afakie afakické oko 2 Hirschbergova empirická formule (1897): 𝐴 𝑅2 = 𝐴 𝑅1 2 + 10 D 𝐴 𝑅1,2 ... axiální refrakce oka před, resp. po extrakci oční čočky Julius Hirschberg Oko, které chirurgickým zákrokem pozbylo oční čočku (šedý zákal, apod.) zobrazení afakickým okem 3 Gaussova zobrazovací rovnice: 𝑛′ 𝑎 𝑅′ = 𝑛 𝑎 𝑅 + 𝜑 𝑅′ aR R aR’ = dO + 0,05 mm R’ χH ≡ χH’ 𝐴 𝑅 = +12,50 D polohy hlavních bodů vůči první ploše rohovky: s1 (HR’) = -0,0506 mm s1 (HR) = -0,0496 mm optická mohutnost: jR’ = 43,05 D obrazová vzdálenost: aR’ = 24,05 mm velikost obrazu na sítnici I 4 aR FB’ ≡ R SB’ > 0 sB’ d dO R’α y χH ≡ χH’ y’ NB ≡ NB’ 𝑦′ = 𝑑 𝐻𝑜𝑆 𝑛 𝑆 𝐴 𝑅 1 𝑆 𝐵′ tg 𝛼předmět o úhlové velikosti 𝛼 se zobrazí do ohniska brýlové čočky a vznikne obraz o výšce 𝑦 ≈ 𝑠 𝐵′ tg 𝛼 ten je dále okem zobrazen na sítnici, vznikne obraz o výšce 𝑦′ a platí 𝑦′ 𝑦 = 𝑎 𝑅′ 𝑛 𝑆 𝑎 𝑅 = 𝑑 𝐻𝑜𝑆 𝑛 𝑆 𝐴 𝑅 aR’= 𝑑 𝐻𝑜𝑆 𝑦′ = 𝑑 𝐻𝑜𝑆 𝑛 𝑆 1 + 𝑑𝐴 𝑅 tg 𝛼 𝑛 sklivce vzdálenost brýlové čočky od oka vzdálenost obrazové hlavní roviny od sítnice velikost obrazu na sítnici II 𝑦 𝐸 ′ = −𝑓𝑂tg 𝛼 𝑓𝑂 = − 1 𝜑 𝑂 ′ FO’ fO NO ≡ NO’ y’α jO’ nS FBR’ fBR NBR ≡ NBR’ y’α φB’ jR’ nS 𝑦 𝐴 ′ = −𝑓𝐵𝑅tg 𝛼 𝑓𝐵𝑅 = − 1 𝜑 𝐵𝑅 ′ korekce afakie nitrooční čočkou