
Brief workflow 
• RNA is isolated from cells, 

fragmented at random positions, 
and copied into complementary 
DNA (cDNA).  

• Fragments meeting a certain size 
specification (e.g., 200–300 bases 
long) are retained for 
amplification using PCR.  

• After amplification, the cDNA is 
sequenced using NGS; the 
resulting reads are aligned to a 
reference genome, and the 
number of sequencing reads 
mapped to each gene in the 
reference is tabulated.  

• These gene counts, or digital gene 
expression (DGE) measures, can 
be transformed and used to test 
differential expression  



But… 
many steps in 
experimental 
process may 
introduce errors 
and biases 



QC in Galaxy 

http://wiki.bits.vib.be/index.php/File:OverviewNGSdataanalysis.png


FASTQ format 

• The first line starts with '@', followed by the label 
• The third line starts with '+'. In some variants, the '+' line contains a 

second copy of the label 
• The fourth line contains the Q scores represented as ASCII characters 



Q scores of FASTQ 



Scales of genome size 

Russell F. Doolittle 
Nature 419, 493-494(3 October 2002) 



Exploratory analyses 

1.PCA 



Exploratory analyses 

2.Unsupervised clustering 



GF Zhang et al. Nature 000, 1-6 (2012) doi:10.1038/nature11413 

Exploratory analyses 

2b.Unsupervised clustering on gene subset 



From microarrays to NGS data 

• As research transitions from microarrays to 
sequencing-based approaches, it is essential 
that we revisit many of the same concerns 
that the statistical community had at the 
beginning of the microarray era  

• series of articles was published elucidating the 
need for proper experimental design 

 



Experimental design 

• All of these articles rely on the three fundamental 
aspects of sound experimental design formalized 
by R. A. Fisher 70 years (!!!) ago, namely 
replication, randomization, and blocking: 

 

the experimental design would include many 
different subjects (i.e., replication) recruited from 
multiple weight loss centers (i.e., blocking). Each 
center would randomly assign its subjects to one of 
the two diets (i.e., randomization).  



In case of bad experimental design 

• it is essentially impossible to partition 
biological variation from technical variation 

• No amount of statistical sophistication can 
separate confounded factors after data have 
been collected.  



Good news for NGS 

• certain properties of the platforms can be 
leveraged to ensure proper design 

• Capacity to bar code 



Replication 
1. no biological replication 

• Unreplicated data 
consider only a single 
subject per treatment 
group 

• it is not possible to 
estimate variability 
within treatment group, 
and the analysis must 
proceed without any 
information regarding 
within-group biological 
variation 

Auer P L , and Doerge R W Genetics 
2010;185:405-416 



Fisher's exact test 

• The cell counts represent the DGE count for gene A or 
the remaining genes, for Treatment 1, and 2.   

• Several methods for p-value computation 

  
Treatment 

1 

Treatment 

2 
Total 

Gene A n11 n12 N1. 

Remaining 

genes 
n21 n22 N2. 

Total N.1 N.2 N  



Log2 FC 

Gene expression 
counts were normalized 
by the column totals of 
the corresponding 2 × 2 
table. Blue dots 
represent significantly 
differentially expressed 
genes (by Fisher's 
exact test); gray dots 
represent genes with 
similar expression. 

Auer P L , and Doerge R W Genetics 2010;185:405-416 



Limitations of unreplicated data 

• complete lack of knowledge about biological 
variation 

• without an estimate of variability (i.e., within 
treatment group), there is no basis for 
inference (between treatment groups) 

• the results of the analysis only apply to the 
specific subjects included in the study 



Replication 
2. replicated data 

• A multiple flow-cell design based on three biological 
replicates within seven treatment groups. There are 
three flow cells with eight lanes per flow cell. The 
control sample is in lane 5 of each flow cell. Tij refers to 
the j-th replicate in the i-th treatment group .  

Auer P L , and Doerge R W Genetics 2010;185:405-416 



DGE 

• methods for testing differential expression 
that incorporates within-group (or within-
treatment) variability relies on a generalized 
linear model 

(Poisson GLM, logistic regression models, 
Bayessian approach, beta binomial model, 

negative binomial model) 



Blocking 

• if the treatment effects are not separable from 
possible confounding factors, then for any 
given gene, there is no way of knowing 
whether the observed difference in 
abundance between treatment groups is due 
to the biology or the technology (e.g., 
amplification or sequencing bias).  



Comparison of two designs 

Auer P L , and Doerge R W Genetics 2010;185:405-416 



0. Cofounded design 

• typical RNA-Seq experiment  

• consists of the same six samples, with no bar 
coding, and does not permit partitioning of 
batch and lane effects from the estimate of 
within-group biological variability.  

 



1. Balanced block design 

• Bar coding results in six technical replicates of 
each sample, while balancing batch and lane 
effects and blocking on lane.  

• Allows partitioning of batch and lane effects 
from the within-group biological variability.  



2. Balanced incomplete block designs 
and blocking without multiplexing 

• Mostly reliable 

• in reality:  

    the number of treatments (I),  

    the number of biol. replicates per treatment (J),  

    the number of unique bar codes (s) that can be     

                 included in a single lane,  

    the number of lanes available for sequencing (L). 



• A balanced incomplete block 
design (BIBD) for three 
treatment groups (T1, T2, T3) 
with one subject per treatment 
group (T11, T21, T31) and two 
technical replicates of each 
(T111, T112, T211, T212, T311, T312).  

 

• each of the three samples is bar 
coded and divided in two (e.g., 
T11 would be split into T111 and 
T112) and then pooled and 
sequenced as illustrated (e.g., 
T111 is pooled with T212 as input 
to lane 1).  

Auer P L , and Doerge R W Genetics 2010;185:405-416 



• A design based on three biological replicates 
within seven treatment groups. For each of 
the three flow cells there are eight lanes per 
flow cell and a control sample in lane 5. Tij 
refers to the j-th replicate in the i-th treatment 
group  

Auer P L , and Doerge R W Genetics 2010;185:405-416 



Overview 

http:/ /www.nature.com/nprot/journal/v8/n9/full/nprot.2013.099.html 
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Expression level in RNA-seq 

= The number of reads (counts) 
mapping to the biological 
feature of interest (gene, 
transcript, exon, etc.) is 
considered to be linearly 
related to the abundance of the 
target feature 



What is differential expression? 

• A gene is declared differentially expressed if 
an observed difference or change in read 
counts between two experimental conditions 
is statistically significant, i.e. whether it is 
greater than what would be expected just due 
to natural random variation. 

• Statistical tools are needed to make such a 
decision by studying counts probability 
distributions. 



Definitions 
• Sequencing depth: Total number of reads 

mapped to the genome. Library size. 

• Gene length: Number of bases. 

• Gene counts: Number of reads mapping to 
that gene (expression measurement) 



Experimental design 

• Pairwise comparisons: Only two experimental 
conditions or groups are compared. 

• Multiple comparisons: More than 2 conditions 
or groups. 

• Biological replicates. To draw general 
conclusions: from samples to population. 

• Technical replicates. Conclusions are only valid 
for compared samples. 

Replicates 



RNA-seq biases 

• Influence of sequencing depth: The higher 
sequencing depth, the higher counts 



RNA-seq biases 

• Dependence on gene length: Counts are 
proportional to the transcript length times the 
mRNA expression level 

Oshlack and Wakefield. 2009 
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RNA-seq biases 

• Differences on the counts distribution among 
samples 



RNA-seq biases 

• Influence of sequencing depth: The higher 
sequencing depth, the higher counts. 

• Dependence on gene length: Counts are 
proportional to the transcript length times the 
mRNA expression level. 

• Differences on the counts distribution among 
samples. 



Options 

1. Normalization: Counts should be previously 
corrected in order to minimize these biases. 

 

2. Statistical model should take them into 
account. 

 



Normalization methods 
• RPKM (Mortazavi et al., 2008) = Reads per kilo base per million: 

Counts are divided by the transcript length (kb) times the total 
number of millions of mapped reads 
 
 
 

• Upper-quartile (Bullard et al., 2010): Counts are divided by upper-
quartile of counts for transcripts with at least one read. 
 

• TMM (Robinson and Oshlack, 2010): Trimmed Mean of M values. 
 

• Quantiles, as in microarray normalization (Irizarry et al., 2003). 
 

• FPKM (Trapnell et al., 2010): Instead of counts, Cufflinks software 
generates FPKM values (Fragments Per Kilobase of exon per Million 
fragments mapped) to estimate gene expression, which are 
analogous to RPKM. 



Differential expression 

• Parametric assumptions: Are they fulfilled? 

• Need of replicates. 

• Problems to detect differential expression in 
genes with low counts. 



Goal 

• Based on a count table, we want to detect 
differentially expressed genes between 
conditions of interest. 

• We will assign to each gene a p-value (0-1), 
which shows us 'how surprised we should be' 
to see this difference, when we assume there 
is no difference. 



Goal 

 



Algorithms under active development 

http://wiki.bits.vib.be/index.php/RNAseq_toolbox#Detecting_differential_expression_by_count_analysis 



Intuition - gene 

Condition A 
sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 

23171 22903 29227 24072 23151 26336 25252 24122 

                  

Condition B 
Sample9 sample10 sample11 sample12 sample13 sample14 sample15 sample16 

19527 26898 18880 24237 26640 22315 20952 25629 

Variability A 
 
Variability B 

Compare and conclude given a Mean 
level: similar or not? } 



Intuition 



Intuition 

NB model is estimated: 2 parameters needed  
(mean and dispersion) 



Intuition 

Difference is quantified and used for  
p-value computation 



Dispersion estimation 

• For every gene, a NB is fitted based on the 
counts. The most important factor in that model 
to be estimated is the dispersion. 

 

• DESeq2 estimates dispersion by 3 steps: 

     1. Estimates dispersion parameter for each gene     

     2. Plots and fits a curve 

     3. Adjusts the dispersion parameter towards the  

         curve ('shrinking')  



Dispersion estimation 

• Black dots = estimates 
from the data 

• Red line = curve fitted 

• Blue dots = final assigned 
dispersion parameter for 
that gene 

 

Model is fitted 



Test runs between 2 conditions  

• for each gene 2 NB 
models (one for each 
condition) are made, and 
a Wald test decides 
whether the difference is 
significant (red in plot). 

 



Test runs between 2 conditions  

• for each gene 2 NB 
models (one for each 
condition) are made, and 
a Wald test decides 
whether the difference is 
significant (red in plot). 

 

i.e. we are going to perform 
thousands of tests… 

(if we set set a cut-off on the 
p-value of 0,05 and we have 
performed 20000 tests, 1000 
genes will appear significant 

by chance) 



Check the distribution of p-values 

• If the histogram of the 
p-values does not 
match a profile as 
shown here, the test is 
not reliable. Perhaps 
the NB fitting step did 
not succeed, or 
confounding variables 
are present. 

 



Improve test results 

0.05 
Cut-off 

False positive  
fraction 

Correctly identified  
as DE 



Improve test results 

• Avoid testing = apply a filter before testing, an 
independent filtering 

 

• Apply multiple testing correction 



Independent filtering 

If we filter out increasingly bigger portions of 

genes based on their mean counts, the 
number of significant genes increase 



Multiple testing corrections 

• Bonferroni or Benjamini-Hochberg 
correction, to control false discovery 
rate (FDR). 

 
 

• FDR is the fraction of false positives in the 
genes that are classified as DE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• If we set a threshold α of 0,05, 20% of 
the DE genes will be false positives. 

 



Why to apply multiple testing correction? 

Consider a case where you have 20 hypotheses to test, 
and a significance level of 0.05.  

 

??? What's the probability of observing at least one 
significant result just due to chance??? 

 

P(at least one significant result) = 1 - P(no signif. results) 

= 1 - (1 – 0.05)20 ≈ 0.64 

 

So, with 20 tests being considered, we have a 64% chance 
of observing at least one significant result, even if all of 
the tests are actually not significant. 



Including different factors 

WT 

Treatment G 

Mutant (UPC)    

Treatment AG 

Additional metadata 
(batch factor) 

Day 1 Day 1 Day 2 Day 2 



Including different factors 

WT 

Treatment G 

Mutant (UPC)    

Treatment AG 

Additional metadata 
(batch factor) 

Day 1 Day 1 Day 2 Day 2 

Which genes are DE between UPC and WT?  
Which genes are DE between G and AG?  
Which genes are DE in WT between G and AG? 



Statistical model 

Gene = strain + treatment + day 

 

•  export results for unique comparisons 

 

  



Goal 

 


