Cvičení 10: Hodnocení závislosti dvou náhodných veličin Úkol 1.: Testování hypotézy o nezávislosti, měření síly závislosti V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů. Barva očí Barva vlasů světlá kaštanová černá rezavá modrá 1768 807 180 47 šedá nebo zelená 946 1387 746 53 hnědá 115 438 288 16 Na asymptotické hladině významnosti 0,05 testujte hypotézu o nezávislosti barvy očí a barvy vlasů. Vypočtěte Cramérův koeficient. Simultánní četnosti znázorněte graficky. Návod: Otevřeme datový soubor oci_vlasy.sta o 12 případech a třech proměnných (OCI, VLASY, CETNOST). Před provedením testu je zapotřebí ověřit podmínky dobré aproximace: Statistiky – Základní statistiky/tabulky – Kontingenční tabulky - Specif. tabulky – List 1 OCI, List 2 VLASY, OK, Váhy - CETNOST, Stav zapnuto, OK – na záložce Možnosti zaškrtneme Očekávané četnosti – Výpočet. Souhrnná tab.: Očekávané četnosti (oci_vlasy.sta) Četnost označených buněk > 10 Pearsonův chí-kv. : 1088,15, sv=6, p=0,00000 OCI VLASY světlá VLASY kaštanová VLASY černá VLASY rezavá Řádk. součty modrá 1167,259 1085,976 500,902 47,8622 2802,000 šedá nebo zelená 1304,731 1213,875 559,895 53,4990 3132,000 hnědá 357,010 332,149 153,202 14,6388 857,000 Vš.skup. 2829,000 2632,000 1214,000 116,0000 6791,000 Podmínky dobré aproximace jsou splněny. Všechny teoretické četnosti jsou větší než 5. Nyní budeme testovat hypotézu o nezávislosti proměnných OCI, VLASY. Návrat do Výsledky; kontingenční tabulky – na záložce Detaily zaškrtneme Pearsonův & M-L Chi - kvadrát, Phi & Cramerovo V – Detailní výsledky – Detailní 2 rozm. tabulky. Statist. Chí-kvadr. sv p Pearsonův chí-kv. M-V chí-kvadr. Fí Kontingenční koeficient Cramér. V 1088,149 df=6 p=0,0000 1155,669 df=6 p=0,0000 ,4002923 ,3716246 ,2830494 Ve výstupní tabulce najdeme mj. hodnotu testové stastistiky (Pearsonův chí-kv = 1088,149) s počtem stupňů volnosti (sv = 6) a odpovídající p-hodnotou (p = 0,0000), dále Cramérův koeficient (V = 0,283). Protože p-hodnota je mnohem menší než 0,05, nulovou hypotézu o nezávislosti barvy očí a barvy vlasů zamítáme na asymptotické hladině významnosti 0,05. Cramérův koeficient svědčí o slabé závislosti barvy očí a vlasů. Pro grafické znázornění četností se vrátíme do Výsledky; kontingenční tabulky – Detailní výsledky – 3D histogramy. Graf lze natáčet pomocí volby Zorný bod. Dvourozměrné rozdělení: OCI x VLASY svetla kastanova cerna rezava VLASYmodra seda nebo zelena hneda O CI 200 400 600 800 1000 1200 1400 1600 1800 2000 Početpozorování Úkol 2.: Fisherův faktoriálový test 100 náhodně vybraných mužů a žen bylo dotázáno, zda dávají přednost nealkoholickému nápoji A či B. Údaje jsou uvedeny ve čtyřpolní kontingenční tabulce. preferovaný nápoj pohlaví muž žena A 20 30 B 30 20 Na hladině významnosti 0,05 testujte pomocí Fisherova faktoriálového testu hypotézu, že preferovaný typ nápoje nezáleží na pohlaví respondenta. Návod: Vytvoříme nový datový soubor o třech proměnných NAPOJ, POHLAVI, CETNOST a čtyřech případech. Do proměnné NAPOJ napíšeme dvakrát pod sebe 1 (nápoj A) a dvakrát pod sebe 2 (nápoj B). Do proměnné POHLAVI napíšeme jedničku (1 – muž) a dvojku (2 – žena) a znovu jedničku a dvojku. D proměnné CETNOST napíšeme uvedené četnosti. Statistiky – Základní statistiky/tabulky – Kontingenční tabulky - Specif. tabulky – List 1 NAPOJ, List 2 POHLAVI, OK, Váhy - CETNOST, Stav zapnuto, OK – na záložce Možnosti zaškrtneme Fisher exakt, Yates, McNemar (2x2) – Detailní výsledky – Detailní 2-rozm. tabulky. Statist. : POHLAVI(2) x NAPOJ(2) (kap11_2) Statist. Chí-kvadr. sv p Pearsonův chí-kv. M-V chí-kvadr. Yatesův chí-kv. Fisherův přesný, 1-str. 2-stranný McNemarův chí-kv. (A/D) (B/C) 4,000000 df=1 p=,04550 4,027103 df=1 p=,04478 3,240000 df=1 p=,07186 p=,03567 p=,07134 ,0250000 df=1 p=,87437 ,0166667 df=1 p=,89728 Ve výstupní tabulce je mimo jiné uvedena p-hodnota pro oboustranný a jednostranný test. V našem případě se jedná o oboustranný test (nevíme, zda muži více preferují nápoj A či nápoj B než ženy), zajímáme se tedy o Fisherův přesný, 2-str. Ta je 0,07134. Protože phodnota je větší než 0,05, nezamítáme na hladině významnosti 0,05 hypotézu, že preferovaný typ nápoje nezáleží na pohlaví respondenta. Úkol 3.: Podíl šancí Pro údaje z úkolu 2 vypočtěte podíl šancí a sestrojte 95% asymptotický interval spolehlivosti pro logaritmus podílu šancí. Pomocí tohoto intervalu spolehlivosti testujte na asymptotické hladině významnosti 0,05 hypotézu, že preferovaný typ nápoje nezáleží na pohlaví respondenta. Návod: V našem případě podíl šancí vypočteme ručně: 4,0 9 4 3030 2020 bd ac OR == ⋅ ⋅ == . Dolní a horní mez intervalu spolehlivosti pro logaritmus podílu šancí zjistíme pomocí STATISTIKY. Vytvoříme datový soubor o dvou proměnných DM a HM a dvou případech. Do Dlouhého jména proměnné DM napíšeme vzorec pro dolní mez: =log(4/9)-sqrt(1/20+1/30+1/30+1/20)*VNormal(0,975;0;1) a analogicky do Do Dlouhého jména proměnné HM napíšeme vzorec pro horní mez: =log(4/9)+sqrt(1/20+1/30+1/30+1/20)*VNormal(0,975;0;1) 1 DM 2 HM 1 -1,61108 -0,01078 Výsledek: -1,61108 < ln oρ < -0,01078 s pravděpodobností přibližně 0,95. Protože tento interval spolehlivosti neobsahuje 0, na asymptotické hladině významnosti 0,05 zamítáme hypotézu, že preferovaný typ nápoje nezáleží na pohlaví respondenta. Tento výsledek je v rozporu s výsledkem, ke kterému dospěl Fisherův přesný test. Je to způsobeno tím, že test pomocí asymptotického intervalu spolehlivosti je pouze přibližný. Úkoly k samostatnému řešení: Příklad 1.: 18 mužů onemocnělo určitou chorobou. Někteří z nich se léčili, jiní ne. Někteří se uzdravili, jiní zemřeli. Údaje jsou uvedeny ve čtyřpolní kontingenční tabulce. přežití léčení ano ne ano 5 3 ne 6 4 Vypočtěte a interpretujte podíl šancí. Výsledek: 1,1OR = . Příklad 2.: 200 respondentů, z nichž bylo 73 žen, hodnotilo úroveň jistého časopisu. 34 žen ji hodnotilo kladně, stejně jako 47 mužů. Ostatní respondenti se o úrovni časopisu vyjádřili záporně. Na hladině významnosti 0,05 testujte pomocí Fisherova přesného testu, že hodnocení úrovně časopisu nezávisí na pohlaví respondenta. Vypočtěte Cramérův koeficient. Výsledek: Sestavíme čtyřpolní kontingenční tabulku simultánních absolutních četností: hodnocení časopisu pohlaví respondenta nj. muž žena kladné 47 34 81 záporné 80 39 119 n.k 127 73 200 Kladné hodnocení časopisu pozorujeme u 37% mužů a u 46,6 % žen. Další výsledky máme v tabulce: Statist. : hodnoceni(2) x pohlavi(2) (Tabulka13) Statist. Chí-kvadr. sv p Pearsonův chí-kv. M-V chí-kvadr. Yatesův chí-kv. Fisherův přesný, 1-str. 2-stranný McNemarův chí-kv. (A/D) (B/C) Fí pro tabulky 2 x 2 Tetrachorická korelace Kontingenční koeficient 1,760835 df=1 p=,18452 1,752654 df=1 p=,18555 1,386184 df=1 p=,23905 p=,11967 p=,23131 17,76316 df=1 p=,00003 ,5697674 df=1 p=,45035 ,0938306 ,1507792 ,0934202 Fisherův přesný test poskytl p-hodnotu 0,23131, tedy na hladině významnosti 0,05 nezamítáme hypotézu o nezávislosti hodnocení úrovně časopisu na pohlaví respondenta. Cramérův koeficient je 0,0938, což svědčí o zanedbatelné závislosti mezi sledovanými veličinami. Úkol 4.: Testování nezávislosti ordinálních veličin 12 různých softwarových firem nabízí speciální programové vybavení pro vedení účetnictví. Jednotlivé programy byly posouzeny odbornou komisí složenou z počítačových odborníků a komisí složenou z profesionálních účetních. Úkolem bylo doporučit vhodný program na základě stanovení pořadí jednotlivých programů. Výsledky posouzení: Produkt firmy číslo 1 2 3 4 5 6 7 8 9 10 11 12 Pořadí dle odborníků 6 7 1 8 4 2,5 9 12 10 2,5 5 11 Pořadí dle účetních 4 5 2 10 6 1 7 11 8 3 12 9 Vypočtěte Spearmanův koeficient pořadové korelace a na hladině významnosti 0,05 testujte hypotézu, že hodnocení obou komisí jsou nezávislá. Návod: Testujeme vlastně nulovou hypotézu, že koeficient pořadové korelace je roven nule proti oboustranné alternativě. Otevřeme datový soubor hodnoceni_programu.sta o dvou proměnných X (hodnocení 1. komise), Y (hodnocení 2. komise) a 12 případech. Statistiky – Neparametrické statistiky – Korelace – OK – vybereme Vytvořit detailní report Proměnné X, Y – OK – Spearmanův koef. R. Dostaneme tabulku Spearmanovy korelace (Tabulka1) ChD vynechány párově Označ. korelace jsou významné na hl. p <,05000 Dvojice proměnných Počet plat. Spearman R t(N-2) Úroveň p X & Y 12 0,714537 3,229806 0,009024 Spearmanův koeficient pořadové korelace nabývá hodnoty 0,7145, testová statistika se realizuje hodnotou 3,2298, odpovídající p-hodnota je 0,009024, tedy na asymptotické hladině významnosti 0,05 zamítáme hypotézu o pořadové nezávislosti hodnocení dvou komisí ve prospěch oboustranné alternativy. Upozornění: Systém STATISTICA používá při testování hypotézy o pořadové nezávislosti veličin X, Y asymptotickou variantu testu bez ohledu na rozsah náhodného výběru. Pokud rozsah výběru nepřesáhne 20, měli bychom systém STATISTCA použít jen k výpočtu rS a testování bychom měli provést pomocí tabelované kritické hodnoty. V našem případě pro n = 12 a α = 0,05 je kritická hodnota 0,5804. Vidíme, že nulovou hypotézu zamítáme na hladině významnosti 0,05, protože 0,7145 ≥ 0,5804. Příklad k samostatnému řešení: Bylo sledováno 10 žáků. Na základě psychologického vyšetření byli tito žáci seřazeni podle nervové lability (čím byl žák labilnější, tím dostal vyšší pořadí Ri). Kromě toho sledování žáci dostali pořadí Qi na základě svých výsledků v matematice (nejlepší žák v matematice dostal pořadí 1). Výsledky jsou uvedeny v tabulce: Pořadí Ri 1 2 3 4 5 6 7 8 9 10 Pořadí Qi 9 3 8 5 4 2 10 1 7 6 Vypočtěte Spearmanův koeficient pořadové korelace a na hladině významnosti 0,05 testujte hypotézu, že nervová labilita a výsledky v matematice jsou nezávislé. Výsledek: rS = -0,127, H0 nezamítáme na hladině významnosti 0,05. Úkol 5.: Testování nezávislosti intervalových a poměrových veličin Zjišťovalo se, kolik mg kyseliny mléčné je ve 100 ml krve matek prvorodiček (veličina X) a u jejich novorozenců (veličina Y) těsně po porodu. Byly získány tyto výsledky: Číslo matky 1 2 3 4 5 6 xi 40 64 34 15 57 45 yi 33 46 23 12 56 40 Nakreslete dvourozměrný tečkový diagram, vypočtěte výběrový korelační koeficient a na hladině významnosti 0,05 testujte hypotézu o nezávislosti výsledků obou měření. Návod: Otevřeme datový soubor kyselina_mlecna.sta. Zobrazíme dvourozměrný tečkový diagram, s jehož pomocí posoudíme dvourozměrnou normalitu dat. Grafy – Bodové grafy – vypneme lineární proložení - Proměnné X, Y – OK – Detaily - Elipsa normální – OK. Ve vzniklém grafu upravíme měřítka na vodorovné a svislé ose: -40 -20 0 20 40 60 80 100 120 X -40 -20 0 20 40 60 80 100 120 Y Testování hypotézy o nezávislosti: Statistiky – Základní statistiky/tabulky – Korelační matice – OK – 1 seznam proměn. – X, Y – OK – na záložce Možnosti vybereme Zobrazit detailní tabulku výsledků – Výpočet. Korelace (Tabulka3) Označ. korelace jsou významné na hlad. p < ,05000 (Celé případy vynechány u ChD) Prom. X & prom. Y Průměr Sm.Odch. r(X,Y) r2 t p N Konst. záv.: Y Směr. záv: Y Konst. záv.: X Směrnic záv.: X X Y 42,50000 17,39828 35,00000 15,89969 0,934832 0,873912 5,265339 0,006232 6 -1,30823 0,854311 6,696994 1,022943 Ve výstupní tabulce je mj. hodnotu výběrového korelačního koeficientu R12 (r=0,9348), tzn. že mezi X a Y existuje silná přímá lineární závislost), hodnota testové statistiky (t = 5,2653) a p-hodnotu pro test hypotézy o nezávislosti (p=0,006232), H0 tedy zamítáme na hladině významnosti 0,05. S rizikem omylu nejvýše 5% jsme tedy prokázali, že mezi oběma koncentracemi existuje závislost. Příklad k samostatnému řešení:: V náhodném výběru 10 dvoučlenných domácností byl zjišťován měsíční příjem (veličina X, v tisících Kč) a vydání za potraviny (veličina Y, v tisících Kč). xi 15 21 34 35 39 42 58 64 75 90 yi 3 4,5 6,5 6 7 8 9 8 9,5 10,5 Vypočtěte výběrový koeficient korelace. Na hladině významnosti 0,05 testujte hypotézu o nezávislosti veličin X, Y. (Data jsou uložena v souboru prijem_vydani.sta). Výsledek: r12 = 0,9405, H0 zamítáme na hladině významnosti 0,05.