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Transcript Quantification

RNA is isolated from cells,
fragmented at random positions,
and copied into complementary
DNA (cDNA).

Fragments meeting a certain size
specification (e.g., 200—-300 bases
long) are retained for
amplification using PCR.

After amplification, the cDNA is
sequenced using NGS; the
resulting reads are aligned to a
reference genome, and the
number of sequencing reads
mapped to each gene in the
reference is tabulated.

These gene counts, or digital gene
expression (DGE) measures, can
be transformed and used to test
differential expression
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Source sample
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FASTQ format

S
Sequence
@FORJUSPO2AIWD1

CCGTCAATTCATTITAAGTTTTAACCTTGCGGCCGTACTCCCCAGGLCGGT
+

AAAAAAAAAAAA:(:B9@: : : : 7 @@: : FFAAAAACCAA: : : : BBa@rA?

ik

Q@ scores (as ASCII chars)

‘ Base=T, 0=":'=25

The first line starts with '@, followed by the label
The third line starts with '+'. In some variants, the '+' line contains a
second copy of the label

The fourth line contains the Q scores represented as ASCIl characters



Q scores of FASTQ

Sanger, lllumina v1.3 to 1.7 (ASCIl_BASE=64)

Q ASCI P Q ASCI P Q ASCI P Q ASCII P

1 A @.79433 12 L a.e631e 23 W @.8a58l 34 b a.eaada
2 B @.63896 13 M a.85812 24 X B.8a398 35 C a.e8a32
3 C @.58119 14 M @.839381 25 b B8.88316 36 d a.e8a25
4 D @.39811 15 0 8.83162 26 L @.88251 37 e a.eoa2e
5 E @.31623 16 B @.82512 27 [ B . ee2ee 38 f @.888l6
B F @.25119 17 Q @.81995 28 % 2.8a8158 39 g 8.88813
7 G @.19953 18 R 8.81535 29 ] 28.88126 48 h a.eaale
a H @.15349 15 5 @.81259 38 o a.aalae

9 I @.12589 28 T a.alasa 31 _ @.8aa79

1a ] a.leaas 21 u a.ea794 32 ) @.8aa8s3

11 K @.87943 22 W a.88631 33 a a.eease

lllumina v1.8 and later (ASCIl_BASE=33)

Q ASCI P Q ASCI P Q ASCI P Q ASCI P

1 " @.79433 12 = é.86318 23 8 2.aa5el 34 C a.eaa4a
2 # @.63896 13 e @.85812 24 9 @.88398 35 D a.ea832
3 2 @.58119 14 / @.83931 25 : B8.88316 36 E a.ea825
4 * @.39811 15 a @8.83162 26 3 a.e8251 37 F a.eaaze
5 & @.31623 16 1 @.82512 27 < a.aa2ee 38 G a.88816
6 ' @.25119 17 2 8.81995 28 = @.88l58 39 H 8.88813
7 ( @.19953 18 3 @.81535 29 > a.88126 48 I @.eaale
8 )| @.15349 15 4 8.81259 38 ? 2. aaloe 41 ] @.eaeas
9 * @.12589 28 5 a.elesa 31 ] a.aeav79

1a + a.leaas 21 6 a.ea794 32 A @.eeas3

11 @.879435 22 7 a.88631 33 B a.aease



Scales of genome size
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Exploratory analyses




Exploratory analyses

2.Unsupervised clustering
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Exploratory analyses

2b.Unsupervised clustering on gene subset
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From microarrays to NGS data

* As research transitions from microarrays to
sequencing-based approaches, it is essential
that we revisit many of the same concerns
that the statistical community had at the
beginning of the microarray era

* series of articles was published elucidating the
need for proper experimental design



Experimental design

* All of these articles rely on the three fundamental
aspects of sound experimental design formalized
by R. A. Fisher 70 years (!!!) ago, namely
replication, randomization, and blocking:

the experimental design would include many
different subjects (i.e., replication) recruited from
multiple weight loss centers (i.e., blocking). Each
center would randomly assign its subjects to one of
the two diets (i.e., randomization).



In case of bad experimental design

* itis essentially impossible to partition
biological variation from technical variation

* No amount of statistical sophistication can
separate confounded factors after data have
been collected.



Good news for NGS

e certain properties of the platforms can be
leveraged to ensure proper design

e Capacity to bar code



Replication
1. no biological replication

il bl s el e Sl ol o vl N ] (s,
Flow-cell 1
T | T | T3 | Tal®X| T5 | Ts | T

Auer P L, and Doerge R W Genetics

2010;185:405-4
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* Unreplicated data

consider only a single
subject per treatment
group

it is not possible to
estimate variability
within treatment group,
and the analysis must
proceed without any
information regarding
within-group biological
variation



Fisher's exact test

Treatment Treatment
1 5 Total
Gene A n11 n12 N1.
Remaining| 5 n22 N2.
genes
Total N.1 N.2 N

* The cell counts represent the DGE count for gene A or
the remaining genes, for Treatment 1, and 2.

e Several methods for p-value computation



log, fold change

Log2 FC

mean log, expression

Auer P L , and Doerge R W Genetics 2010;185:405-416

Gene expression
counts were normalized
by the column totals of
the corresponding 2 x 2
table. Blue dots
represent significantly
differentially expressed
genes (by Fisher's
exact test); gray dots
represent genes with
similar expression.



Limitations of unreplicated data

 complete lack of knowledge about biological
variation

e without an estimate of variability (i.e., within
treatment group), there is no basis for
inference (between treatment groups)

* the results of the analysis only apply to the
specific subjects included in the study



Replication
2. replicated data

(| Ga a2 b tsnd idenl sl &< il e ek B B sl Lo ral il = Ll i il B2 b sl ena (G [
Flow-cell 1 Flow-cell 2 Flow-cell 3
T11 T21 T31 T41 (I:’X T51 T51 T?1 T12 T22 T32 T42 ¢'X TS? T52 T'.-'2 T13 T23 T33 T43 CDX TSS Tsa T?S

Auer P L, and Doerge R W Genetics 2010;185:405-416

* A multiple flow-cell design based on three biological

replicates within seven treatment groups. There are
three flow cells with eight lanes per flow cell. The

control sample is in lane 5 of each flow cell. T; refers to

the j-th replicate in the i-th treatment group .




DGE

methods for testing differential expression
that incorporates within-group (or within-
treatment) variability relies on a generalized
linear model
(Poisson GLM, logistic regression models,
Bayessian approach, beta binomial model,
negative binomial model)



Blocking

* if the treatment effects are not separable from
possible confounding factors, then for any
given gene, there is no way of knowing
whether the observed difference in
abundance between treatment groups is due
to the biology or the technology (e.g.,
amplification or sequencing bias).



Comparison of two designs

Balanced Blocked Design

:

Lane 1 Lane2 Lane 3 Laned Lane5 Laneb

« Treatment A

« Biological replicate

+* RNA extraction

« Bar-code and pool

* Preparation for sequencing

« Sequence technical replicates

Confounded Design

+ Treatment A A A B B

+ Biological replicate

* RNA extraction and
preparation for
sequencing

* Sequence each
sample in alane l

Lane1 Lane2 Lane3 Laned Laneb

Auer P L, and Doerge R W Genetics 2010;185:405-416

Lane 6




0. Cofounded design

* typical RNA-Seq experiment

* consists of the same six samples, with no bar
coding, and does not permit partitioning of
batch and lane effects from the estimate of
within-group biological variability.



1. Balanced block design

* Bar coding results in six technical replicates of
each sample, while balancing batch and lane

effects and blocking on lane.

* Allows partitioning of batch and lane effects
from the within-group biological variability.



2. Balanced incomplete block designs
and blocking without multiplexing

* Mostly reliable

* in reality:

the number of treatments (),

the number of biol. replicates per treatment (J),

the number of unique bar codes (s) that can be
included in a single lane,
the number of lanes available for sequencing (L).



T111
T212

T211
T312

T311
T112

* A balanced incomplete block

design (BIBD) for three
treatment groups (T, T,, T)
with one subject per treatment
group (T, T,,, T3,) and two
technical replicates of each

(Tlll' T112, 7-211' T212, T311' 7-312)'

each of the three samples is bar
coded and divided in two (e.q.,
T,, would be split into T,,, and
T,1,) and then pooled and
sequenced as illustrated (e.qg.,
T,,, is pooled with T,, as input
to lane 1).

Auer P L, and Doerge R W Genetics 2010;185:405-416
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Auer P L, and Doerge R W Genetics 2010;185:405-416

* A design based on three biological replicates
within seven treatment groups. For each of
the three flow cells there are eight lanes per
flow cell and a control sample in lane 5. T,

refers to the j-th replicate in the i-th treatment

group
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Expression level in RNA-seq

= The number of reads (counts)
mapping to the biological
feature of interest (gene,
transcript, exon, etc.) is
considered to be linearly
related to the abundance of the
target feature

probability

0.00 0.03 010 0.15 0.20 0.25

RNA-seq

------------------------




What is differential expression?

* A gene is declared differentially expressed if
an observed difference or change in read
counts between two experimental conditions
s statistically significant, i.e. whether it is
greater than what would be expected just due
to natural random variation.

e Statistical tools are needed to make such a
decision by studying counts probability
distributions.




Definitions

e Sequencing depth: Total number of reads

mapped to the genome. Library size.

e Gene len

oth: Number of bases.

* Gene counts: Number of reads mapping to

that gene (expression measurement)
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Experimental design

e Pairwise comparisons: Only two experimental
conditions or groups are compared.

e Multiple comparisons: More than 2 conditions
or groups.

Replicates

* Biological replicates. To draw general

conclusions: from samples to population.
* Technical replicates. Conclusions are only valid

for compared samples.




RNA-seq biases

* Influence of sequencing depth: The higher
sequencing depth, the higher counts
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RNA-seq biases

 Dependence on gene length: Counts are
proportional to the transcript length times the

MRNA expression level

Array Data (Marioni) Sequencing Data (Marioni)
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RNA-seq biases

* Differences on the counts distribution among
samples
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RNA-seq biases

* Influence of sequencing depth: The higher
sequencing depth, the higher counts.

 Dependence on gene length: Counts are
proportional to the transcript length times the
MRNA expression level.

* Differences on the counts distribution among
samples.



Options

1. Normalization: Counts should be previously
corrected in order to minimize these biases.

2. Statistical model should take them into
account.



Normalization methods

RPKM (Mortazavi et al., 2008) = Reads per kilo base per million:
Counts are divided by the transcript length (kb) times the total
number of millions of mapped reads

number of reads of the region

total reads _ region length
1000000 1000

RPKM =

Upper-quartile (Bullard et al., 2010): Counts are divided by upper-
quartile of counts for transcripts with at least one read.

TMM (Robinson and Oshlack, 2010): Trimmed Mean of M values.
Quantiles, as in microarray normalization (Irizarry et al., 2003).

FPKM (Trapnell et al., 2010): Instead of counts, Cufflinks software
generates FPKM values (Fragments Per Kilobase of exon per Million
fragments mapped) to estimate gene expression, which are
analogous to RPKM.



Differential expression

* Parametric assumptions: Are they fulfilled?
* Need of replicates.

* Problems to detect differential expression in
genes with low counts.



Goal

Based on a count table, we want to detect
differentially expressed genes between
conditions of interest.

We will assign to each gene a p-value (0-1),
which shows us '"how surprised we should be’
to see this difference, when we assume there

is no difference.

O p-value 1
- _
e N
Very big chance there is a difference
Very small chance there is a real difference
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Algorithms under active development

Detecting differential expression by count analysis

s edgeR @ - DE on the gene level from counts - TOP

s DEseq@ - DE on the gene level from counts - TOP

s tweeDEseq @ - DE on the gene level from counts

s NEPSeq@ - DE on the gene level from counts

s TSPM - DE on the gene level from counts

s SAMseq - non-parametric method on the gene level from counts - TOP if large number of replicates
» ShrinkSeqe - DE on the gene level from counts

s BBSeq - DE on the gene level

» Bayseq@ - DE on the gene level from counts - TOP

s DEGseq@ - DE on the gene level

s sydSeq@ - improved DE on the gene level for low replicate studies

s DEXSeq@ - DE on the exon level

s MNOlseq @ - Non-parametric method from counts

+ CuffLinks & cuffdiff2 - DE on the isoform level - TOP |

s BitSeqd - DE on the isoform level

s EESeqd - DE on the isoform level from counts

s Myrna @ - cloud computing for large RNA-seq datasets

s sSeq - optimized for small sample size experiments.

s MRFSeq @ - optimized for small read counts

s QuasiSeqd? - apply the QL, QLShrink and QLSpline methods to RMNA-seq data for DE

http://wiki.bits.vib.be/index.php/RNAseq_toolbox#Detecting_differential_expression_by_ count_analysis



Intuition - gene

samplel sample2 sample3 sampled sample5 sample6 sample7 sample8
23171 22903 29227 24072 23151 26336 25252 24122

Sample9 samplel0 samplell samplel2 samplel3 samplel4 samplel5 samplel6
19527 26898 18880 24237 26640 22315 20952 25629

variability A } Compare and conclude given a Mean

Variability B level: similar or not?
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Intuition

NB model is estimated: 2 parameters needed
(mean and dispersion)
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Intuition

Difference is quantified and used for
p-value computation
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Dispersion estimation

* For every gene, a NB is fitted based on the
counts. The most important factor in that model

to be estimated is the dispersion.

 DESeq2 estimates dispersion by 3 steps:
1. Estimates dispersion parameter for each gene

2. Plots and fits a curve
3. Adjusts the dispersion parameter towards the

curve ('shrinking')



dispersion

1e-06 1e-04 1e-02 1e+00

1e-08

Dispersion estimation

*® gene-est
* fitted
* final

1e+01

1e+02 1e+03

mean of normalized counts

1e+04

1e+05

Black dots = estimates
from the data

Red line = curve fitted

Blue dots = final assigned
dispersion parameter for
that gene

Model is fitted



Test runs between 2 conditions

* foreach gene 2 NB ;
models (one for each
condition) are made, and
a Wald test decides
whether the difference is
significant (red in plot).

log, fold change
0.0

1e+01 1e+02 1e+03 1e+04 1e+05

mean of normalized counts



Test runs between 2 conditions

e for each gene 2 NB
models (one for each
condition) are made, and
a Wald test decides
whether the difference is
significant (red in plot).

i.e. we are going to perform
thousands of tests...

(if we set set a cut-off on the

p-value of 0,05 and we have

performed 20000 tests, 1000

genes will appear significant
by chance)



Check the distribution of p-values
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1500

1000
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T
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* If the histogram of the
p-values does not
match a profile as
shown here, the test is
not reliable. Perhaps
the NB fitting step did
not succeed, or
confounding variables
are present.




Improve test results

1500 2000
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Improve test results

* Avoid testing = apply a filter before testing, an
independent filtering

* Apply multiple testing correction




alment_AG_vs G

nt DE genesin re

Significa

Independent filtering

Effect filtering on significant DE genes

Ad|, p-value out-off

-og[1 0](pvalue)

Fraction filtered out of normalized counts

If we filter out mcreasmgly blgger portlons of
genes based on their mean counts, the
number of significant genes increase



Multiple testing corrections

 Bonferroni or Benjamini-Hochberg

correction, to control false discovery
rate (FDR).

 FDRis the fraction of false positives in the
genes that are classified as DE.

alpha 0.0001 0.001 001 0025 005 0.1
Uncorrected | 31 o7 a3 |18 134 188
Bon ferroni 0 G |3 21 24 3l

IR 0 19 -1 53 73 0l

* |f we set athreshold a of 0,05, 20% of
the DE genes will be false positives.



Why to apply multiple testing correction?

Consider a case where you have 20 hypotheses to test,
and a significance level of 0.05.

??? What's the probability of observing at least one
significant result just due to chance???

P(at least one significant result) = 1 - P(no signif. results)
=1-(1-0.05)=0.64

So, with 20 tests being considered, we have a 64% chance
of observing at least one significant result, even if all of
the tests are actually not significant.



Including different factors

sample strain  treatment day
samplel WT G 1
reatment sample? WT AG 1
T G TreatmentAG s wr o .
sampled WT AG 1
samples UpC G 1
WT © O Q Q sampled UPC AG 1
) ) Q Q sample?  UPC G 1
sample8 UpC AG 1
sampled WT G z
sampleld  WT AG z
Q O © © samplell WT G 2
samplelz WT AG z
Mutant (UPC) © © © © sampleld UPC G 2
sampleld UPC AG 2z
samplels LUPC G z
samplelé  LUPC AG 2
o

Day1 Day2 Day1 Day?2 Additional metadata

(batch factor)



Including different factors

sample strain  treatment day
samplel WT G 1
reatment sample? WT AG 1
T G TreatmentAG s wr o .
sampled WT AG 1
samples UpC G 1
WT © O Q Q sampled UPC AG 1
) ) Q Q sample?  UPC G 1
sample8 UpC AG 1
sampled WT G z
sampleld  WT AG z
Q O © © samplell WT & 2
samplelz WT AG z
Mutant (UPC) © © © © sampleld UPC G 2
sampleld UPC AG 2z
samplels LUPC G z
samplelé  LUPC AG 2
o

Day1 Day2 Day1 Day?2 Additional metadata

_ (batch factor)
nich genes are DE between UPCand WT?

nich genes are DE between G and AG?
nich genes are DEin WT between G and AG?

===



Statistical model

Gene = strain + treatment + day

e export results for unigue comparisons



Galaxy / BITS

gene_id samplel sample2 sampl
CAFDO0BETE 23171 22903 292
CAFDOOGBES 647 698 B
CAFOO0GEET 10 3
CAFDOOBEEE 1 z
CAFDOOGEEY Z 0
CAFOO06B90 52 735 10
CAFDO0REYL 475 465 ]
CAFDOOGBY2 B85 67

_ Galaxy / BITS

a3
27
54
8
1
1
32
24
T3

Analyze Data

sampled  samples  sampleé sample?  samples
24072 23151 26336 25252 24122
765 797 BLE BGE 767

B 5 B 5 3

1 0 0 0 0

0 1 0 Z 0

ELOD 1476 1437 1575 1358

505 238 624 b5 o262

B0 151 91 114 93

-~

Analyze Data

samplz? sampleld samplell
19527 26898 1aga(
532 761 563

7 B i

1

1

644 B59 549

431 586 410

81 65 47

samplel2 samplel3  samplel
24237 26640 2131
654 748 Ly

10 7

0 0

0 0
47 1320 94
250 639 47
B4 91 7

CAFOODB965
CAFOODB9B9
CAFOOD7413
CALDODODDG
CALDODODDZ3
CALODODOO3E
CALDODODS9

baseMean
236.95771532567
152.753854809905
394.18013915485
3840.,73677986616
97.9171191032388
292.453306221006
724.903093908146

log2ZFoldChange
0.319894269325064
-0.47673982481625
0.545507459785333

-0.675753238608597

0.42580183962291

-0.290563708698689
-0.209063501932311

IfcSE
0.0795476625084231
0.120420053359006
0.103161564037881
0.0614877057756516
0.109195747881053
0.0702804475299353
0.0523592353116696

pvalue
5.78492554744642e-05
7.52725227015407e-05
1,23732350682432e-07
4, 26668298965338e-28
9.64169841515241e-05
3.55966374624607e-05
6.52789812704274e-05

pad]
0.0048486558594 7968
0.00561314522325369
2.42600739993209e-05
6.06508986979228e-25
0.00668569477909227
0.00343055051883985
0.00515522621532848



