Anesteziologický přístroj, monitorace L.Dadák ARK FNUSA & LF MU file:///C:/Users/luda/Documents/acer/studovna/Pictures/anestezie/anelifesupport_aestivaB.jpg 5 úkolů O2 Plyny – značení ISO O2 - bílý lfrakční destilace stlačeného = kapalného vzuchu. l(N2 vře dříve než O2) N20 - modrý ltlak 5 MPa Vzduch bílo/černý CO2 - šedý plyn hladina Anesteziologický přístroj umožňuje ventilovat definovanou směsí plynů bezpečnostními prvky brání podání hypoxické směsi části: 1.High pressure system 2.Low pressure system - směs plynů, inhalační anestetikum 3.Breathing circuit - vdech, výdech část 4.Ventilation systems (manual and mechanical) 5.Scavenging system - odtah anest.plynů Části anest. přístroje 1 2 3 4 5 > Vysokotlaká část Zdroj stlačeného plynu ltlakové láhve lcentrální rozvod plynů lalarm nízkého tlaku O2 lbezpečnostní chlopeň pO2 > pN2O lredukční ventil lmanometr Nízkotlaká část lprůtokoměry = flowmetr O2, AIR, N2O lodpařovač lbypass řízení průtoku a koncentrace O2 a N2O - spřaženy min. fiO2 25% Průtoky anest. plynů ldříve : 2..4 l/min llow flow pod 1 l/min lminimal flow pod 0,5l/min luzavřený systém lmandatorní miminální průtok - 200ml/min O2 - minimální příkon O2 po zapnutí anest. přístroje Odpařovače Všechno je jinak … Desfluran Dýchací okruh lchlopeň vdechová lmanometr lhadice lY spojka lchlopeň výdechová lvolumetr lpohlcovač CO2 lpřepadový ventil umožní znovu vdechovat plyn zbavený CO2 – low flow chlopeň vdechová 1 směr manometr ltlak v dýchacích cestách 0..20 … (40) cm H2O během ventilace obličejovou maskou „nepřekročit“ Esophageal Opening Pressure 20cm H2O Y spojka, filtr, prodlužovací hadice pohlcovač CO2 > hadice přepadový ventil adjustable Pressure Limiting (APL) valve plně otevřen = 0,5 cm H2O uzavřen 60 .. 80 cm H2O Dýchací okruh Manometr ltlak v manžetě tr.rourky/TS kanyly 20 - 30 cm H2O ltlak v manžetě LM do 40 cm H2O co nejméně, aby nebyl únik (ověřeno poslechem krku) Ventilační část lventilátor (objemově řízená ventilace, (PCV) Vt 6 ml/kg, f dle CO2, PEEP 5, fiO2 25..100 lmanuálně - vak Odtah anest. plynů lpřebytečné plyny mimo sál Monitorace pacienta monere, "to warn" systematicky kontrolovat ..použitím smyslů a elektronických zařízení opakovaně nebo kontinuálně měřit proměnné anestezovaného pacienta. Figure 30-1 Optical illusions. We perceive the circles to be different sizes because we infer the size by relative dimensions. The closeness of the smaller circles makes the inner circle appear smaller, and vice versa. The lines appear to be different sizes because we use straight-line perspective to estimate size and distance. This illusion reportedly does not work in cultures where straight lines are not used. Therefore, our internal perceptions lead us to err in estimating size and length. In the same way, the internal programming of our monitors can lead us to misinterpret results. Downloaded from: Miller's Anesthesia (on 12 March 2009 08:22 PM) © 2007 Elsevier Smysly klamou, ... … ale bez smyslů to nejde Monitorace 1) trvalá přítomnost anesteziologa/sestry Sledovat + hodnotit kontinuálně lAirway + Breathing -průchodné d.cesty -kvalita dýchání, slyšitelné fenomeny, poslech lCirculation -kvalita a frekvence pulsu, prokrvení, barva sliznic lhloubka anestezie ~ vědomí -zornice, pocení, pohyb kk. Cíl: předejít problému >>>> Alarm <<<< < ?? co s ním ??> -všimnout si -interpretovat = vyhodnotit -reagovat = něco změnit lvypnout alarm? lupravit hranice alarmu? Fonendoskop + při anestezii okamžitě dostupný. lventilační problém (bronchospasmus, laryngospasmus při LM) - SpO2, EtCO2 a EKG detekují problém snadněji než kontinuální poslech. Monitorace oběhu fonendoskopem – jen není-li dostupná elektronická monitorace. EKG lsrdeční frekvence lrytmus lextrasystoly lST změny - ischemie Polohy elektrod sinusový rytmus SVT: (není P, QRS štíhlé, pravidelná) fisi nepravidelná akce, QRS štíhlé komorový rytmus elektrostimulace spike, komplex EKG … tepová frekvence l45/min nebo 150/min nebo ?? Amann et al. BioMedical Engineering OnLine 2005 4:60 doi:10.1186/1475-925X-4-60 EKG – komplikace monitorace lelektrické rušení jinými přístroji (pálení) lpřívodná šňůra kříží EKG kabel lkabel jako anténa (smyčka) ldefibrilační výboj (norma povoluje 10s) Figure 32-2 Effect of cuff size on manual blood pressure measurement. An inappropriately small blood pressure cuff yields erroneously high values for blood pressure because the pressure within the cuff is incompletely transmitted to the underlying artery. Downloaded from: Miller's Anesthesia (on 12 March 2009 08:22 PM) © 2007 Elsevier Princip měření NIBP Figure 32-3 Comparison of blood pressure measurements by Korotkoff sounds and oscillometry. Oscillometric systolic blood pressure is recorded at the point where cuff pressure oscillations begin to increase, mean pressure corresponds to the point of maximal oscillations, and diastolic pressure is measured when the oscillations become attenuated. Note the correspondence between these measurements and the Korotkoff sounds that determine auscultatory systolic and diastolic pressure. (Redrawn from Geddes LA: Cardiovascular Devices and Their Applications. New York John Wiley, 1984, Fig 34-2. Reprinted by permission of John Wiley & Sons, Inc.) Downloaded from: Miller's Anesthesia (on 12 March 2009 08:22 PM) © 2007 Elsevier NIBP komplikace : * bolest * Petechie * Otok končetiny * Venous stasis, thrombophlebitis * Peripheral neuropathy * Compartment syndrome lNesnadné měření ltřes, pohyb. aktivita lbradykardie < 40/min lobezita lšok - vazokonstr. IBP, kanylace arterie * kontinuálně, real-time * očekávám ovlivnění oběhu farmaky / mechanicky * opakované odběry krve * selhání NIBP * přídatná informace z pulzové křivky •Pulse Pressure Variation Figure 32-4 Percutaneous radial artery cannulation. A, The wrist is positioned and the artery identified by palpation. B, The catheter-over-needle assembly is introduced through the skin and advanced toward the artery. C, Entry of the needle tip into the artery is identified by the flash of arterial blood in the needle hub reservoir. D, The needle-catheter assembly is advanced at a lower angle to ensure entry of the catheter tip into the vessel. E, If blood flow continues into the needle reservoir, the catheter is advanced gently over the needle into the artery. F, The catheter is attached to pressure monitoring tubing while maintaining proximal occlusive pressure on the artery. Downloaded from: Miller's Anesthesia (on 12 March 2009 08:22 PM) © 2007 Elsevier Měření invazivního tlaku a. radialis / a. femoralis / a. brachialis arterie – hadička – komůrka – přetlaková manžeta s infuzí (trvalý proplach kanyly ml/h) lkapalina je neztlačitelná X vzduch lsraženina / zalomení zvyšuje odpor !!Alarm!! Low BP Figure 32-1 Digital heart rate (HR) displays may fail to warn of dangerous bradyarrhythmias. Direct observation of the electrocardiogram (ECG) and the arterial blood pressure traces reveals complete heart block and a 4-second period of asystole, whereas the digital display reports an HR of 49 beats/min. Note that the ECG filter (arrow) corrects the baseline drift so that the trace remains on the recording screen. (From Mark JB: Atlas of Cardiovascular Monitoring. New York, Churchill Livingstone, 1998, Fig. 13-2.) srdeční akce: 49/minutu, EKG: AV blokáda III Figure 36-1 Oxygen transport cascade. A schematic view of the steps in oxygen transport from the atmosphere to the site of utilization in the mitochondrion is shown here. Approximate Po2 values are shown for each step in the cascade, and factors determining those partial pressures are shown within the square brackets. There is a distribution of tissue Po2 values depending on local capillary blood flow, tissue oxygen consumption, and diffusion distances. Mitochondrial Po2 values are depicted as a range because reported levels vary widely. (Adapted from Nunn JF: Nunn's Applied Respiratory Physiology, 4th ed. Boston, Butterworth-Heinemann, 1993.) Downloaded from: Miller's Anesthesia (on 12 March 2009 08:46 PM) © 2007 Elsevier O2 v těle Figure 36-1 Oxygen transport cascade. A schematic view of the steps in oxygen transport from the atmosphere to the site of utilization in the mitochondrion is shown here. Approximate Po2 values are shown for each step in the cascade, and factors determining those partial pressures are shown within the square brackets. There is a distribution of tissue Po2 values depending on local capillary blood flow, tissue oxygen consumption, and diffusion distances. Mitochondrial Po2 values are depicted as a range because reported levels vary widely. (Adapted from Nunn JF: Nunn's Applied Respiratory Physiology, 4th ed. Boston, Butterworth-Heinemann, 1993.) Oxygenace tkání lmonitorace O2 ve vdechovaném plynu lSpO2 =saturace lArteriální krevní plyny = „Astrup“ - analýza krve - nízký srdeční výdej při dobré oxygenační fci plic Saturace, SpO2 , „pulzák“ systémová arteriální saturace hemoglobinu kyslíkem určená pomocí pletyzmografické pulzní oxymetrie místa měření: lprst lušní lalůček lnosní křídlo lret Figure 36-10 Principle of pulse oximetry. Light passing through tissue containing blood is absorbed by tissue and by arterial, capillary, and venous blood. Usually, only the arterial blood is pulsatile. Light absorption may therefore be split into a pulsatile component (AC) and a constant or nonpulsatile component (DC). Hemoglobin O2 saturation may be obtained by application of Equation 19 in the text. (Data from Tremper KK, Barker SJ: Pulse oximetry. Anesthesiology 70:98, 1989.) Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier 1000/s měření červenou, infrač. a „pozadí“ - světlo na sále lOdlišit pulzující = arteriální lnepulzující = ..... absorbci světla Figure 30-34 Hemoglobin extinction curves. Pulse oximetry uses the wavelengths of 660 and 940 nm because they are available in solid-state emitters (not all wavelengths are able to be emitted from diodes). Unfortunately, HbCO and HbO2 absorb equally at 660 nm. Therefore, HbCO and HbO2 both read as Sao2 to a conventional pulse oximeter. In addition, Hbmet and reduced Hb share absorption at 660 nm and interfere with correct Sao2 measurement. (Courtesy of Susan Manson, Biox/Ohmeda, Boulder, Colorado, 1986.) Downloaded from: Miller's Anesthesia (on 20 March 2009 08:47 AM) © 2007 Elsevier 2 vlnové délky, 2absorbce pro Hb a HbO2 AC660 / DC660 S = ---------------- odpovídá % HBO/(HB+HBO) AC940 / DC940 Figure 30-34 Hemoglobin extinction curves. Pulse oximetry uses the wavelengths of 660 and 940 nm because they are available in solid-state emitters (not all wavelengths are able to be emitted from diodes). Unfortunately, HbCO and HbO2 absorb equally at 660 nm. Therefore, HbCO and HbO2 both read as Sao2 to a conventional pulse oximeter. In addition, Hbmet and reduced Hb share absorption at 660 nm and interfere with correct Sao2 measurement. (Courtesy of Susan Manson, Biox/Ohmeda, Boulder, Colorado, 1986.) SpO2 – HbO2 - O2 ve tkáni lod SpO2 90% níže klesá hodnota rychleji lPaO2 klesá konstantně nepřesnost 5% nehraje pro život roli !! pokles !! Figure 36-11 Effect of pulse oximeter probe replacement on delay from onset of hypoxemia to a drop in the measured Spo2. During cold-induced peripheral vasoconstriction in normal volunteers, the onset of hypoxemia was detected more quickly using an oximeter probe on the forehead compared with the finger. Other studies have shown a similar advantage for pulse oximeter probes placed on the ear. (From Bebout DE, Mannheimer PD, Wun C-C: Site-dependent differences in the time to detect changes in saturation during low perfusion. Crit Care Med 29:A115, 2002.) Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier Vliv chladu na SpO2 – posun v čase Monitorace ventilace lP,V, flow; lPV křivka lAnalýza plynů -O2, -EtCO2 – kapnometrie, kapnograf -N2O, [%] volatilní anestetika Figure 36-24 Flow (ordinate) versus volume (abscissa). A, Closed-chest positive-pressure ventilation under general anesthesia in a patient with severe airways obstruction and hyperinflation before surgery to reduce lung volume. The flow-volume curve shows inspiratory (negative) and expiratory (positive) flow on the ordinate, plotted clockwise from zero volume on the abscissa. Expiratory flow started with a sharp upward peak and then fell immediately to a low flow rate with convexity toward the volume axis, suggesting expiratory flow limitation. expiratory flow rate was so low that inflation of the next positive-pressure breath was initiated before expiratory flow reached zero. Because expiratory flow continued up to this point, there must have been intrinsic positive end-expiratory pressure (PEEPi). B, A similar closed-check flow-volume curve after lung resection shows that the characteristic pattern of expiratory flow limitation has disappeared and that expiratory flow rate fell to zero before inflation started for the next breath (i.e., no suggestion of PEEPi). (Adapted from Dueck R: Assessment and monitoring of flow limitation and other parameters from flow/volume loops. J Clin Monit Comput 16:425, 2000.) Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier Figure 57-1 Change in total respiratory compliance during pneumoperitoneum for laparoscopic cholecystectomy. The intra-abdominal pressure was 14 mm Hg, and the head-up tilt was 10 degrees. The airway pressure (Paw) versus volume (V) curves and data were obtained from the screen of a Datex Ultima monitoring device. Curves are generated for before insufflation (A) and 30 minutes after insufflation (B). Values are given for tidal volume (TV, in mL); peak airway pressure (Ppeak, in cm H2O); plateau airway pressure (Pplat, in cm H2O); total respiratory compliance (C, in mL/cm H2O); and end-tidal carbon dioxide tension (PetCO2, in mm Hg). Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier PV křivka během kapnoperitonea Monitorace dýchané směsi Main-stream Side-stream jen CO2, méně přesné zpoždění lehké Monitorace dýchané směsi Main-stream Side-stream Figure 36-13 Paramagnetic oxygen analyzer. Two sealed spheres filled with nitrogen are suspended in a magnetic field. Nitrogen (N2) is slightly diamagnetic, and the resting position of the beam is such that the spheres are displaced away from the strongest portion of the field. If the surrounding gas contains oxygen, the spheres are pushed further out of the field by the relatively paramagnetic oxygen. The magnitude of the torque is related to the paramagnetism of the gas mixture and is proportional to the partial pressure of oxygen (Po2). Movement of the dumbbell is detected by photocells, and a feedback current is applied to the coil encircling the spheres, returning the dumbbell to the zero position. The restoring current and output voltage are proportional to the Po2. (Courtesy of Servomex Co., Norwood, MA.) Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier O2 je paramagnetický (side stream monitor) Minimální fiO2: 21% bezpečné 30% běžně : do 60% hypoxie, 100% preoxygenace 100% Kapnometr, kapnograf lInfra-red Spectrography – pohlcení záření http://www.capnography.com/Physics/Physicsphysical.htm CO2 emituje IR záření Figure 36-18 Examples of capnograph waves. A, Normal spontaneous breathing. B, Normal mechanical ventilation. C, Prolonged exhalation during spontaneous breathing. As CO2 diffuses from the mixed venous blood into the alveoli, its concentration progressively rises (see Fig. 36-19). D, Increased slope of phase III in a mechanically ventilated patient with emphysema. E, Added dead space during spontaneous ventilation. F, Dual plateau (i.e. tails-up pattern) caused by a leak in the sample line.325 The alveolar plateau is artifactually low because of dilution of exhaled gas with air leaking inward. During each mechanical breath, the leak is reduced because of higher pressure within the airway and tubing, explaining the rise in the CO2 concentration at the end of the alveolar plateau. This pattern is not seen during spontaneous ventilation because the required increase in airway pressure is absent. G, Exhausted CO2 absorbent produces an inhaled CO2 concentration greater than zero. H, Double peak for a patient with a single lung transplant. The first peak represents CO2 from the transplanted (normal) lung. CO2 exhalation from the remaining (obstructed) lung is delayed, producing the second peak. I, Inspiratory valve stuck open during spontaneous breathing. Some backflow into the inspired limb of the circuit causes a rise in the level of inspired CO2. J, Inspiratory valve stuck open during mechanical ventilation. The "slurred" downslope during inspiration represents a small amount of inspired CO2 in the inspired limb of the circuit. K and L, Expiratory valve stuck open during spontaneous breathing or mechanical ventilation. Inhalation of exhaled gas causes an increase in inspired CO2. M, Cardiogenic oscillations, when seen, usually occur with sidestream capnographs for spontaneously breathing patients at the end of each exhalation. Cardiac action causes to-and-fro movement of the interface between exhaled and fresh gas. The CO2 concentration in gas entering the sampling line therefore alternates between high and low values. N, Electrical noise resulting from a malfunctioning component. The seemingly random nature of the signal perturbations (about three per second) implies a nonbiologic cause. Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier Figure 36-18 Examples of capnograph waves. A, Normal spontaneous breathing. B, Normal mechanical ventilation. C, Prolonged exhalation during spontaneous breathing. As CO2 diffuses from the mixed venous blood into the alveoli, its concentration progressively rises (see Fig. 36-19). D, Increased slope of phase III in a mechanically ventilated patient with emphysema. E, Added dead space during spontaneous ventilation. F, Dual plateau (i.e. tails-up pattern) caused by a leak in the sample line.325 The alveolar plateau is artifactually low because of dilution of exhaled gas with air leaking inward. During each mechanical breath, the leak is reduced because of higher pressure within the airway and tubing, explaining the rise in the CO2 concentration at the end of the alveolar plateau. This pattern is not seen during spontaneous ventilation because the required increase in airway pressure is absent. G, Exhausted CO2 absorbent produces an inhaled CO2 concentration greater than zero. H, Double peak for a patient with a single lung transplant. The first peak represents CO2 from the transplanted (normal) lung. CO2 exhalation from the remaining (obstructed) lung is delayed, producing the second peak. I, Inspiratory valve stuck open during spontaneous breathing. Some backflow into the inspired limb of the circuit causes a rise in the level of inspired CO2. J, Inspiratory valve stuck open during mechanical ventilation. The "slurred" downslope during inspiration represents a small amount of inspired CO2 in the inspired limb of the circuit. K and L, Expiratory valve stuck open during spontaneous breathing or mechanical ventilation. Inhalation of exhaled gas causes an increase in inspired CO2. M, Cardiogenic oscillations, when seen, usually occur with sidestream capnographs for spontaneously breathing patients at the end of each exhalation. Cardiac action causes to-and-fro movement of the interface between exhaled and fresh gas. The CO2 concentration in gas entering the sampling line therefore alternates between high and low values. N, Electrical noise resulting from a malfunctioning component. The seemingly random nature of the signal perturbations (about three per second) implies a nonbiologic cause. Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier Normální dýchání spont. řízené Figure 36-18 Examples of capnograph waves. A, Normal spontaneous breathing. B, Normal mechanical ventilation. C, Prolonged exhalation during spontaneous breathing. As CO2 diffuses from the mixed venous blood into the alveoli, its concentration progressively rises (see Fig. 36-19). D, Increased slope of phase III in a mechanically ventilated patient with emphysema. E, Added dead space during spontaneous ventilation. F, Dual plateau (i.e. tails-up pattern) caused by a leak in the sample line.325 The alveolar plateau is artifactually low because of dilution of exhaled gas with air leaking inward. During each mechanical breath, the leak is reduced because of higher pressure within the airway and tubing, explaining the rise in the CO2 concentration at the end of the alveolar plateau. This pattern is not seen during spontaneous ventilation because the required increase in airway pressure is absent. G, Exhausted CO2 absorbent produces an inhaled CO2 concentration greater than zero. H, Double peak for a patient with a single lung transplant. The first peak represents CO2 from the transplanted (normal) lung. CO2 exhalation from the remaining (obstructed) lung is delayed, producing the second peak. I, Inspiratory valve stuck open during spontaneous breathing. Some backflow into the inspired limb of the circuit causes a rise in the level of inspired CO2. J, Inspiratory valve stuck open during mechanical ventilation. The "slurred" downslope during inspiration represents a small amount of inspired CO2 in the inspired limb of the circuit. K and L, Expiratory valve stuck open during spontaneous breathing or mechanical ventilation. Inhalation of exhaled gas causes an increase in inspired CO2. M, Cardiogenic oscillations, when seen, usually occur with sidestream capnographs for spontaneously breathing patients at the end of each exhalation. Cardiac action causes to-and-fro movement of the interface between exhaled and fresh gas. The CO2 concentration in gas entering the sampling line therefore alternates between high and low values. N, Electrical noise resulting from a malfunctioning component. The seemingly random nature of the signal perturbations (about three per second) implies a nonbiologic cause. obstrukce d.c. expirium inspirium Figure 36-19 Mechanisms of airways obstruction producing an upsloping phase III capnogram. In a normal, healthy person (upper panel), there is a narrow range of [Vdot]a/[Qdot] ratios with values close to 1. Gas exchange units therefore have similar Pco2 and tend to empty synchronously, and the expired Pco2 remains relatively constant. During the course of exhalation, the alveolar Pco2 slowly rises as CO2 continuously diffuses from the blood. This causes a slight increase in Pco2 toward the end of expiration, and this increase can be pronounced if the exhalation is prolonged (see Fig. 36-18C). In a patient with diffuse airways obstruction (lower panel), the airway pathology is heterogeneous, with gas exchange units having a wide range of [Vdot]a/[Qdot] ratios. Well-ventilated gas exchange units, with gas containing a lower Pco2, empty first; poorly ventilated units, with a higher Pco2, empty last. In addition to the continuous rise in Pco2 mentioned previously, there is a progressive increase caused by asynchronous exhalation. Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier zdravé plíce, alveoly vyprázdněny současně Různá ventilace alveolů nejprve vyprázdněny dobře ventilované pak špatně ventilované Figure 57-2 Ventilatory changes (pH, Paco2, and PetCO2) during CO2 pneumoperitoneum for laparoscopic cholecystectomy. For 13 American Society of Anesthesiologists (ASA) class I and II patients, minute ventilation was kept constant at 100 mL/kg/min with a respiratory rate of 12 per minute during the study. Intra-abdominal pressure was 14 mm Hg. Data are given as the mean ± SEM.*, P .05 compared with time 0. Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier CO2 při kapnoperitoneu Figure 36-20 The effect ofNaHCO3- administration on end-tidal Pco2. A continuous tracing of end-tidal Pco2 is shown as a function of time. Intravenous administration of 50 mEq followed by 30 mEq of NaHCO3 results in an abrupt increase in expired CO2 because of neutralization of bicarbonate by hydrogen ions. Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier Kapnograf Náhlý pokles na 0: lzaklemovaná, zalomená trach.rourka lporucha kapnografu Postupný pokles: lčástečná obstrukce lhyperventilace lpokles metabolismu lpokles perfuze plic Nulové etCO2 lintubace do jícnu Monitorace tělesné teploty lu výkonů delších 60 minut laktivní ohřívání – podložkou, prouděním teplého vzduchu Figure 40-7 Hypothermia during general anesthesia develops with a characteristic pattern. An initial rapid decrease in core temperature results from a core-to-peripheral redistribution of body heat. This redistribution is followed by a slow, linear reduction in core temperature that results simply from heat loss exceeding heat production. Finally, core temperature stabilizes and subsequently remains virtually unchanged. This plateau phase may be a passive thermal steady state or might result when sufficient hypothermia triggers thermoregulatory vasoconstriction. Results are presented as means ± SD. Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier redistribuce tepla periferní vazodilatace snížená tvorba tepla a stacionární ztráty do okolí ustálený stav 15 minutes po EPI anestezii pokles teploty jádra, vzestup pocitu tepelné pohody (visual analog scale -VAS). Interestingly, however, maximal thermal comfort coincided with the minimum core temperature. Tympanálně měřená teplota. (Redrawn with modification from Sessler DI, Ponte J: Shivering during epidural anesthesia. Anesthesiology 72:816-821, 1990.) Downloaded from: Miller's Anesthesia (on 19 March 2009 11:18 PM) © 2007 Elsevier Monitorace nervosvalové blokády * single-twitch * train-of-four (TOF) * tetanic, post-tetanic count (PTC) * double-burst stimulation (DBS) Single-twitch * 1Hz .. 0,1Hz, kontinuálně Figure 39-1 Pattern of electrical stimulation and evoked muscle responses to single-twitch nerve stimulation (at frequencies of 0.1 to 1.0 Hz) after injection of nondepolarizing (Non-dep) and depolarizing (Dep) neuromuscular blocking drugs (arrows). Note that except for the difference in time factors, no differences in the strength of the evoked responses exist between the two types of block. Downloaded from: Miller's Anesthesia (on 12 March 2009 08:46 PM) TOF * 4 stimuly á 0,5s (2Hz) Downloaded from: Miller's Anesthesia (on 12 March 2009 08:46 PM) Figure 39-2 Pattern of electrical stimulation and evoked muscle responses to TOF nerve stimulation before and after injection of nondepolarizing (Non-dep) and depolarizing (Dep) neuromuscular blocking drugs (arrows). Tetanická stimulace * bolestivá; 50Hz na 5s Figure 39-3 Pattern of stimulation and evoked muscle responses to tetanic (50-Hz) nerve stimulation for 5 seconds (Te) and post-tetanic stimulation (1.0-Hz) twitch. Stimulation was applied before injection of neuromuscular blocking drugs and during moderate nondepolarizing and depolarizing blocks. Note fade in the response to tetanic stimulation, plus post-tetanic facilitation of transmission during nondepolarizing blockade. During depolarizing blockade, the tetanic response is well sustained and no post-tetanic facilitation of transmission occurs. Downloaded from: Miller's Anesthesia (on 12 March 2009 08:46 PM) © 2007 Elsevier Posttetanická facilitace Figure 39-4 Pattern of electrical stimulation and evoked muscle responses to TOF nerve stimulation, 50-Hz tetanic nerve stimulation for 5 seconds (TE), and 1.0-Hz post-tetanic twitch stimulation (PTS) during four different levels of nondepolarizing neuromuscular blockade. During very intense blockade of the peripheral muscles (A), no response to any of the forms of stimulation occurs. During less pronounced blockade (B and C), there is still no response to stimulation, but post-tetanic facilitation of transmission is present. During surgical block (D), the first response to TOF appears and post-tetanic facilitation increases further. The post-tetanic count (see text) is 1 during intense block (B), 3 during less intense block (C), and 8 during surgical block (D). Downloaded from: Miller's Anesthesia (on 12 March 2009 08:46 PM) © 2007 Elsevier Double-burst stimulation * 2 krátké sekvence 50-Hz tetanické stimulace, odděleny pauzou 750 ms * nerelaxovaný sval – 2 stejně silné kontrakce * částečné relaxovaný sval – 2. je slabší Figure 39-7 Pattern of electrical stimulation and evoked muscle responses to TOF nerve stimulation and double-burst nerve stimulation (i.e., three impulses in each of two tetanic bursts, DBS3,3) before injection of muscle relaxants (control) and during recovery from nondepolarizing neuromuscular blockade. TOF ratio is the amplitude of the fourth response to TOF divided by the amplitude of the first response. DBS3,3 ratio is the amplitude of the second response to DBS3,3 divided by the amplitude of the first response. (See text for further explanation.) Downloaded from: Miller's Anesthesia (on 12 March 2009 09:47 PM) © 2007 Elsevier Sledované parametry anest. přístroje lhmotnost palice ltloušťka a počet polštářů Sledované parametry anest. přístroje ltlaky v Centrálním rozvodu / tlak. lahvích lfunkce ventilátoru (vlnovec se vrací až nahoru) Bdělost při CA lBdělost je pooperační vzpomínka na události během celkové anestezie l0,1 – 0,2% operované populace (1:800) -mimotělní oběh -císařský řez -trauma reportují: -pocit svalové relaxace, nemožnost pohybu -konverzace -strach, bolest, bezmoc Monitorace hloubky bezvědomí lEEG – matematika → BIS .. číslo charakterizující bdělost 100 .. 0 Příště .... farmakologie