. IS, MS i ľHMIil, hil no. Kfics ha* upnrdrňl in »nich. Lhiŕc »ji 1 tOrVuHrfíl (h-Hlpf Ur.ii;ul oľ -j f_rl :iilj.r Ivpv of Iculeniii. t*IL uf lh* \i*t flt<* <*r> *€*( Jíji*jii ijAYIIr A. Hl->0IPTX!"3 Imtimtf lor Catwtr Kcita'ih cells, and he looked at lbem Our first casts, of acule leulemla, were unrtwaiding. Then Dave spotted a small chromosome in cells from two male patients with chronic granulocytic leukemia (CGL) These findings were published with caution [because the Edinburgh group had found no abnormality in CGI4) and with the suggestion that the "minute" chromosome might be m allered V. Subsequent cases, including women and using an improved ,Jair-drying" techniques led Dave to assign the minute chromosome cor-rectly to the larger pair of G group auto-mbered 31 and later changed, i, to no. 22. The additional re being readied for publita-ftichards asked us lo present National Academy of Seihe was organizing at Penn. published in Science, led to on [and citationj of Ihe first iiiitent chromosome abnor-isia. The Edinburgh group ^sted the name "Phi lade I' 'SO me." de was frustrating. Cyfoge-CCL proved of some diagnostic value and provided clonal evolution in tumor helping to ««plain clinical m. But since other consis-' changes in neoplasia were nificance in tumorigenesis nd the term "epiphenome-used. With the advent of ndtng techniques in the lecular genelit techniques itory changed dramatically, igenetic alterations were iany tumors and are now f u I for exploring oncogene iromosome studies remain oking at genomic changes, nise of the Ph chrrtmosome of specific genomic alter-in human tumorigenesis is fruition. r, ^116-17. 1155. (Cited 7p riratl.J adina 1he chrDUDDHHim of cf Hi In «n 1evhDť>t?3 tumaít leukatniLj. »Olime pr«ptrttL4nt of kjkocvtcS ill*: MSMtud P S. ffmenisancl nAU'ítfnťMj igůfl ítieticB 1J2,1»í97 'í Chronická myeloidní leukémie -CML 1845 první dokumentovaný klinický popis choroby 1960 publikace Ph chromozomu u CML pacientů 1970 izolace nového myšího onkogenního viru Abelson 1973 odhalení reciproké translokace t(9;22) jako příčiny Ph chromozomu 1980-1983 klonování v-Abl onkogenu, c-Abl protoonkogenu, jeho lokalizace na chromozomu 9 a demonstrace, že Abl kóduje protein-tyrozin kinázu 1986 klonování BCR-ABL cDNA z CML buněk 1996 imatinib mesylate inhibuje BCR-ABL tyrozin kinázu a CML buněčný růst in vitro 2001 imatinib (Glivec) jako selektivní inhibitor je potvrzen v terapii CML 30 - 40 cycles of 3 steps : Step 1 : denaluration 1 minut 9A °C TTT" n "r-TTf rTTTTTTTTTTTTTrr-rr n^f^TTlTnTrnTr^rrr^^ y Step 2 : annealing .-» v in nrlli I Mil <> 3" liuiLLLUilill 5 45 seconds 54 ÖC forward and reverse primers !!! 5" I \ I 35'S^^ ~irilTnTrTrTrnTTnTTTrTi^^ y St 3 . extensiOTl - J'^JJlLLLJMlLiUiiljUjIiiliiliLs1 LLLLLLLLUJ I INS 7 I- ' J / s 2 minutes 72 DC only dNTTP's ll-UlUWJ>iU^J^^ ť^.j.ly Vi^-ŕ>lť^c1c !???> 1st cycle 22=4 copies 35th cycle 2 36 = 68 billion copies 5939 6�0087 4 ;a£ MinmcH mm.» Enzymatic Amplification of ß-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia fcmdaU K. Saiki. Stephen Scharf. Fred Fakxma. Kary E. MuUis Glenn T. Hont. Henry A, ErILch. řfommn, Arnheidi Recent advances in «ewruiiriant SM A technology have made possible- the molecular analysis and ppmatal diagnc-n* of lcveraJ numac, cenené diseases, heiaL DNA obtained by imiitOíHliesis « chorionic viUiii sarnnlini tin 1* analyieJ by reiiriclion elYZVDte JÍBÍ5IÍM. «with sobvc-quent electrophoresis. SouLhem tniAa-fer, and specific hyciidizaiifln í» cloned Brne «r otijůnueleotide prob«. With Thli disease mulls from hsmoiyfjosily jf UM tieide-celL allele IĚS) ai lit p> itobiA (BÜ loco*. The S allele differs from ihe »iH-type »Utk IBA> by «itali-itilwn uf an A in lbs wjld-lype in a T at the vee*íid posiiioň üi the si**h tödön of the e chain jene. resullinp. h Ihe replacement oí s * [manne «id hv » ™hflc '" nr «wtw '*« prmtr-mtimitJ (iuvntótlf anrjrfířírurion o/ JpeYttK P-n'rHNU rortfí JeoťíŕlCfí "■ («toniie DÍM. wuJir'jMr m f*' tifowHvS tittrtair ii».ŕM JŇneíl ti/ra/erf D WA rapi«- '* Wie „eond r«*,«,». tne Jv™,ŕr »f* U1 ^ Ě1 <•"•<■" '^ .frrtn-iVrf iy'">""'"" (-JHfajiKtaur Jôrejríiifl n/ a™ tnít'tvbrl'il aríUínuŕlMNÍÍ ŕ™(* M>™rJ«r<' ut joint™ W i*e i/njriSM ŕ-JcJocJín i«rur/IÍM. í*' h-Jiŕtf&in ře-oryne f« ** delfmínf« i" O« r*W ŕ ^y M HMipfM «MMWim UI/lífflMlfr íf« ŕ**" ' mic/ORťům tí penrtiilrr D^A. polyraůipliit ONA mlíttcs United frenetically to * specific Jiná« loci", set-re^aijún analysis myli be carried «ji wilh restnciion fTairfleei lenilh polymorphisms lUFLP's» found to be: Softe mau™ by tiimiiunis DNA in™ family members <í. .TV Many ůf live henujslohmopattiies, twweťíi. can br iítictted l>y íňůre direct melhůíls in which anály» of ibx feuui akmciä «iflicieni íof ciisioin. Fores-ample. Uie diísneaii of Kydre.pi felilii tlwTuQayíoi>s íi.ihalaiwrrtiaŕ íai be m*d* hy dociwťienunt the atfltnee of *ny (t^lfthin jenei by hybrnüiiiinn with m a-alubin probe IM1. Homeiysoiity fi» ceriiin U-tbid^«mia illeies can >e fie-teniuňcd i a Süülhcni tcMifer espeí^ TiKňia by Tisine oliarniocltůtidí prohd licit form stíWe JupleK* ^ilh lile i»*f-m*J p-ajobin t^rw: se solyerl by Svumem inmiCtr and hytwid-ixarioťi w^iii a ä-globm probe. We have developed a pracedure: tct the deieeiLon of Uw uetlc ceJl mutiiion ■hit is very raoid and ii at leaji im! orders «ľ magnitude um wtisui« ihau irandart SuUlhern. blorrinj. There air !Wü special feature! tg rhiipcolocOI. The jint is a method for arnpufyini ipeciik: p-ajobin niJ A sequencei «Till the uae of oliícmucleůddie preperi and DMA Polymerase Hi). The yetajid is Ihe analysis. ■A the S-Slobui jenoivpr by loluiiLm hy-hTidiiatiOfl of the aoielited DMA wnh a speciíe oliiiomKKeitide probe: and sub-seíivent ilijeuion wiih a Kstnctiim en-donocleasc Iŕ/Í. These Vw lechnKnJ« Lncruiae tbt ipetd and innsiliviiy, and [essen the complexity oi rweiiaial laiagnox mi for rick le cell anemia; they may also be jcneralLy applicahJe t? üw ■-:-u:.n.|.; ůf other Benenc disease! .-i:d in the. es$; of DNA jifobci for inCřtiioiti disease J i-.r^-'- SequHKX im Uli liö n i- a hT ^nm e chain reaction- We use a iwu-itep pnace-dure for dereieanunj the |š-ĚHHlin fctiio-Lyec of honĽĽi fjcnomic IJ--A samplea. Fir«h a snsall portion ^ lee |S-sbťAňi tcnese4uenec spanniroilhepolyrhurniiJA IMe I fcsínčiiůfi sile Jnucnc-iliu of llic [J* allele issmplirkd. rfrai. the pcfscn;c or abjavoe of the Dde I r«ifi™»n ii« im lbeampii/ved DNA wtnple a deiermirtet by solution hybnditatiůn wťdi an end-labeled complimentary ubgcmcf followed by resiricuon cndůniicícase diatt-tion, saeclrtíhůKsis, ami auiotadiop* phy- Tie &-sJt*iti jene sesmenn "as arririo-rted by the iKtyrnerese chain reaufaH (PCRJ procedure of Mullia and Falomu ill} in whidi we used Iwo. 20-iiSí ůlbjů-luieleoüde pfiowrs lhát run« me rejioa tu he amplifled- One juiffltr. fC«. ii eůnaplemeniary to the (^Hltand and the ^iher, PCOJ, is complemciitiry to ±e i-Kirand HPHe. I>. The ajinealiiii ef K.1H M (be (+r*eaod oj dtnaiured i=-nooúc- DNA followed by eiKnuon «nth ihe btleaow ffajmenc offjcAenc^ira coli DMA polymerase I arad deosyciiKleotkki tnplBiphate» rcaults in the syntht sLi of a C - ■:'.: and fraginc ii: c jni.nnin? the large* sequence. Al the same tune, a sinuJar rracnon occurs with PC03, creaiiru a new l-r-j-strand- Since these ae*ly sy»-tlTevccd DNA iirands are Jiemsel«» remplate for the PCR primen. repealed cycles of denatnration. pnmer ajtriealicvl* ami eniension result n Ihe e ^M * -By M Joseph E. Murray s given of the subsequent clinical course and autopsy findings in the dug previously reported (dog 1, tabic 1), Methods Th* animals Studied war be*ifei, ň u/relcs lu \H months iJd, rvlutiwly puivbred but ■u* inhrd. Tvŕcnty.fivĽ wüne male»: Iwu Vmu: fťiiul» f 17 ;iikJ tri, lablľ 1). TllĽ tlojs w«r« purchased Írom outlying farms and confined in n kxut vetťrinitiy kmncl in tu 14 ílays brfnhTR use-. IJo^p Ich bt irradiated were treatrd fur wunus with Vernňple*.* lnl- itiuiiuanon against distemper and hepatitis was attempted Ivy adniinirtration of a formalm-Idlled virus preparation (í ml. of Virtwun ĽJ-H*}. Irradiation w,™ given with 3 General Electric M Hindi Unit, operating at £50 lev. arid ID Ma. with ,1 half-value layer of 2.2 mm, or copper, and 11 tniptt-snurer distnnee of ion em. "flic conditions used to uehiive uniform vťtiůlif-bťrcly iiradiatjuii WLie previously deKXJlx'd.' A důee uf -100 j iiK'aiured iti uir wu* gi™n on (lie hrst day. Don 14 received 2ÜÖ r en the second day. All other dogs received 4O0 r on tfie strand day. In tlw? l'3m: of anliiuilx rcuľivinjj iiMtfe than StKI r aji jdditiunal From the Mary Iihujeob Harnett Hinpital (affiliated with Columbia Universit?}, Coapífatowa, N. V. Supported in part li> J research jj^uit {C-2fHH} frum Hi* United Stit« PobÜc Health Sendee and hy the Atomic Energy Cmiuidsritm, Cuoitrat't A.T( 30.1) .SOUS. A portion, of this materia] was presented to the meeting of the American Society ior Clinical Investigation, Atlantic City, May 4? ]^>H and Ih> the mee-ting «f the American Collect of Physicians, Atlantic City, May 1, 195*. Submitted Aug. 4, I9SS; aĽtejJled für pnhlleatüm New. [S, I^ŤJS, *Fitman-Moore Company, Indianapolis, Lid. "ill U Thomas DE p r vnf transplantace pes Blood 1962.pdf - Adobe Reader Soubor Úpravy Zobrazení Dokument Nástroje Okna Nápověda Qi 43* I ♦ *H'13 j« ® \d ä Hledat MARROW TRANSPLANTS IN IRRADIATED DOCÍS 219 WBC lO4- Bi> DOG 401 ^* 15.5 x 10* MARROW \ l CELLS ^ >v I03- T 1250 R lx| / i \ / \ \ í \ \ f i L / i \ í 1 \ ti I02- : L i* "X \ \ \ \ v \DOG 407 (NO MARROW) Ký< " D D D D D D \-------.x + G D G DD METHOTREXATE 1.0 > mgm. 1 ..J--------------L------------1--------------1--------------1------------ -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 DAYS Fig- 1-—White blood cell counts and Methotrexate administration in two dogs irradiated with 1250 r. Dog 401 received homologous marrow on the day after radiation and was alive and well 201 davs later. Dog 407 received no marrow and died on the 12th dav. ...wl (0 o 154 dní R RQ-PCR FA RQ-PCR 1.8.2006 fontiiwriDftKřiDralKi frtfniliotuftfceJdonüi MnirwMlierstí in cpeitfing rwm Filtered nunusii gLVĚ.i tg íc-:ipk-Ti BMT Gleevec" fimj.1..-:* iwiíi^ía;^ 2001 Point mutations in the Abi kinase domain (MAA^y CV3J8I y (L3B7M)- (H3KR) vation loop H 396 Catalytic After Ohvashiki et al, 2004 Screening of ABL kinase domain mutations RT-PCR: region ABL rearranged domain in BCR-ABL by Expand High Fidelity Enzyme (Roche) Primers: F-BCR-A (exon el2/el3) x R-ABL-A (exon a8) typ b3a2___________________________________ j e11 | e12 | el 3 | e141 a2 | a3 R-ABL-A i a8 | a9 j F-BCR-A Conventional direct sequencing: by using a BigDye®Terminator v1.1 Seq.kit/AbiPrism 310 System/, exon4-exon8/ Primer: ABL-ALT Comparison with the GeneBank mRNA sequence XI6416 Primer F-BCR-A R-ABL-A 5-GAG CAG CAG AAG AAG TGT TTC AGA-3 5-CTC TAG CAG CTC ATA CAC CTG GG-3' Sorre M.E. et al. 2001 Science Soverini S. et al. 2004 Clin.Chem. Reference (wt) G AGCAG GT 530 GAT 540 G A C A GCT GGAGC CAAGTTCCCCAT CA 570 580 22/9 PB Stdl - HUS 1F-ABL-5-23 06 2008; 0% 1 000 4 580 4 600 4 620 4 640 4 680 4 700 4 720 4 740 4 760 Sample - STY-F-ABL-08_10_2008; 32,6%(D) - 28,31%(I) 1 000 800 600 400 200 "3T5~~ -T.J ^esf A...C..\.l. 330 4 580 4 600 4 620 4 640 5td2 - JOCH-F-ABL-08_10_2008; 88,89% 1 000 4 6! 0 4 680 4 700 4 720 4 740 4 760 800 600 400 200 4 580 4 600 4 620 4 640 4 680 4 700 4 720 4 740 4 760 Table 2: FDA-approved Indications of Tyrosine Kinase Inhibitors Gleevec (imatinib mesylate) Sprycel (dasatinlb) Ta signa {nilotinib) Approved in May 2001 Treatment of newly diagnosed patients with Philadelphia chromosome positive chronic myeloid leukemia (Ph+CML) in chronic phase (400 mg daity Treatment of patients with Ph+CML in blast crisis, accelerated phase, at in chronic phase after failure of interferon-alpha therapy (600 mg daily) Treatment of pediatric patients with Ph+CML in chronic phase who are newly d iagnosed or whose disease has retu rred after stem cell tra nspla nt or who are resistant to interferon-alpha therapy (260 mg/m^ daily or 340 mg/mJ daily) Treatment of adult patients with relapsed or refractory Ph+ acute lymphoblastic leukemia {600 mg daily) Treatment of adult patients with myelodysplastic/myeloproliferative diseases (MDS/MPD) associated with PDGFR {platelet-derived growth factor receptor) gene rearrangements {400 mg daily) Treatment of adult patients with aggressive systemic mastocytosis (ASM) without the D816Vt-Kit mutation or withe-Kit mutational status unknown (100 mg daily or 400 mg daily) Treatment of adult patients with hypereosinophilit syndrome (HES) and/or chronic eosinophilic leukemia (CEL) who have the FlPl LI -PDGFR alpha fusion kinase (mutational analysis or FISH demonstration of CHIC2 allele deletion) and for patients with HES and/or CEL who are FlPl Ll -PDGFR alpha fusion ki nase negative or u n known (100 mg daily or 400 mg da 11 y Treatment of adult patients with unresectable, recurrent and/or metastatic dermatofibrosarcoma protuberans (DFSP) (800 mg daily) Treatment of patients with Kit (CDl 17) positive unresectable and/or metastatic malignant gastrointestinal stromal tumors (GIST) (400 mg daily or 800 mg daily) Approved in June 2006 Treatment of adults with chronic, accelerated, or myeloid or lymphoid blast phase CML with resistance or intolerance to prior therapy including imatinib Treatment of adults with Ph+ ALL with resistance Or intolerance to prior therapy Chronic phase, 100 mg daily Advanced phases of disease, 70 mg twice daily • Approved in October 2007 • Treat men t of c hruri it phase d r d accelerated phase Ph+CML in adult patients resistant to or intolerant to prior therapy that included imatinib Dose, 400 mg twice daily Acute myeloid leukaemia (AML) and related precursor neoplasms AML with recurrent genetic abnormalities AML with gene mutations AML with myelodysplasia-related changes Therapy-related myeloid neoplasms AML, not otherwise specified Myeloid sarcoma Akutní myeloidní leukémie heterogenní skupina onemocnění různé chromozomální aberace 40-50% případu AML s molekulárním markerem acute myeloid leukaemia AMLl-ETO t(8;21) CBFp-MYH inv(l random NUP98-HOXA9 tC7;ll) FUS-ERG t(ló;21) MĹL-AF9 t(9;ll) EVU PML-RARa ZZ\ PLZF-RAR* K3'V) NPM-RARa t{15;17),t(ll;17),t(5;17) NPM-MLFl t(3;5) DEK-CAN t{6;9) Prognostické faktory AML Fúzní geny s diagnostickým významem - PML/RARa ® dobrá prognóza - AML1/ETO ® dobrá prognóza - CBFb/MYH ® dobrá prognóza - přestavby MLL genu ® špatná prognóza ■ změny genu s prognostickým významem - interní tandemové duplikace ITD-FLT3 genu - bodové mutace aktivační smyčky FLT3 genu - mutace CEBPa genu - mutace NPM1 genu AML M2 s AMLl/ETO (53 let) %EXPRESE 200 ' 190 180 170 160 150 141 120 110 100 90 80 70 60 50 40 30 ill] 2.RI l.W H 3.K CYTOGENETIKA MYELOGRAM Fi nwrYTfiMET DNY 0 49 88 126 152 172 180 214 250 272 285 348 3881 %EXP.- BM 149 11,74 21,77 0,00003 0,03 0,04 0,02 0,09 12,68 74 204 127 I33I %EXP.- PB 42 %EXPRESE 252 AML M2 s AMLl/ETO (27 let) l.W 3.K CYTOGENETi: MYELOGRA. FLOWCYTO" DNY I 0 23 62 99 118 160 198 232 241 289 %EXP.-BlJ 252 1,19 0,0013 0,001 0 0 0,008 0,39 0,97 0,015 |%exp.-pb| 0,74 0 0 0,01 Fi niAirvTnMFT DNY 0 33 62 96 105 138 175 182 201 |%EXP.- BM 60 73,98 27,49 0,02 0,07 0,07 0 |%EXP.- PB 18,69 0 0,02 0 0 Detekce mutací metodou f ragmentační analýza CEQ 8000 Genetic Analysis ]d System (Beckman Coulter,CA) | D GŕHf^lgif t^úM MM sá\ \ď Study ■■Íj7 Fragments List ■Jf Results Set 60000 rö 50000 §i 40000 CD 30000 £, 20000 Q 10000 0 270.782, 1S673S.133 200000 -ř rö 150000 -E CG 100000 50000 0 279.669. 109014.797 100000 -ž 75000 -= 50000 -I q 25000 0 296.334. 77247.358 70 _ 60 | 50 40 30 >> 20 10 000 -| 000 -I 000 -| 000 -| 000 -| 000 -j 000 - = 0 -E- Analyses "j Data } Reports J 290 Size (nt) iReady Nucleophosmin (NPMl) , B23, N038, Numatrin •In humans, accumulating evidence that NPM is directly implicated in the pathogenesis of cancer •Over-expressed in solid tumors of diverse histological origin, is involved in tumor progression •In hematologic malignancies the locus NPM is lost or translocated - formation of oncogenic fusion proteins •NPM gene contains 12 exons in maps to 5q35 •C-terminus contains a short aromatic stretch with two tryptophans at positions 288 and 290, which are crucial for NPM binding to the nucleolus (nucleolar localization signal) •Is more highly expressed in proliferating cells •Is involved in the apoptotic response to stress and oncogenic stimuli and can modulate the activity and stability of the oncosupressor protein p53 •Mutations are consistently heterozygous, are restricted to exon 12, except for 2 cases: exon 11(2007) and exon 9(2006), about 50 molecular variants of mutations to date in AML with >95% at nucleotide position 960 •Mutation A duplicates a TCTG tetranucleotide at positions 956 to 959 75-80% of adult NPMc+ AML cases Falini et al., NEJM, 352, 254-266, 2005 mutations .-y-třšřřř ** NES N LS NoLS 1 1 1 1 homo-oligomerization domain heterodimerization domain nucleic acid binding domain B tyPG sequence protein wt CTCTG.........GC AGT......GG AGG AAGTCTCTTAAC A A A AT AG DLWQWRKSLM A CTCTGT: T(. GCAGT......GGAGGAAGTCTCTTAACAAAATAG D CLA EE.3 RK e CTCTÖCA i y GCAGT......GGAGGAAGTŮTCTTAAČAaAATA DiCMA/EEvS RK c CTCTGCGTGGCAGT......GGAGGAAGTCTCTTAACAAAATAG DLCVA-'EE/S.RK D CTCTG<".'■";T. .GCAGT......GGAGGAAGTCTCTTAACAAAATAG Dl CLA EE S RK E CTCTG.........GCAGTCTCTTGCCCAAGTCTCTTAACAAMTA D! WOSLAQVS RK F CTCTG GCAGTCCCTGGAGAAAGTCTCTTAACAAAATA Dl ■.VOSLEKVS R K Figure 1. Schematic presentation of the nucleophosmin íNPMUgene and oť normal and mutant NPM protein. A, Schematic representation of NPMl gene and normal ft'Pvf protein. 8, Examples of NPMl gene mutations (types A—f). Inserted nucleotides are in violet. All iN'P.Vf mutant proteins show mutations in at least one of the tryptophan residues iW) within the nucleolar localisation signal domain and share the same last 5 amino acid residues (VStBUf. SES indicates nuclear eaporf signal; ľJLS, nuclear localisation signal; t^oLS, nucleolar localisation signal; **, site of mutations in exon 12. o ! B o í I 9-Mar-07 1C 16-Apr-07 2C 30-May-07 3C 25-Jul-07 HR 23-Apr-08 Rl 7-May-08 -BM PB o o o o Date I 28-Apr-07 HR 7-May-08 1C 11-Jun-07 —■-----BM Date O CD CD CD CD CD CD CD CD CD CO CO CG CO CO CD CD CD CD p KcoRV »I« -46 Up- li L; B M wild Ml l:-p 114 «0 4fi Figure 1. Detection of D635 mutations in the FĹT3 gene, To detect D&35 mutations, we amplfied exon 17 by PCR, and then digested it with the EccR\' endonuclease (A). The amplified products of wild type were digested to 2 bands {68 bp and 46 bp) by the EcoRV. When amplified products contained D835 mutations, undigested bands (114 bp} were visualized on agarose gel electrophoresis. M indicates the molecular weight marker (Haetll digested pBR332 plasmid DNA) (B). The undigested bands were directly sequenced (C). In this sample, the first nucleotide G of DB35 was substituted with T, resulting in an Asp to Tyr amino acid change (DS35Y). Yamamoto, Y., et al., Blood, 97, 2434-2439, 2001 CEBPA gene Encodes transcriptional factor (CCAAT/enhancer binding protein alpha) playing crucial role in myeloid differentiation Loss of CEBPA function leads to blocking of granulocytic differentiation of AM L When mutated confers favorable prognosis for patients with CN-AML HRM pre-amplification PP1F/PP1R PP2F/PP2R CEBPA qene Four independent real-time PCRs performed in I volume each, selectively amplifying CEBPA gene within four overlapping fragments (PCR products C1-C4) Reaction mixture C1-C4 • 5ul SensiMix HRM (Quantace, UK) • 0.4ul EvaGreen Dye (Quantace, UK) • 2x0.8ul specific primers (10uM)1 • 2ul distilled water • 1 ul DNA template 1CEBPA primers (Pabst T. et al., Nature genetics 2001, Vol. 27, 263-270) High Resolution Melt Analysis Real-time program •95°C/10min • 95°C/15s ------1 • 65°C/40s ■> x35 • 72°C/20s ------' •53°C/1min • 87°C/90s • rising 0.1 °C to 97°C/2s pre-amphfication HRM results poorly performed assays must be omitted runs with low reproducibility of melting curves must not be included in analysis particular wild type sample is set as a reference normalized melting graphs and difference graphs are used to distinguish between mutation and wild type samples only mutation positive samples are further sequenced /I sequencing G C CCÁCGC CC G GCCCAC'lCCCG Polymori hism1281G>T /IAA/ Myeloproliferative Neoplasms Chronic myelogenous leukaemia BCR-ABL positive Chronic neutrophilic leukaemia Polycythaemia vera Primary myelofibrosis Essential thrombocythaemia Chronic eosinophilic leukaemia Mastocytosis - . :, m^\v>n I Stí SS M V S^N* U ' *t ■ I'tf'" 1 2005 období objevu mutací JAK2 genu - pracoviště D. Gary Gilliland (Boston), William Vainchenker (INSERM), Radek Skoda (Basel), Anthony Green (Cambridge) JAK2NÜW? (exon 14) 2006 Gary Gilliland skupina somatické mutace (exon 10) MPLWblbL a MPLWblbK u JAK2Nbľ7F negativních 5% PMF (primárních myelof ibróz) a 1% ET 2007 A. Green další 4 mutace v JA K2 gern (exon 12, delece, inzerce) Clarifications on the precise pathogenetic role of these mutations as well as their importance as targets for small molecule therapy . Award winners 25th September 2008: Casino Restaurants Bern As the chairperson of the five-member jury, professor Andreas Tobler, M.D., Berne, past president of the Swiss Society for Hematology, presents the HEMATOLOGICAL MALIGNANCIES AWARD 2008 carrying a value of CHF 100.000 to professor of biomedicine Radek Skoda, M.D., Basel. The award was assigned to professor Skoda for a study on the pathogenesis of myeloproliferative disorders entitled "Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice"1 and published by his research team of Experimental Hematology. i A Inactive JAK2 B ActivatedJAK2 C Active J AK 2 Inhibition of the JH1 domain kinase activity by the JH2 domain Ligand occupies the receptor. JAKZ conformation changes, and JH2 no longer inhibits JH1 JH2 domain with the V617 mutation does not inhibit the JH1 kinase activity The domains of JAK2 illustrating binding to the receptor and changes consequent to receptor binding and mutation in the JH2 domain. The V617F mutation of the JH2 domain of JAK2 results in constitutive kinase activation. Panel A: When no ligand in bound to the EPO, TPO, G-CSF or GM-CSF receptors, the kinase activity of the JH1 domain is inhibited by the JH2 domain and JAK2 is inactive. Panel B: When EPO binding to it receptor, the two strands of the receptor come closer together, JAK2 changes conformation, the JH1 kinase activity in no longer inhibited by JH2. Panel C: The JAK2 V617F mutation prevents JH2 from inhibiting JH1 and the kinase is active even when no ligand is bound by the receptor. Bennett and Stroncek Journal of Translational Medicine 2006 4:41 doi: 10.1186/1479-5876-4-41 JAK2 mutation site identification substituce 1849 £>T, cxon 14, záměna val inu za fenylalanín v kodónu 617 (V617F) JAK2exon14 codon617 5' - TTTGGTTTTAAATTATGGAGTATG' L V L N Y G V C mut-JAK2exon14 5' - TTTGGTTTTAAATTATGGAGTATG' L V L N Y G V C TCTGTGGAGACGAG -3 C G D E CTGTGGAGACGAG -3 C G D E TCTTTCTTTGAAGCAGCAAGTATGATGAGCAAGCTTTCTCACAAGCATTTGGTTTTAAAT TATGGAGTATGTGTCTGTGGAGACGAGA Q -, Gen JAK2 (9p24), substituce 1849 G>T, exon 14, záměna valinu za fenylalanin v kodónu 617 (V617F) u 95% pacientů s PV (z toho cca 33% je homozygotních v důsledku LOH při mitotickém crossing-overu) (Pardanani 2008, Leukemia) u 50% pacientů s ET a PMF (homozygotní stav je u těchto pacientů vzácný) vzácně se mutace může vyskytnout u pacientů s MDS (5%) nebo s CMML (chronic myelomonocytic leukemia) (3%) i u jiných malignit myeloidní řady-RARS-T (ringed sideroblasts associated with marked thrombocytosis), JMML (juvenile myelomonocytic leukemia), aCML (atypical CML), de novo AML potvrzen i souběžný výskyt V617F mutace s BCR-ABL mutací, přičemž výsledný fenotyp závisí na tom, který buněčný klon získá převahu (Hussein et al. 2008, Leukemia) někteří autoři uvádí výskyt V617F mutace i u zdravých jedinců (Sidon et al. 2006, Leukemia), nebo u náhodně vybraných pacientů s jiným než hematologickým onemocněním (Xu et al. 2007, Blood). pacient může nést V617F mutaci několik let předtím, než se u něj vyvine myeloproliferative onemocnění (Bellanné-Chantelot et al. 2008, Leukemia) Detekce mutace V617F JAK-2 Metoda alellcke diskriminace pro JAK21617* separace granulocytu z PB izolace gĎNA RQ - PCR s využitím fluorescenčně značených LNA modifikovaných hybridizačních sond (Locked Nucleic Acids) vyznačují se 100% alelickou diskriminací obou genotypů citlivost detekující 10% příměs granulocytu nesoucích mutantní alelu na pozadí zdravé populace fluorescenční značení FAM pro sondu s WT sekvencí a JOE pro sondu s MUT sekvencí (Pekova, S. et al., Blood, 108, No 11, 313B, 2006 Veselovska et al. Leukemia Research, 32: 369, 2008) Alelická diskriminace pro detekci JAK^ei7? CT GAAAGTAGGAGAAAGT GCAT CTT TAT TATGGCAGAGAGAAT TT TCT GAACT AT T TATG GACAACAGT CAAACAACAAT TCT TT GT ACT TT T TT TT T TCCT T AGTCTTTCTTTGAAGCÄ GCMGTÄTGÄTGAGCMGCTTTCTCACAAGCÄTTTGGTTTTÄÄÄTTÄTGGAGTÄrGTTTC TGTGGAGACGAGÄGT AAGTAAAACT ACAGGCT T TCTAATGCCT TT CT CAGAGCAT CTGTT i mm mm MM MM MM ■ T T TGT TT AT ATAGAAAAT TCAGT TT CAGGATCACAGCT AGGT GTCAGT GT AAACT ATAAT T T AACAGGAGTT AAGTAT TT TT GAAACT GAAAACACT GTAGGACT AT T CAGTT AT ATCTT primer F: 5'- GAAGCAGCAAGTATGATGAGCAA - 3 primer R: 5'- ACTGACACCTAGCTGTGATCC - 3' JAK2 «t LNA sonda: FAM - tcCacAgaCaCatAc - BHQ1 JAK2V617F LNA sonda: HEX - ctcCacAgaAacAtaCtc - BHQl - PCR analýza Norm Fluoro. 0,8 0,6 Cycling A.FAM/Sybr - No Markers Cycling A.JOE - Circles /K 0,1 0,2 / 0 Threshold 0 '5 '10 H 5 '20 '25 30 '35 40 45 50 Cycle Cycling A.FAM/Sybr - No Markers Cycling A.JOE - Circles 35 '40 '45 '50 Cycle Cycling A.FAM/Sybr - No Markers Cycling A.JOE - Circles '35 '40 '45 '50 Cycle A co dál? Nové léky na bázi TK inhibitoru první, druhé a další ... a další... a další Automatizace extrakce DNA/RNA Robotizace míchání reakčních směsí PCR a titrace standardní DNA Automatizace PCR vyšetření pacienta na bázi kartridge nebo čipu A. RNA Isolation Sample A Sample B * \ B. cDNA Generation C. Labeling o ť Probe RevľrxĽ Tmnsíriptasř t «v FluorrOťrnl % T Taj;s T f. + "Y> D. Hybridization to Array E. imaging 0 Saupk A > B ; Sn«i|>k B > A Sample A = B • • • • • # • ...objevují se nové přístupy v monitorování Genomic analysis (clai-sjrJcíilEon ami r^pcmse) Im.itin i h responsive lmiitinih ■ IhM HPPPP? SI 1 fr'a $w ,, tn í á MKD monitoring Hi-risk of iťLipsť Tnirttiiiib unresponsive Transplant Bcr-íit>] Umo Goldman, J. et al.: Evolution of Management of CML, Tenth International Congress on Hematologie Malignancies �6.B