Cvičení 5.: Příklady na normální rozložení, výpočet číselných charakteristik Příklady na normální rozložení Náhodná veličina X ~ N(µ, σ2 ) má hustotu ( ) 2 2 2 )-x( e 2 1 x σ µ − πσ =ϕ . Pro µ = 0, σ2 = 1 se jedná o standardizované normální rozložení, píšeme U ~ N(0, 1). Hustota pravděpodobnosti má v tomto případě tvar φ(u) = 2 u2 e 2 1 − π . Použití systému STATISTICA pro výpočet distribuční funkce: První možnost: Ve volbě Rozdělení vybereme Z (Normální), do okénka průměr napíšeme hodnotu µ a do okénka Sm. Odch. napíšeme hodnotu σ. Hodnotu distribuční funkce v bodě x zjistíme tak, že do okénka označeného X napíšeme dané x a po kliknutí na Výpočet se v okénku p objeví hodnota distribuční funkce. Druhá možnost: Výpočet hodnoty distribuční funkce pomocí funkcí implementovaných v položce „Dlouhé jméno“: Otevřeme nový datový soubor o jedné proměnné a jednom případu. V položce „Dlouhé jméno“ této proměnné použijeme funkci INormal(x;mu;sigma). Příklad 1.: Výsledky u přijímacích zkoušek na jistou VŠ jsou normálně rozloženy s parametry µ = 550 bodů, σ = 100 bodů. S jakou pravděpodobností bude mít náhodně vybraný uchazeč aspoň 600 bodů? Řešení: X – výsledek náhodně vybraného uchazeče, X ~ N(550, 1002 ), P(X ≥ 600) = 1 – P(X ≤ 600) + P(X = 600) = 1 – P(X ≤ 600) = 1 – P       σ µ− ≤ σ µ− 600X = 1 - P       − ≤ 100 550600 U = 1 – Φ(0,5) = 1 – 0,69146 = 0,30854. Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka průměr napíšeme 550, do okénka Sm. Odch. napíšeme 100, do okénka X napíšeme 600, zaškrtneme 1-Kumul. p a v okénku p se objeví 0,308538. Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a jednom případu. Do dlouhého jména této proměnné napíšeme =1-INormal(600;550;100). Dostaneme 0,3085. Příklad 2: Životnost baterie v hodinách je náhodná veličina, která má normální rozložení se střední hodnotou 300 hodin a směrodatnou odchylkou 35 hodin. Jaká je pravděpodobnost, že náhodně vybraná baterie bude mít životnost a) aspoň 320 hodin? b) nejvýše 310 hodin? Výsledek: ad a) ( ) 28434,0320XP => , ad b) ( ) 61245,0310XP =≤ Příklad 3.: Na výrobní lince jsou automaticky baleny balíčky rýže o deklarované hmotnosti 1000 g. Působením náhodných vlivů hmotnost balíčků kolísá. Lze ji považovat za náhodnou veličinu, která se řídí normálním rozložením se střední hodnotou 996 g a směrodatnou odchylkou 18 g. Jaká je pravděpodobnost, že náhodně vybraný balíček rýže neprojde výstupní kontrolou, jestliže je povolená tolerance 30± g od deklarované hmotnosti 1000 g? Výsledek: ( ) 104,0)1030X970(P11030,970XP =<<−=∉ Výpočet kvantilů Příklad 1.: Nechť U ~ N(0, 1). Najděte medián a horní a dolní kvartil. Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka průměr napíšeme 0, do okénka Sm. Odch. napíšeme 1, do okénka p napíšeme pro medián 0,5, pro dolní kvartil 0,25 a pro horní kvartil 0,75. V okénku X se objeví 0 pro medián, -0,67449 pro dolní kvartil a 0,67449 pro horní kvartil. Ilustrace pro horní kvartil: Šedá plocha pod grafem hustoty má velikost 0,75 a hodnota distribuční funkce v bodě 0,67449 je 0,75 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o třech proměnné a jednom případu. Do dlouhého jména první proměnné napíšeme =VNormal(0,5;0;1). Dostaneme 0. Do dlouhého jména druhé proměnné napíšeme =VNormal(0,25;0;1). Dostaneme -0,67449. Do dlouhého jména třetí proměnné napíšeme =VNormal(0,75;0;1). Dostaneme 0,67449. Příklad 2.: Nechť X ~ N(3, 5). Najděte dolní kvartil. Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka průměr napíšeme 3, do okénka Sm. Odch. napíšeme 2,236, do okénka p napíšeme 0,25 a v okénku X se objeví 1,4918. Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a jednom případu. Do dlouhého jména této proměnné napíšeme =VNormal(0,25;3;sqrt(5)). Dostaneme 1,491795. Pearsonovo rozložení chí-kvadrát s n stupni volnosti χ2 (n) Nechť X1, ..., Xn jsou stochasticky nezávislé náhodné veličiny, Xi ~ N(0, 1), i = 1, ..., n. Pak náhodná veličina X = X1 2 + ... + Xn 2 ~ χ2 (n). Příklad 3.: Určete χ2 0,025(25). Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka sv. napíšeme 25 a do okénka p napíšeme 0,025. V okénku Chi 2 se objeví 13,11972. Šedá plocha pod grafem hustoty má velikost 0,025 a hodnota distribuční funkce v bodě 13,11972 je 0,025 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a jednom případu. Do dlouhého jména této proměnné napíšeme =VChi2(0,025;25). Dostaneme 13,1197. Studentovo rozložení s n stupni volnosti t(n) Nechť X1, X2 jsou stochasticky nezávislé náhodné veličiny, X1 ~ N(0, 1), X2 ~ χ2 (n). Pak náhodná veličina X = n X X 2 1 ~ t(n). Příklad 4.: Určete t0,99(30) a t0,05(14). Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka sv. napíšeme 30 (resp. 14) a do okénka p napíšeme 0,99 (resp. 0,05). V okénku t se objeví 2,457262 (resp. -1,761310). Ilustrace pro t0,05(14): Šedá plocha pod grafem hustoty má velikost 0,05 a hodnota distribuční funkce v bodě -1,76131 je 0,05 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a jednom případu. Do dlouhého jména této proměnné napíšeme =VStudent(0,99;30) (resp. VStudent(0,05;14)). Dostaneme 2,457262 (resp. -1,76131). Fisherovo-Snedecorovo rozložení s n1 a n2 stupni volnosti F(n1, n2) Nechť X1, ..., Xn jsou stochasticky nezávislé náhodné veličiny, Xi ~ χ2 (ni), i = 1, 2. Pak náhodná veličina X = 22 11 n/X n/X ~ F(n1, n2). Příklad 5.: Určete F0,975(5, 20) a F0,05(2, 10). Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka sv1 napíšeme 5 (resp. 2), do okénka sv2 napíšeme 20 (resp. 10) a do okénka p napíšeme 0,975 (resp. 0,05). V okénku F se objeví 3,289056 (resp. 0,05156). Ilustrace pro F0,975(5, 20): Šedá plocha pod grafem hustoty má velikost 0,975 a hodnota distribuční funkce v bodě 3,289056 je 0,975 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a dvou případech Do dlouhého jména první proměnné napíšeme =VF(0,975;5;20), do dlouhého jména druhé proměnné napíšeme =VF(0,05;2;10).Dostaneme 3,2891 (resp. 0,05156). Výpočet střední hodnoty a rozptylu diskrétní náhodné veličiny Diskrétní náhodná veličina X má pravděpodobnostní funkci π(x). Střední hodnota ( ) ( )∑ ∞ −∞= π= x xxXE , pokud je suma vpravo konečná. Rozptyl ( ) ( ) ( )[ ]2 x 2 XExxXD −π= ∑ ∞ −∞= , pokud střední hodnota existuje a suma vpravo je konečná. Příklad 1.: Postupně se zkouší spolehlivost čtyř přístrojů. Další se zkouší jen tehdy, když předchozí je spolehlivý. Každý z přístrojů vydrží zkoušku s pravděpodobností 0,8. Náhodná veličina X udává počet zkoušených přístrojů. Vypočtěte střední hodnotu a rozptyl náhodné veličiny X. Řešení: X nabývá hodnot 1, 2, 3, 4 a její pravděpodobnostní funkce je: π(1) = 0,2, π(2) = 0,8*0,2 = 0,16, π(3) = 0,82 *0,2 = 0,128, π(4) = 0,83 *0,2 + 0,84 = 0,512, π(0) = 0 jinak E(X) = 1*0,2 + 2*0,16 + 3*0,128 + 4*0,512 = 2,952 D(X) = 12 *0,2 + 22 *0,16 + 32 *0,128 + 42 *0,512 – 2,9522 = 1,4697 Postup ve STATISTICE: Otevřeme nový datový soubor o dvou proměnných X a cetnost a čtyřech případech. Do proměnné X napíšeme 1, 2, 3, 4, do proměnné cetnost napíšeme 200, 160, 128, 512. Statistiky – Základní statistiky/tabulky – Popisné statistiky – OK – zavedeme proměnnou vah cetnost – OK - Proměnné X – OK – Detailní výsledky - zaškrtneme Průměr, Rozptyl – Výpočet. Popisné statistiky (Tabulka1) Proměnná N platných Průměr Rozptyl X 1000 2,952000 1,471167 Rozptyl však musíme upravit, musíme ho vynásobit číslem 999/1000. Do výstupní tabulky tedy přidáme za proměnnou Rozptyl novou proměnnou a do jejího Dlouhého jména napíšeme =v3*999/1000 Popisné statistiky (Tabulka1) Proměnná N platných Průměr Rozptyl NProm X 1000 2,952000 1,471167 1,469696 Příklad 2.: Náhodná veličina X udává počet ok při hodu kostkou. Pomocí systému STATISTICA vypočtěte její střední hodnotu a rozptyl. Výsledek: E(X) = 3,5, D(X) = 2,9167 Příklad 3.: Při návštěvě drogerie nekoupí zákaznice nic s pravděpodobností 0,2, právě jeden druh zboží s pravděpodobností 0,3, právě dva druhy zboží s pravděpodobností 0,4 a právě tři druhy zboží s pravděpodobností 0,1. Jaká je střední hodnota a směrodatná odchylka počtu druhů zboží, které zákaznice nakoupí při návštěvě drogerie? Výsledek: E(X) = 1,4, √D(X) = 0,9165 Výpočet koeficientu korelace dvou diskrétních náhodných veličin Předpokládáme, že diskrétní náhodný vektor (X1, X2) má simultánní pravděpodobnostní funkci π(x1, x2). Kovariance: ( ) ( ) ( ) ( )21 x x 212121 XEXEx,xxxX,XC 1 2 ∑ ∑ ∞ −∞= ∞ −∞= −π= Koeficient korelace: ( ) ( ) ( ) ( ) ( ) ( ) jinak0 0XDXDpro XDXD X,XC X,XR 21 21 21 21      > = Příklad 4.: Náhodná veličina X udává příjem manžela (v tisících dolarů) a náhodná veličina Y příjem manželky (v tisících dolarů. Je známa simultánní pravděpodobnostní funkce π(x,y) diskrétního náhodného vektoru (X,Y): π(10,10) = 0,2, π(10,20) = 0,04, π(10,30) = 0,01, π(10,40) = 0, π(20,10) = 0,1, π(20,20) = 0,36, π(20,30) = 0,09, π(20,40) = 0, π(30,10) = 0, π(30,20) = 0,05, π(30,30) = 0,1, π(30,40) = 0, π(40,10) = 0, π(40,20) = 0, π(40,30) = 0, π(40,40) = 0,05, π(x,y) = 0 jinak. Vypočtěte koeficient korelace příjmů manžela a manželky. Postup ve STATISTICE: Otevřeme datový soubor korelace_prijmy_manzelu.sta o třech proměnných X, Y, cetnost a 16 případech. Statistiky - Základní statistiky/tabulky – zavedeme proměnnou vah cetnost – OK - Korelační matice – OK – 2 seznam proměnných – 1. seznam X, 2. seznam Y – OK – Výpočet. Korelace (korelace_prijmy_manzelu.sta) Označ. korelace jsou významné na hlad. p < ,05000 N=100 (Celé případy vynechány u ChD) Proměnná Y X 0,756086