Parametrické úlohy o dvou nezávislých náhodných výběrech z normálních rozložení Motivace: V této situaci je naším úkolem porovnat střední hodnoty či rozptyly dvou normálních rozložení na základě znalosti dvou nezávislých náhodných výběrů pořízených z těchto rozložení. Zpravidla konstruujeme intervaly spolehlivosti pro rozdíl středních hodnot respektive hodnotíme shodu středních hodnot pomocí dvouvýběrového t-testu či dvouvýběrového z-testu a shodu rozptylů pomocí F-testu. Rozložení statistik odvozených z výběrových průměrů a výběrových rozptylů Máme dva nezávislé náhodné výběry, první pochází z rozložení N(µ1, σ1 2 ) a má rozsah n1 ≥ 2, druhý pochází z rozložení N(µ2, σ2 2 ) a má rozsah n2 ≥ 2. Označme M1, M2 výběrové průměry, S1 2 , S2 2 výběrové rozptyly a 2 *S = 2nn S)1n(S)1n( 21 2 22 2 11 −+ −+− vážený průměr výběrových rozptylů. Pak platí: a) Statistiky M1 – M2 a 2 *S = 2nn S)1n(S)1n( 21 2 22 2 11 −+ −+− jsou stochasticky nezávislé. b) U = ( ) ( ) 2 2 2 1 2 1 2121 nn MM σ + σ µ−µ−− ~ N(0, 1). (Pivotová statistika U slouží k řešení úloh o µ1- µ2, když σ1 2 a σ2 2 známe.) c) Nechť σ1 2 = σ2 2 =: σ2 , pak K = 2 2 *21 S)2nn( σ −+ ~ χ2 (n1 + n2 - 2). (Pivotová statistika K slouží k řešení úloh o neznámém rozptylu σ2 .) d) Jestliže σ1 2 = σ2 2 =: σ2 , pak T = ( ) ( ) 21 * 2121 n 1 n 1 S MM + µ−µ−− ~ t(n1 + n2 – 2). (Pivotová statistika T slouží k řešení úloh o µ1- µ2, když σ1 2 a σ2 2 neznáme, ale víme, že jsou shodné.) e) F = 2 2 2 1 2 2 2 1 / S/S σσ ~ F(n1 – 1, n2 – 1). (Pivotová statistika F slouží k řešení úloh o σ1 2 / σ2 2 .) Intervaly spolehlivosti pro parametrické funkce µ1-µ2, σ1 2 /σ2 2 Uvedeme přehled vzorců pro meze 100(1-α)% empirických intervalů spolehlivosti pro parametrické funkce µ1 - µ2 , σ1 2 / σ2 2 . a) Interval spolehlivosti pro µ1-µ2, když σ1 2 , σ2 2 známe (využití pivotové statistiky U) Oboustranný: (d, h) = (m1 – m2 – 2 2 2 1 2 1 nn σ + σ u1-α/2, m1 – m2 + 2 2 2 1 2 1 nn σ + σ u1-α/2) Levostranný: (d, ∞) = (m1 – m2 – 2 2 2 1 2 1 nn σ + σ u1-α, ∞) Pravostranný: (-∞, h) = (-∞,m1 – m2 + 2 2 2 1 2 1 nn σ + σ u1-α) b) Interval spolehlivosti pro µ1-µ2, když σ1 2 , σ2 2 neznáme, ale víme, že jsou shodné (využití pivotové statistiky T) Oboustranný: (d, h) = (m1 – m2 – 21 * n 1 n 1 s + t1-α/2(n1+n2-2), m1 – m2 + 21 * n 1 n 1 s + t1-α/2(n1+n2-2)) Levostranný: (d, ∞) = (m1 – m2 – 21 * n 1 n 1 s + t1-α(n1+n2-2), ∞) Pravostranný: (-∞, h) = (-∞, m1 – m2 + 21 * n 1 n 1 s + t1-α(n1+n2-2)) c) Interval spolehlivosti pro společný neznámý rozptyl σ2 (využití pivotové statistiky K) Oboustranný: (d, h) =         −+χ −+ −+χ −+ αα− )2nn( s)2nn( , )2nn( s)2nn( 212/ 2 2 *21 212/1 2 2 *21 Levostranný: (d, ∞) =         ∞ −+χ −+ α− , )2nn( s)2nn( 211 2 2 *21 Pravostranný: (-∞, h) =         −+χ −+ ∞− α )2nn( s)2nn( , 21 2 2 *21 d) Interval spolehlivosti pro podíl rozptylů 2 2 2 1 σ σ (využití pivotové statistiky F) Oboustranný: (d, h) =         −−−− αα )1n,1n(F s/s , )1n,1n(F s/s 21/2 2 2 2 1 21/2-1 2 2 2 1 Levostranný: (d, ∞) =         ∞ −−α , )1n,1n(F s/s 21-1 2 2 2 1 Pravostranný: (-∞, h) =         −− ∞− α )1n,1n(F s/s , 21 2 2 2 1 Upozornění: Není-li v bodě (b) splněn předpoklad o shodě rozptylů, lze sestrojit aspoň přibližný 100(1-α)% interval spolehlivosti pro µ1-µ2. V tomto případě má statistika T přibližně rozložení t(ν ), kde počet stupňů volnosti ν = ( ) ( ) ( ) 1n n/s 1n n/s n/sn/s 2 2 2 2 2 1 2 1 2 1 2 2 2 21 2 1 − + − + . Není-li ν celé číslo, použijeme v tabulkách kvantilů Studentova rozložení lineární interpolaci. Příklad: U 48 náhodně vybraných studentek VŠE v Praze byla zjišťována výška (veličina X, v cm), známka z matematiky v 1. semestru (veličina Y, má varianty výborně, velmi dobře, dobře) a obor studia (veličina Z, má varianty nh – národní hospodářství, inf – informatika).Údaje o výšce studentek oborů národní hospodářství a informatika považujeme za realizace dvou nezávislých náhodných výběrů z rozložení N(µ1, σ2 ) a N(µ2, σ2 ). Sestrojte 95% empirický interval spolehlivosti pro rozdíl středních hodnot µ1 - µ2. Výpočet pomocí systému STATISTICA: Statistika – Základní statistiky/tabulky – t-test, nezávislé, dle skupin – OK – Proměnné – Závislé X, Grupovací Z – OK – na záložce Možnosti zaškrtneme Meze spol. pro odhady – ponecháme implicitní hodnotu 95% - Výpočet. Ve výstupní tabulce nás zajímají poslední dva sloupce: t-testy; grupováno: Z: obor studia (studentky.sta) Skup. 1: nh: narodni hospodarstvi Skup. 2: inf: informatika Proměnná Int. spolehl. -95,000% Int. spolehl. +95,000% X -0,450420 6,293277 Vidíme, že -0,45 cm < µ1 - µ2 < 6,29 cm s pravděpodobností aspoň 0,95. Jednotlivé typy testů o parametrických funkcích µ1-µ2, σ1 2 /σ2 2 a) Nechť 1n111 X,,X K je náhodný výběr z rozložení N(µ1, σ1 2 ) a 2n221 X,,X K je na něm nezávislý náhodný výběr z rozložení N(µ2, σ2 2 ), přičemž n1 ≥ 2, n2 ≥ 2 a σ1 2 , σ2 2 známe. Nechť c je konstanta. Test H0: µ1 – µ2 = c proti H1: µ1 – µ2 ≠ c se nazývá dvouvýběrový z-test. b) Nechť 1n111 X,,X K je náhodný výběr z rozložení N(µ1, σ2 ) a 2n221 X,,X K je na něm nezávislý náhodný výběr rozložení N(µ2, σ2 ), přičemž n1 ≥ 2 a n2 ≥ 2 a σ2 neznáme. Nechť c je konstanta. Test H0: µ1 – µ2 = c proti H1: µ1 – µ2 ≠ c se nazývá dvouvýběrový t-test. c) Nechť 1n111 X,,X K je náhodný výběr z rozložení N(µ1, σ1 2 ) a 2n221 X,,X K je na něm nezávislý náhodný výběr rozložení N(µ2, σ2 2 ), přičemž n1 ≥ 2 a n2 ≥ 2. Test H0: 2 2 2 1 σ σ = 1 proti H1: 2 2 2 1 σ σ ≠ 1 se nazývá F-test. Provedení testů o parametrických funkcích µ1-µ2, σ1 2 /σ2 2 pomocí kritického oboru a) Provedení dvouvýběrového z-testu Vypočteme realizaci testového kritéria ( ) 2 2 2 1 2 1 21 0 nn cmm t σ + σ −− = . Stanovíme kritický obor W. Pokud t0 ∈ W, H0 zamítáme na hladině významnosti α a přijímáme H1. Oboustranný test: Testujeme H0: µ1 - µ2 = c proti H1: µ1 - µ2 ≠ c. Kritický obor má tvar: )( ∞∪−∞−= α−α− ,uu,W 2/12/1 . Levostranný test: Testujeme H0: µ1 - µ2 = c proti H1: µ1 - µ2 < c. Kritický obor má tvar: ( α−−∞−= 1u,W . Pravostranný test: Testujeme H0: µ1 - µ2 = c proti H1: µ1 - µ2 > c. Kritický obor má tvar: )∞= α− ,uW 1 . b) Provedení dvouvýběrového t-testu Vypočteme realizaci testového kritéria ( ) 21 * 21 0 n 1 n 1 s cmm t + −− = . Stanovíme kritický obor W. Pokud t0 ∈ W, H0 zamítáme na hladině významnosti α a přijímáme H1. Oboustranný test: Testujeme H0: µ1 - µ2 = c proti H1: µ1 - µ2 ≠ c. Kritický obor má tvar: ( ) ( ) )( ∞−+∪−+−∞−= α−α− ,2nnt2nnt,W 212/1212/1 . Levostranný test: Testujeme H0: µ1 - µ2 = c proti H1: µ1 - µ2 < c. Kritický obor má tvar: ( )( 2nnt,W 211 −+−∞−= α− . Pravostranný test: Testujeme H0: µ1 - µ2 = c proti H1: µ1 - µ2 > c. Kritický obor má tvar: ( ) )∞−+= α− ,2nntW 211 . c) Provedení F-testu Vypočteme realizaci testového kritéria 2 2 2 1 0 s s t = . Stanovíme kritický obor W. Pokud t0 ∈ W, H0 zamítáme na hladině významnosti α a přijímáme H1. Oboustranný test: Testujeme H0: 2 2 2 1 σ σ = 1 proti H1: 2 2 2 1 σ σ ≠ 1. Kritický obor má tvar: ( ) ( ) )( ∞−−∪−−= α−α ,1n,1nF1n,1nF,0W 212/1212/ . Levostranný test: Testujeme H0: 2 2 2 1 σ σ = 1 proti H1: 2 2 2 1 σ σ < 1. Kritický obor má tvar: ( )( 1n,1nF,0W 21 −−= α . Pravostranný test: Testujeme H0: 2 2 2 1 σ σ = 1 proti H1: 2 2 2 1 σ σ > 1. Kritický obor má tvar: ( ) )∞−−= α− ,1n,1nFW 211 . Příklad: V restauraci "U bílého koníčka" měřili ve 20 případech čas obsluhy zákazníka. Výsledky v minutách: 6, 8, 11, 4, 7, 6, 10, 6, 9, 8, 5, 12, 13, 10, 9, 8, 7, 11, 10, 5. V restauraci "Zlatý lev" bylo dané pozorování uskutečněno v 15 případech s těmito výsledky: 9, 11, 10, 7, 6, 4, 8, 13, 5, 15, 8, 5, 6, 8 ,7. Za předpokladu, že uvedené hodnoty pocházejí ze dvou normálních rozložení, na hladině významnosti 0,05 testujte hypotézu, že střední hodnoty doby obsluhy jsou v obou restauracích stejné. Výpočet pomocí systému STATISTICA: Otevřeme datový soubor restaurace.sta o dvou proměnných a 35 případech. První proměnnou nazvaná OBSLUHA obsahuje doby obluhy, druhá proměnná ID slouží k rozlišení první a druhé restaurace. Provedeme dvouvýběrový t-test současně s testem o shodě rozptylů: Statistika – Základní statistiky a tabulky – t-test, nezávislé, dle skupin – OK, Proměnné – Závislé proměnné OBSLUHA, Grupovací proměnná ID – OK. Po kliknutí na tlačítko Souhrn dostaneme tabulku Proměnná Průměr 1 Průměr 2 t sv p Poč.plat 1 Poč.plat. 2 Sm.odch. 1 Sm.odch. 2 F-poměr Rozptyly p Rozptyly obsluha 8,250000 8,133333 0,123730 33 0,902279 20 15 2,510504 3,067495 1,492952 0,410440 Testová statistika pro test shody rozptylů se realizuje hodnotou 1,492952 odpovídající p-hodnota je 0,41044, tedy na hladině významnosti 0,05 nezamítáme hypotézu o shodě rozptylů. (Upozornění: v případě zamítnutí hypotézy o shodě rozptylů je zapotřebí v tabulce t-testu pro nezávislé vzorky dle skupin zaškrtnout volbu Test se samostatnými odhady rozptylu.) Testová statistika pro test shody středních hodnot se realizuje hodnotou 0,12373, počet stupňů volnosti je 33, odpovídající p-hodnota 0,902279, tedy hypotézu o shodě středních hodnot nezamítáme na hladině významnosti 0,05. Znamená to, že se neprokázal rozdíl ve středních hodnotách dob obsluhy v restauracích "U bílého koníčka" a „Zlatý lev“. Tabulku ještě doplníme krabicovými diagramy. Na záložce Detaily zaškrtneme krabicový graf a vybereme volbu Průměr/SmOdch/Min-Max. Krabicový graf z obsluha seskupený id restaurace.sta 2v*35c Průměr Průměr±SmOdch Min-Max Odlehlé Extrémy 1 2 id 2 4 6 8 10 12 14 16 obsluha Z grafu je vidět, že průměrná doba obsluhy v první restauraci je nepatrně delší a má menší variabilitu než ve druhé restauraci. Extrémní ani odlehlé hodnoty se zde nevyskytují. Cohenův koeficient věcného účinku – doplnění významu dvouvýběrového t-testu: Nechť 1n111 X,,X K je náhodný výběr z rozložení N(µ1, σ2 ) a 2n221 X,,X K je na něm nezávislý náhodný výběr rozložení N(µ2, σ2 ), přičemž n1 ≥ 2 a n2 ≥ 2 a σ2 neznáme. Nechť c je konstanta. Testujeme H0: µ1 – µ2 = 0 proti H1: µ1 – µ2 ≠ 0. Označme m1, m2 realizace výběrových průměrů hodnot dané veličiny v těchto dvou skupinách, s1 2 , s2 2 realizace výběrových rozptylů a ( ) ( ) 2nn s1ns1n s 21 2 22 2 112 * −+ −+− = realizaci váženého průměru výběrových rozptylů. Cohenův koeficient d vypočteme podle vzorce: * 21 s mm d − = . Tento koeficient slouží k posouzení velikosti rozdílu průměrů, který je standardizován pomocí odmocniny z váženého průměru výběrových rozptylů. Jedná se o tzv. věcnou významnost neboli velikost účinku skupiny na variabilitu hodnot sledované náhodné veličiny. Velikost účinku hodnotíme podle následující tabulky: Hodnota d účinek aspoň 0,8 velký mezi 0,5 až 0,8 střední mezi 0,2 až 0,5 malý pod 0,2 zanedbatelný (Uvedené hodnoty nemají samozřejmě absolutní platnost, posouzení, jaký účinek považujeme za velký či malý, závisí na kontextu.) Je zapotřebí si uvědomit, že při dostatečně velkých rozsazích náhodných výběrů i malý rozdíl ve výběrových průměrech způsobí zamítnutí nulové hypotézy na hladině významnosti α, i když z věcného hlediska tak malý rozdíl nemá význam. Naopak, máme-li výběry malých rozsahů, pak i značně velký rozdíl ve výběrových průměrech nemusí vést k zamítnutí nulové hypotézy na hladině významnosti α. Příklad: Máme k dispozici údaje o celkovém IQ 856 žáků ZŠ. Zajímáme se jednak o skupinu dětí, jejichž oba rodiče mají pouze základní vzdělání (je jich 296) a jednak o skupinu dětí, jejichž oba rodiče mají vysokoškolské vzdělání (těch je 75). Na hladině významnosti 0,05 budeme testovat hypotézu, že střední hodnota celkového IQ je v obou skupinách stejná a také vypočteme Cohenův koeficient věcného účinku. Řešení: Provedeme dvouvýběrový t-test: t-testy; grupováno:ZŠ a VŠ (IQ) Skup. 1: oba ZŠ Skup. 2: oba VŠ Proměnná Průměr oba ZŠ Průměr oba VŠ t sv p Poč.plat oba ZŠ Poč.plat. oba VŠ Sm.odch. oba ZŠ Sm.odch. oba VŠ F-poměr Rozptyly p Rozptyly IQ_CELK 94,13851 110,9067 -10,6295 369 0,000000 296 75 11,82604 13,60164 1,322829 0,110124 Hypotézu o shodě středních hodnot zamítáme na hladině významnosti 0,05, protože odpovídající p-hodnota je velmi blízká 0 (hypotézu o shodě rozptylů nezamítáme na hladině významnosti 0,05, p-hodnota F-testu je 0,110124, což je větší než 0,05). Krabicový diagram: Krabicový graf z IQ_CELK seskupený ID Průměr Průměr±SmOdch Min-Max Odlehlé Extrémy oba ZŠ oba VŠ ID 50 60 70 80 90 100 110 120 130 140 150 IQ_CELK Vidíme, že průměrné celkové IQ dětí v 1. skupině je 94,1, zatímco ve 2. skupině 110,9. Vliv skupiny na variabilitu hodnot celkového IQ posoudíme pomocí Cohenova koeficientu. 1 n1 2 n2 3 m1 4 m2 5 s1 6 s2 7 d 1 296 75 94,13851 110,9067 11,82604 13,60164 1,374117 Cohenův koeficient nabývá hodnoty 1,37, tudíž vliv skupiny na variabilitu hodnot celkového IQ lze považovat za velký. Příklad: Výrobce limonád chtěl zjistit, zda změna technologie výroby se projeví v prodeji limonád. Proto sledoval po 14 náhodně vybraných dnů před zavedením nových limonád tržby v určitém regionu a zjistil, že za den utržil v průměru 39 600 Kč se směrodatnou odchylkou 5 060 Kč. Po zavedení nových limonád prověřil stejným způsobem tržby v 11 náhodně vybraných dnech v témž regionu a zjistil průměrný příjem 41 200 Kč se směrodatnou odchylkou 4 310 Kč. Předpokládejte, že tržby za starý typ limonád se řídí rozložením N(µ1, σ2 ) a tržby za nový typ limonád se řídí rozložením N(µ2, σ2 ). Na hladině významnosti 0,05 testujte hypotézu H0: µ1 – µ2 = 0 proti oboustranné alternativě H1: µ1 – µ2 ≠ 0. Řešení: Za odhad společného neznámého rozptylu vezmeme vážený průměr výběrových rozptylů: 217,22548165 23 431010506013 s 22 2 * = ⋅+⋅ = . Realizace testového kritéria: 8363,0 11 1 14 1 217,22548165 4120039600 n 1 n 1 s cmm t 21 * 21 0 −= + − = + −− = Kritický obor: ( ) ( ) )( ( ) ( ) )( )( ∞∪−∞−=∞∪−∞−= =∞−+∪−+−∞−= α−α− ,0687,20687,2,,23t23t, ,2nnt2nnt,W 975,0975,0 212/1212/1 Protože testové kritérium se nerealizuje v kritickém oboru, na hladině významnosti 0,05 nelze zamítnout hypotézu o shodě středních hodnot. Výpočet pomocí systému STATISTICA: Statistiky – Základní statistiky a tabulky – Testy rozdílů: r, %, průměry – OK – vybereme Rozdíl mezi dvěma průměry (normální rozdělení) – do políčka Pr1 napíšeme 39600, do políčka SmOd1 napíšeme 5600, do políčka N1 napíšeme 14, do políčka Pr2 napíšeme 41200, do políčka SmOd1 napíšeme 4310, do políčka N1 napíšeme 14 - Výpočet. Dostaneme phodnotu 0,4116 tedy nezamítáme nulovou hypotézu na hladině významnosti 0,05. Jelikož p-hodnota je větší než hladina významnosti 0,05, H0 nezamítáme na hladině významnosti 0,05. Znamená to, že změna technologie výroby se neprojevila ve střední hodnotě tržeb. Analýza rozptylu jednoduchého třídění Motivace: Zajímáme se o problém, zda lze určitým faktorem (tj. nominální náhodnou veličinou A) vysvětlit variabilitu pozorovaných hodnot náhodné veličiny X, která je intervalového či poměrového typu. Např. zkoumáme, zda metoda výuky určitého předmětu (faktor A) ovlivňuje počet bodů dosažených studenty v závěrečném testu (náhodná veličina X). Předpokládáme, že faktor A má r ≥ 3 úrovní a přitom i-té úrovni odpovídá ni pozorování iin1i X,,X K , které tvoří náhodný výběr z rozložení N(µi, σ2 ), i = 1, ..., r a jednotlivé náhodné výběry jsou stochasticky nezávislé, tedy Xij = µi + εij, kde εij jsou stochasticky nezávislé náhodné veličiny s rozložením N(0, σ2 ), i = 1, …, r, j = 1, …, ni. Výsledky lze zapsat do tabulky faktor A výsledky úroveň 1 1n111 X,,X K úroveň 2 2n221 X,,X K … … úroveň r rrn1r X,,X K Ilustrace: Na hladině významnosti α testujeme nulovou hypotézu, která tvrdí, že všechny střední hodnoty jsou stejné, tj. H0: µ1 = … = µr proti alternativní hypotéze H1, která tvrdí, že aspoň jedna dvojice středních hodnot se liší. Jedná se tedy o zobecnění dvouvýběrového t-testu a na první pohled se zdá, že stačí utvořit       2 r dvojic náhodných výběrů a na každou dvojici aplikovat dvouvýběrový t-test. Hypotézu o shodě všech středních hodnot bychom pak zamítli, pokud aspoň v jednom případě z       2 r porovnávání se prokáže odlišnost středních hodnot. Odtud je vidět, že k neoprávněnému zamítnutí nulové hypotézy (tj. k chybě 1. druhu) může dojít s pravděpodobností větší než α. Proto ve 30. letech 20. století vytvořil R. A. Fisher metodu ANOVA (analýza rozptylu, v popsané situaci konkrétně analýza rozptylu jednoduchého třídění), která uvedenou podmínku splňuje. Pokud na hladině významnosti α zamítneme nulovou hypotézu, zajímá nás, které dvojice středních hodnot se od sebe liší. K řešení tohoto problému slouží metody mnohonásobného porovnávání, např. Scheffého nebo Tukeyova metoda. Označení: V analýze rozptylu jednoduchého třídění se používá tzv. tečková notace. ∑ = = r 1i inn … celkový rozsah všech r výběrů ∑ = = in 1j ij.i XX … součet hodnot v i-tém výběru .i i .i X n 1 M = … výběrový průměr v i-tém výběru ∑∑ = = = r 1i n 1j ij.. i XX … součet hodnot všech výběrů .... X n 1 M = … celkový průměr všech r výběrů Zavedeme součty čtverců ( )∑∑ = = −= r 1i n 1j 2 ..ijT i MXS … celkový součet čtverců (charakterizuje variabilitu jednotlivých pozorování kolem celkového průměru), počet stupňů volnosti fT = n – 1 ( )∑ = −= r 1i 2 ...iiA MMnS … skupinový součet čtverců (charakterizuje variabilitu mezi jednotlivými náhodnými výběry), počet stupňů volnosti fA = r – 1 ( )∑∑ = = −= r 1i n 1j 2 .iijE i MXS … reziduální součet čtverců (charakterizuje variabilitu uvnitř jednotlivých výběrů), počet stupňů volnosti fE = n - r Přitom platí, že ST = SA + SE. Testování hypotézy o shodě středních hodnot Náhodné veličiny Xij se řídí modelem M0: Xij = µ + αi + εij pro i = 1, …, r, j = 1, …, ni , přičemž εij jsou stochasticky nezávislé náhodné veličiny s rozložením N(0, σ2 ), µ je společná část střední hodnoty závisle proměnné veličiny, αi je efekt faktoru A na úrovni i. Parametry µ, αi neznáme. Požadujeme, aby platila tzv. reparametrizační rovnice: 0n r 1i ii =α∑ = . (Pokud je třídění vyvážené, tj. pokud mají všechny výběry stejný rozsah: n1 = n2 = … = nr, pak lze použít zjednodušenou podmínku 0 r 1i i =α∑ = .) Kdyby nezáleželo na faktoru A, platila by hypotéza α1 = … = αr = 0 a dostali bychom model M1: Xij = µ + εij. Během analýzy rozptylu tedy zkoumáme, zda výběrové průměry M1, …, Mr se od sebe liší pouze v mezích náhodného kolísání kolem celkového průměru M nebo zda se projevuje vliv faktoru A. Rozdíl mezi modely M0 a M1 ověřujeme pomocí testové statistiky EE AA A f/S f/S F = , která se řídí rozložením F(r-1,n-r), je-li model M1 správný. Hypotézu o nevýznamnosti faktoru A tedy zamítneme na hladině významnosti α, když platí: FA ≥ F1-α(r-1,n-r). Výsledky výpočtů zapisujeme do tabulky analýzy rozptylu jednoduchého třídění. Zdroj variability součet čtverců stupně volnosti podíl FA skupiny SA fA = r - 1 SA/fA EE AA fS fS reziduální SE fE = n - r SE/fE celkový ST fT = n - 1 - Sílu závislosti náhodné veličiny X na faktoru A můžeme měřit pomocí poměru determinace: T A2 S S P = . Nabývá hodnot z intervalu 1,0 . Testování hypotézy o shodě rozptylů Před provedením analýzy rozptylu je zapotřebí ověřit předpoklad o shodě rozptylů v daných r výběrech. a) Levenův test: Položme .iijij MXZ −= . Označíme ( ) ( )∑ ∑∑ ∑∑ ∑ = = = = = = −= −= = = r 1i 2 ZZiiZA r 1i n 1j 2 ZiijZE r 1i n 1j ijZ n 1j ij i Zi MMnS ,MZS ,Z n 1 M ,Z n 1 M i i i Platí-li hypotéza o shodě rozptylů, pak statistika ( ) ( )rnS 1rS F ZE ZA ZA − − = ≈ F(r-1, n-r). Hypotézu o shodě rozptylů tedy zamítáme na asymptotické hladině významnosti α, když FZA ≥ F1-α(r-1, n-r). (Levenův test je vlastně založen na analýze rozptylu absolutních hodnot centrovaných pozorování. Vzhledem k tomu, že náhodné veličiny Xij – Mi nejsou stochasticky nezávislé a absolutní hodnoty těchto veličin nemají normální rozložení, je Levenův test pouze aproximativní.) b) Brownův – Forsytheův test je modifikací Levenova testu. Modifikace spočívá v tom, že místo výběrového průměru i-tého výběru se při výpočtu veličiny ijZ používá medián i-tého výběru. Post – hoc metody mnohonásobného porovnávání Zamítneme-li na hladině významnosti α hypotézu o shodě středních hodnot, chceme zjistit, které dvojice středních hodnot se liší na dané hladině významnosti α, tj. na hladině významnosti α testujeme H0: µl = µk proti H1: µl ≠ µk pro všechna l, k = 1, .., r, l ≠ k. a) Mají-li všechny výběry týž rozsah p (říkáme, že třídění je vyvážené), použijeme Tukeyovu metodu. Testová statistika má tvar p S MM * .l.k − . Rovnost středních hodnot µk a µl zamítneme na hladině významnosti α, když ( )rn,rq p S MM 1 * .l.k −≥ − α− , kde hodnoty q1-α(r, n-r) jsou kvantily studentizovaného rozpětí a najdeme je ve statistických tabulkách. (Studentizované rozpětí je náhodná veličina ( ) ( ) s XX Q 1n − = .) Existuje modifikace Tukeyovy metody pro nestejné rozsahy výběrů, nazývá se Tukeyova HSD metoda. V tomto případě má testová statistika tvar       + − lk * .l.k n 1 n 1 2 1 S MM . Rovnost středních hodnot µk a µl zamítneme na hladině významnosti α, když ( )rn,rq n 1 n 1 2 1 S MM 1 lk * .l.k −≥       + − α− . b) Nemají-li všechny výběry stejný rozsah, použijeme Scheffého metodu: rovnost středních hodnot µk a µl zamítneme na hladině významnosti α, když ( ) ( )rn,1rF n 1 n 1 1rSMM 1 lk *.l.k −−      +−≥− α− . Výhodou Scheffého testu je, že k jeho provedení nepotřebujeme speciální statistické tabulky s hodnotami kvantilů studentizovaného rozpětí, ale stačí běžné statistické tabulky s kvantily Fisherova – Snedecorova rozložení. V případě vyváženého třídění, kdy lze aplikovat Tukeyovu i Scheffého metodu, použijeme tu, která je citlivější. Tukeyova metoda tedy bude výhodnější, když q1-α 2 (r, n-r) < 2(r-1)F1-α(r-1, n-r). Metody mnohonásobného porovnávání mají obecně menší sílu než ANOVA. Může nastat situace, kdy při zamítnutí H0 nenajdeme metodami mnohonásobného porovnávání významný rozdíl u žádné dvojice středních hodnot. K tomu dochází zvláště tehdy, když p-hodnota pro ANOVU je jen o málo nižší než zvolená hladina významnosti. Pak slabší test patřící do skupiny metod mnohonásobného porovnávání nemusí odhalit žádný rozdíl. Doporučený postup při provádění analýzy rozptylu: a) Ověření normality daných r náhodných výběrů (grafické metody - NP plot, Q-Q plot, histogram, testy hypotéz o normálním rozložení - Lilieforsova varianta Kolmogorovova – Smirnovova testu nebo Shapirův – Wilkův test). Doporučuje se kombinace obou způsobů. Závěry učiníme až na základě posouzení obou výsledků. Obecně lze říci, že analýza rozptylu není příliš citlivá na porušení předpokladu normality, zvláště při větších rozsazích výběrů (nad 20), což je důsledek působení centrální limitní věty. Mírné porušení normality tedy není na závadu, při větším porušení použijeme např. Kruskalův – Wallisův test jako neparametrickou obdobu analýzy rozptylu jednoduchého třídění. b) Po ověření normality se testuje homogenitu rozptylů, tj. předpoklad, že všechny náhodné výběry pocházejí z normálních rozložení s týmž rozpylem. Graficky ověřujeme shodu rozptylů pomocí krabicových diagramů, kdy sledujeme, zda je šířka krabic stejná. Numericky testujeme homogenitu rozptylů pomocí Levenova testu, Brownova – Forsytheova testu (oba jsou implementovány ve STATISTICE, Brownův – Forsytheův test v MINITABu) či Bartlettova testu (je k dispozici v MINITABu). Slabé porušení homogenity rozptylů nevadí, při větším se doporučuje mediánový test. c) Pokud jsou splněny předpoklady normality a homogenity rozptylů, můžeme přistoupit k testování shody středních hodnot. Předtím je samozřejmě vhodné vypočítat průměry a směrodatné odchylky či rozptyly v jednotlivých skupinách. d) Dojde-li na zvolené hladině významnosti k zamítnutí hypotézy o shodě středních hodnot, zajímá nás, které dvojice středních hodnot se od sebe liší. K řešení tohoto problému slouží post-hoc metody mnohonásobného porovnávání, např. Scheffého nebo Tukeyova metoda. Příklad: V jisté továrně se měřil čas, který potřeboval každý ze tří dělníků k uskutečnění téhož pracovního úkonu. Čas v minutách: 1. dělník: 3,6 3,8 3,7 3,5 2. dělník: 4,3 3,9 4,2 3,9 4,4 4,7 3. dělník: 4,2 4,5 4,0 4,1 4,5 4,4. Na hladině významnosti 0,05 testujte hypotézu, že výkony těchto tří dělníků jsou stejné. Zamítnete-li nulovou hypotézu, určete, výkony kterých dělníků se liší na dané hladině významnosti 0,05. Výpočet pomocí systému STATISTICA: Úloha vede na analýzu rozptylu jednoduchého třídění. Načteme datový soubor cas_delniku.sta. Proměnná X obsahuje zjištěné časy, proměnná ID nabývá hodnoty 1 pro 1. dělníka, hodnoty 2 pro 2. dělníka a hodnoty 3 pro 3. dělníka. Statistiky – Základní statistiky/tabulky – Rozklad & jednofakt. ANOVA – Proměnné - Závislé X, Grupovací ID, OK, Kódy pro grupovací proměnné – Vše, OK, Výpočet: Tabulka statistik (zobrazí se průměry, směrodatné odchylky a rozsahy všech tří výběrů). Rozkladová tabulka popisných statistik (cas_delniku.sta) N=16 (V seznamu záv. prom. nejsou ChD) ID X průměr X N X Sm.odch. 1 3,650000 4 0,129099 2 4,233333 6 0,307679 3 4,283333 6 0,213698 Vš.skup. 4,106250 16 0,353023 Na uskutečnění daného pracovního úkonu potřebuje nejkratší čas 1. dělník. Podává také nejvyrovnanější výkony – směrodatná odchylka proměnné X je u něj nejmenší. Naopak nejpomalejší je 3. dělník. Nyní vytvoříme krabicové diagramy: Návrat do Statistiky podle skupin – Kategoriz. krabicový graf (současné zobrazení krabicových diagramů pro všechny tři výběry ) Průměr Průměr±SmOdch Průměr±1,96*SmOdch 1 2 3 ID 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 X Pomocí N-P plot orientačně posoudíme normalitu všech tří výběrů: Návrat do Statistiky podle skupin – ANOVA & testy – Kategoriz. norm. pravd. grafy ID: 1 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 -1,4 -1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 Očekávanánormálníhodnota ID: 2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 ID: 3 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 -1,4 -1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 Očekávanánormálníhodnota Ve všech třech případech se tečky jen málo odchylují od přímky, lze soudit, že data pocházejí z normálního rozložení. Provedení testu o shodě rozptylů: Návrat do Statistiky podle skupin – Leveneovy testy Leveneův test homogenity rozpylů (cas_delniku.sta) Označ. efekty jsou význ. na hlad. p < ,05000 Proměnná SČ efekt SV efekt PČ efekt SČ chyba SV chyba PČ chyba F p X 0,042708 2 0,021354 0,183333 13 0,014103 1,514205 0,256356 Testová statistika Levenova testu nabývá hodnoty 1,5142, stupně volnosti čitatele = 2, jmenovatele = 13, odpovídající phodnota = 0,256, tedy na hladině významnosti 0,05 se nezamítá hypotézu o shodě rozptylů. Provedení testu o shodě středních hodnot: Návrat do Statistiky podle skupin – Analýza rozptylu. Analýza rozptylu (cas_delniku.sta) Označ. efekty jsou význ. na hlad. p < ,05000 Proměnná SČ efekt SV efekt PČ efekt SČ chyba SV chyba PČ chyba F p X 1,117708 2 0,558854 0,751667 13 0,057821 9,665327 0,002680 Skupinový součet čtverců SA = 1,1177, počet stupňů volnosti fA = 2, reziduální součet čtverců SE = 0,7517, počet stupňů volnosti fE = 13, testová statistika EE AA A fS fS F = nabývá hodnoty 9,6653, počet stupňů volnosti čitatele = 2, jmenovatele = 13, odpovídající p-hodnota = 0,00268, tedy na hladině významnosti 0,05 se zamítá hypotéza o shodě středních hodnot . Provedení metody mnohonásobného porovnávání (Scheffého test – viz skripta Základní statistické metody, věta 8.2.2.1.): Návrat do do Statistiky podle skupin – Post- hoc – Schefféův test. Scheffeho test; proměn.:X (cas_delniku.sta) Označ. rozdíly jsou významné na hlad. p < ,05000 ID {1} M=3,6500 {2} M=4,2333 {3} M=4,2833 1 {1} 2 {2} 3 {3} 0,008391 0,004705 0,008391 0,937504 0,004705 0,937504 Tabulka obsahuje p-hodnoty pro testování hypotéz o shodě středních hodnot všech dvojic výběrů. Výsledek Scheffého metody ukazuje, že na hladině významnosti 0,05 se liší výkony dělníků (1,2), (1,3) a neliší se (2,3). Význam předpokladů v analýze rozptylu a) Nezávislost jednotlivých náhodných výběrů – velmi důležitý předpoklad, musí být splněn, jinak dostaneme nesmyslné výsledky. b) Normalita – ANOVA není příliš citlivá na porušení normality, zvlášť pokud mají všechny výběry rozsah nad 20 (důsledek centrální limitní věty). Při výraznějším porušení normality se doporučuje Kruskalův – Wallisův test. c) Shoda rozptylů – mírné porušení nevadí, při větším se doporučuje mediánový test. Test shody rozptylů má smysl provádět až po ověření předpokladu normality.