Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE VROZENÉ CHROMOSOMOVÉ ABERACE Vytvořilo Oddělení lékařské genetiky FN Brno TYPY CHROMOSOMOVÝCH ABERACÍTYPY CHROMOSOMOVÝCH ABERACÍ - VYŠETŘENÍ VROZENÝCH CHROMOSOMOVÝCH ABERACÍ – prenatální a postnatální vyšetření - VYŠETŘENÍ ZÍSKANÝCH CHROMOSOMOVÝCH ABERACÍ (vznikajících v důsledku působení mutagenních faktorů prostředí na člověka) – postnatální vyšetření - VYŠETŘENÍ ZÍSKANÝCH CHROMOSOMOVÝCH ABERACÍ (u onkologických onemocnění) vyšetření z kostní dřeně a tkáně solidních tumorů Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) vrozené patologické změny v karyotypu VYŠETŘENÍ KARYOTYPU Vytvořilo Oddělení lékařské genetiky FN Brno Postnatální stanovení karyotypu (ověřujeme přítomnost / nepřítomnost VCA u dětí a dospělých) Postnatální stanovení karyotypu (ověřujeme přítomnost / nepřítomnost VCA u dětí a dospělých) - odběr periferní krve dětí a dospělých Vytvořilo Oddělení lékařské genetiky FN Brno Klinické indikace k postnatálnímu stanovení karyotypu Klinické indikace k postnatálnímu stanovení karyotypu • problémy časného růstu a vývoje neprospívání, opoždění vývoje, dysmorfická facies, mnohočetné malformace, malá postava, obojetný genitál, mentální retardace • narození mrtvého plodu a úmrtí novorozence výskyt chromosomových abnormalit je vyšší u případů narození mrtvého plodu (téměř 10%) než u živě narozených dětí (asi 0,7%), zvýšený výskyt také u dětí, které umírají v novorozeneckém období (okolo 10%) • problémy s fertilitou ženy s amenoreou, infertilní páry, opakované spontánní aborty, partneři před IVF • rodinná anamnéza známá nebo suspektní chromosomová abnormalita u příbuzných • dárci gamet, děti k adopci Vytvořilo Oddělení lékařské genetiky FN Brno Prenatální stanovení karyotypu (ověřujeme přítomnost / nepřítomnost VCA u plodu) Prenatální stanovení karyotypu (ověřujeme přítomnost / nepřítomnost VCA u plodu) invazivní metody vyšetření karyotypu plodu: - odběr plodové vody (amniocentéza, AMC) – klasická 16.-20.t.g. - odběr krve plodu z pupečníku (kordocentéza, CC) – po 20. t.g. - biopsie choriových klků (CVS) – časná CVS – 11. – 14. t.g. - pozdní CVS – II. a III. trimestr (placentocentéza) Vytvořilo Oddělení lékařské genetiky FN Brno Klinické indikace k prenatálnímu stanovení karyotypu (VCA) Klinické indikace k prenatálnímu stanovení karyotypu (VCA) invazivní metody vyšetření karyotypu plodu – při vyšším riziku narození dítěte s VCA - patologické hodnoty biochemických markerů (screening II., event. I. trimestru) - VVV nalezené na UZ - balancovaná VCA u rodičů - výskyt VCA v rodině - předchozí porod dítěte s VCA - věk matky – 35 let v roce porodu – pouze vyšší věk není indikací k vyšetření - věk otce – nad 40 let (riziko vyššího výskytu monogenních chorob) - -II- součet věku rodičů – nad 70 let - pouze vyšší věk není indikací k vyšetření Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) • významně se podílejí na mnoha případech poruch reprodukce, vrozených malformací, mentálních retardací, vývojových vad • cytogenetické poruchy jsou přítomny přibližně u 0,6% živě narozených dětí Vytvořilo Oddělení lékařské genetiky FN Brno CHROMOSOMOVÉ ABNORMALITY (ABERACE) CHROMOSOMOVÉ ABNORMALITY (ABERACE) • vrozené chromosomové aberace (VCA) (vyšetření karyotypu) – početní - strukturní prenatální a postnatální stanovení karyotypu Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) • abnormality počtu chromosomů - polyploidie – abnormality počtu chromosomových sad - počet chromosomů v jádrech somatických buněk je více než dvojnásobkem haploidního počtu (n = 23) (triploidie 3n= 69, tetraploidie 4n = 92) většinou pouze u plodů (samovolné aborty) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) • abnormality počtu chromosomů - aneuploidie – nejčastější a klinicky velmi významný typ chromosomových poruch - abnormality počtu chromosomů v páru - tento stav je vždy spojen s poruchou fyzického nebo mentálního vývoje - TRISOMIE - MONOSOMIE Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu chromosomů aneuploidie VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu chromosomů aneuploidie • trisomie – nejčastější porucha (přítomnost nadbytečného chromosomu v páru) - trisomie autosomů (trisomie celého chromosomu je jen vzácně slučitelná se životem) - Downův syndrom 47,XX,+21 47,XY, +21 - Edwardsův syndrom 47,XX,+18 47,XY, +18 - Patauův syndrom 47,XX, +13 47,XY, +13 - syndrom Rethore 47,XY, +9 47,XY,+9 - Warkanyho syndrom 47,XX,+8/46,XX nebo 47,XY,+8/46,XY - vždy v mozaice - aneuploidie gonosomů (fenotypové důsledky jsou méně závažné než u trisomie autosomů) - Klinefelterův syndrom 47,XXY (muž) - další syndromy Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu autosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu autosomů Downův syndrom 47, XX, +21 – volná trisomie Obr. 1 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu autosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu autosomů Edwardsův syndrom 47,XY,+18 Obr. 2 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu autosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu autosomů Patauův syndrom 47,XY,+13 Obr. 3 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu gonosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu gonosomů Klinefelterův syndrom 47,XXY Obr. 6 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu gonosomů méně časté nálezy VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu gonosomů méně časté nálezy aberace gonosomů jsou tolerovány lépe než podobné aberace u autosomů (týká se početních i strukturních aberací) 47,XXX 47,XYY 48,XXYY Obr. 7 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu chromosomů aneuploidie VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu chromosomů aneuploidie • monosomie – méně častá porucha (chybění chromosomu v páru) - monosomie gonosomu X (Turnerův syndrom) 45,X (žena) častý výskyt - monosomie autosomů – výjimečně se vyskytující porucha, slučitelná se životem jen u některých chromosomů a to v mozaice (v těle jedince mohou být přítomny 2 nebo více buněčné linie s různou chromosomovou sestavou, např. linie normální s linií s monosomií chromosomu č.18) 45,XX,-18[10]/46,XX,r(18)[190] Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu gonosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) abnormality počtu gonosomů Turnerův syndrom 45,X Obr. 8 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VZNIK POČETNÍCH ABERACÍ DE NOVO -PORUCHY V MEIÓZE VZNIK POČETNÍCH ABERACÍ DE NOVO -PORUCHY V MEIÓZE • meiotická nondisjunkce - porucha rozchodu páru chromosomů v anafázi meiózy I nebo II (většinou v průběhu meiózy I) • důsledkem nondisjunkce je aneuploidie – abnormální počet chromosomů v chromosomovém páru v karyotypu - absence chromosomu nebo přítomnost nadbytečného chromosomu • oba chromosomy v páru v anafázi meiotického dělení přemístí ke stejnému pólu místo aby segregovaly k opačným pólům dělícího vřeténka • nejčastější mutační mechanismus našeho druhu Vytvořilo Oddělení lékařské genetiky FN Brno MEIÓZAMEIÓZA • typ buněčného dělení, při kterém z diploidních zárodečných buněk (primárních oocytů a primárních spermatocytů) vznikají haploidní gamety z 1 diploidní zárodečné buňky vzniknou 4 haploidní gamety Obr. 9 (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno MEIÓZAMEIÓZA Obr. 10 (Nussbaum, 2004), upraveno Vytvořilo Oddělení lékařské genetiky FN Brno PORUCHY ROZCHODU CHROMOSOMŮ V MEIÓZE PORUCHY ROZCHODU CHROMOSOMŮ V MEIÓZE Obr. 11 (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby • méně časté než aneuploidie • změna struktury chromosomů (autosomů i gonosomů) • podmínkou je vznik zlomů na chromosomech • metodami klasické cytogenetiky (ve světelném mikroskopu) lze na chromosomech rozlišit pouze strukturní změny o určité velikosti (>5-10Mb) • změny menší lze detekovat metodami s vyšší rozlišovací schopností – metodami molekulární cytogenetiky • strukturní aberace vznikají buď v souvislosti s opravou zlomů na chromosomech (interchromosomové přestavby) nebo v důsledku nerovnoměrného crossing-overu (delece, duplikace – intrachromosomové změny) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby • translokace – nejčastější ze strukturních aberací (výskyt možný u všech chromosomů), předpokladem je vznik dvou zlomů, každý na jednom chromosomu reciproké translokace – výměny chromosomových segmentů mezi dvěma, zpravidla nehomologními, chromosomy robertsonovské translokace – 2 akrocentrické chromosomy fúzují v oblasti centromery a ztrácejí svá krátká raménka (ztráta nemá vliv na fenotyp), vznik zlomů v oblasti centromery reciproké translokace se vyskytují s frekvencí přibližně 1:600 novorozenců Obr. 12 Schemata přestaveb (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby reciproká translokace t(1;15) výměna koncových úseků chromosomů Obr. 13 Vzory chromosomů s G – pruhy (ISCN 1995) Chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby reciproká translokace t(1;15) VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby reciproká translokace t(1;15) 46,XX,t(1;15)(q12;q22) Obr. 14 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby robertsonovská translokace der(13;14) (derivovaný chromosom) Obr. 15 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby robertsonovská translokace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby robertsonovská translokace 45,XX,der(13;14)(q10;q10) Obr. 16 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby translokační forma Downova syndromu VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby translokační forma Downova syndromu 45,XX,der(21;21)(q10;q10) 46,XY,der(21;21)(q10;q10),+21 fenotyp normální potomekrodič postižený Obr. 17 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby translokační forma Downova syndromu VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby translokační forma Downova syndromu 45,XX,der(14;21)(q10;q10) 46,XY,der(14;21)(q10;q10),+21 potomekrodič Obr. 18 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby • inverze – na jednom chromosomu vzniknou 2 zlomy, segment mezi nimi se otočí o 180° a opět se začlení do chromosomu paracentrická inverze – oba zlomy jsou na stejném raménku, úsek nezahrnuje centromeru pericentrická inverze – na každém raménku je jeden zlom, invertovaný úsek zahrnuje centromeru (změna polohy centromery – změna morfologie chromosomu) Obr. 19 Schemata přestavby (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby pericentrická inverze inv(8) Obr. 20 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby 46,XX,inv(8)(p23.1q23) Obr. 21 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby 46,X,inv(Y) souvislost s poruchami fertility u mužů Obr. 22 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby paracentrická inverze inv(1) Obr. 23 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby 46,XX,inv(1)(q21q32) Obr. 24 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby • delece – vznik zlomů a ztráta úseku chromosomu, který způsobuje vznik nebalancovaného karyotypu (parciální monosomie) – na 1 chromosomu v páru úsek přítomen je, na druhém chybí terminální delece –vznik jednoho zlomu, ztráta koncového úseku chromosomu intersticiální delece –vznik dvou zlomů, ztráta segmentu uloženého mezi centromerou a terminální částí incidence cytogeneticky pozorovatelných delecí je asi 1:700 živě narozených dětí Obr. 25 Schemata přestavby (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby terminální delece del (5)(pter) syndrom Cri du chat (syndrom kočičího křiku) Obr. 26 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece 46,XX,del(5)(p14.1) Obr. 27 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece další důležité deleční syndromy: - Wolf – Hirschhornův syndrom – 46,XX,del(4p) / 46,XY,del(4p) delece části 4p - De Grouchy syndrom – 46,XX,del(18p) / 46,XY,del(18p) delece části 18p nebo celého 18p (nebo i části 18q) některé delece nemusí souviset s fenotypem, který je zařazen do kategorie syndrom (málo častý výskyt) Obr. 28 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece delece Y – často souvisí se sterilitou u mužů mohou být i mikrodelece (nelze nalézt metodami klasické cytogenetiky) – delece oblastí AZF na Yq Obr. 29 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby delece 46,XX,del(Xp) fenotyp podobný Turnerovu syndromu (klíčový význam – chybění Xp) Obr. 30 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby • inzerce – nereciproký typ translokace - segment z jednoho chromosomu je odstraněn a vložen do jiného chromosomu buď ve své původní orientaci nebo opačné - k jejich vzniku jsou potřeba 3 body zlomu, 2 na jednom chromosomu a 1 na druhém - jsou poměrně vzácné (1:80000) - hrozí vznik nebalancovaných gamet a narození abnormálních potomků Obr. 31 Schema přestavby (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby inzerce VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby inzerce inzerce úseku chromosomu č. 14 do chromosomu č. 6 karyotyp probanda 46,XY,ins (6;14), de novo Obr. 32 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby inzerce VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby inzerce 46,XY,ins(6;14)(p24;q13q22) Obr. 33 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby • duplikace – nadbytečný chromosomový segment, který způsobuje vznik nebalancovaného karyotypu (parciální trisomie) - bývají méně nebezpečné než delece duplikace segmentu dup(6) Obr. 34 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby duplikace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby duplikace 46,XX,dup(6)(q22q23) Obr. 35 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby neobvyklé typy chromosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby neobvyklé typy chromosomů marker chromosomy – malé chromosomy (s centromerou), často v mozaice, obtížně identifikovatelné (mohou být vrozené nebo kultivačního původu) kruhové chromosomy (ring chromosomy) – na obou koncích chromosomu vzniknou zlomy, dojde ke ztrátě koncových úseků, zbytek chromosomu se spojí - jsou poměrně vzácné, ale byly zjištěny u všech lidských chromosomů marker chromosomy představují nadbytečný genetický materiál v karyotypu Kruhový chromosom Obr. 36 Schema přestavby (Nussbaum, 2004) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby ring chromosom VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby ring chromosom 46,XX,r(18) Obr. 37 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby marker chromosom VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby marker chromosom 47,XX,+mar Obr. 38 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby neobvyklé typy chromosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby neobvyklé typy chromosomů • izochromosomy – metacentrické chromosomy, jejichž 1 raménko chybí a druhé je duplikováno (parciální monosomie 1 raménka a parciální trisomie 2. raménka) podstata tvorby izochromosomu není přesně známa, jsou popsány alespoň 2 mechanismy: - porucha dělení centromery (příčné), následné dosyntetizování celého raménka v S fázi buněčného cyklu - výměna celého raménka Obr. 39 (Dokumentace OLG FN Brno) Obr. 40 (Therman, 1993) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby izochromosom VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby izochromosom 46,X,i(Xq) fenotyp podobný Turnerovu syndromu (klíčový význam – chybění Xp) Obr. 41 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby izochromosom VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby izochromosom 46,X,i(Xq),i(Xq) Obr. 42 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby neobvyklé typy chromosomů VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby neobvyklé typy chromosomů • dicentrické chromosomy (robertsonovská translokace) - na dvou chromosomech dojde ke zlomu - vznikne dicentrický chromosom fúzí úseků s centromerou a acentrický fragment spojením úseků bez centromery (satelity akrocentrických chromosomů se obvykle z mitózy ztratí) • dicentrické chromosomy (izochromosomy) viz mechanismus vzniku izochromosomů robertsonovské translokace, izochromosomy idic (Xq) dic (13;14) Obr. 43 Schema přestavby (Nussbaum, 2004) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby dicentrický chromosom VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby dicentrický chromosom 46,XY,dic(13;14)(q11;q11) 46,X,idic(Xq) Obr. 44 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby derivovaný chromosom VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby derivovaný chromosom • robertsonovská translokace • chromosom u nebalancovaného potomka rodičů – nositelů balancované přestavby • chromosom se změněnou strukturou oproti normě karyotyp matky 46,XX,t(16;21) dítědítědítědítě s nebalancovaným karyotypem 46,XY,der(21)der(21)der(21)der(21)t(16;21)mat 46,X,der(Y) Yq Yq 45,XX,der(13;14) Obr. 45 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) karyotyp balancovaný/nebalancovaný strukturní aberace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) karyotyp balancovaný/nebalancovaný strukturní aberace balancovaný karyotyp– genetický materiál v buněčném jádře nechybí ani nepřebývá, ale může být jinak organizován (přestavby) nebalancovaný karyotyp – genetický materiál v buněčném jádře - chybí i přebývá - nebo pouze chybí či pouze přebývá Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) karyotyp balancovaný/nebalancovaný strukturní aberace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) karyotyp balancovaný/nebalancovaný strukturní aberace nebalancovaný genetický materiál – u potomků rodičů s balancovanou chromosomovou přestavbou nebalancovaný genetický materiál je možné zdědit Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) - příklady strukturní změny – balancované přestavby – např. reciproká translokace balancovaný karyotyp VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) - příklady strukturní změny – balancované přestavby – např. reciproká translokace balancovaný karyotyp 46,XY,t(5;19)(q15;p12) nositelé vrozených balancovaných přestaveb většinou nemají žádné změny fenotypu Obr. 47 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – vztah mezi balancovanou a zděděnou formou nebalancované přestavby – přenos na potomky - reciproká translokace, inverze VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – vztah mezi balancovanou a zděděnou formou nebalancované přestavby – přenos na potomky - reciproká translokace, inverze • translokace a pericentrické inverze u svých nositelů většinou nezpůsobují abnormální fenotyp • vysoké riziko vzniku nebalancovaných gamet – samovolné aborty • narození postižených dětí (nebalancovaný karyotyp - parciální monosomie jednoho a parciální trisomie druhého chromosomu) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby translokace a inverze VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní přestavby translokace a inverze schemata vzniku gamet s balancovanou a nebalancovanou chromosomovou sestavou u nosičů balancovaných přestaveb – reciproké translokace a inverze Obr. 48 Schemata (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – vztah mezi balancovanou a zděděnou formou nebalancované přestavby – přenos na potomky - reciproká translokace, inverze VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – vztah mezi balancovanou a zděděnou formou nebalancované přestavby – přenos na potomky - reciproká translokace, inverze možné typy gamet rodiče s balancovanou translokací : - bez přestavby (normální haploidní sada chromosomů) - s balancovanou přestavbou (oba translokované chromosomy) - s nebalancovanou přestavbou (1 část translokace - chybí část jednoho chromosomu, přebývá část druhého chromosomu) !!!!!!!!!!!! zygota (embryo), při jejichž vzniku se uplatnila gameta : - s normální chromosomovou sestavou: velká pravděpodobnost narození zdravého potomka, který nenese balancovanou přestavbu v karyotypu - s balancovanou přestavbou lze očekávat narození zdravého potomka – nosiče balancované přestavby - s nebalancovaným genetickým materiálem: parciální monosomie jednoho, parciální trisomie druhého chromosomu – postižený potomek nebo samovolný abort Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – např. translokace - derivovaný chromosom vztah mezi balancovaným karyotypem a zděděnou formou nebalancovaného karyotypu VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – např. translokace - derivovaný chromosom vztah mezi balancovaným karyotypem a zděděnou formou nebalancovaného karyotypu postižený potomek s nebalancovaným karyotypem 46,XY,der(21)t(16;21)mat nebalancovaný karyotyp (parciální monosomie jednoho a parciální trisomie druhého chromosomu) – potomek rodiče – nositele balancované translokace matka s balancovanou přestavbou v karyotypu 46,XX,t(16;21) chromosomy, které se zúčastnily translokacederivovaný chromosom 21, pochází z translokace u matky (parciální monosomie – chybění části chromosomu 21, parciální trisomie - nadbytek části chromosomu 16) Obr. 49 Vzory chromosomů s G-pruhy (ISCN 1995) Reálné chromosomy (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno 46,XX,t(16;21)(q22;q22.1) 46,XY,der(21)t(16;21)(q22;q22.1)mat rodič potomek VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – např. translokace - derivovaný chromosom vztah mezi balancovaným karyotypem a zděděnou formou nebalancovaného karyotypu VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – např. translokace - derivovaný chromosom vztah mezi balancovaným karyotypem a zděděnou formou nebalancovaného karyotypu Obr. 50 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) karyotyp balancovaný/nebalancovaný strukturní aberace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) karyotyp balancovaný/nebalancovaný strukturní aberace nebalancovaný genetický materiál – vznik de novo Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – nebalancované aberace – např. koncová delece de novo VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) strukturní změny – nebalancované aberace – např. koncová delece de novo 46,XX,del(5)(p14.1) syndrom Cri du Chat G-pruhování chromosomů (klasická cytogenetika) potomek rodičů s normálním karyotypem Obr. 51 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS • má – li osoba chromosomovou abnormalitu, bývá většinou aberace přítomna ve všech jejích buňkách • mozaicismus = v těle jedince jsou přítomny 2 nebo více linie buněk s odlišnou chromosomovou konstitucí - nejčastější výskyt mozaiky gonosomů (často poruchy fertility) 45,X[6]/47,XXX[4]/46,XX[190] – malá mozaika aneuploidie chromosomu X u žen (aneuploidie gonosomů u mužů) - mozaika autosomů - Downův syndrom v mozaice s normálním karyotypem 47,XY,+21[172]/46,XY[28] • ve formě mozaiky mohou být přítomny numerické aberace i strukturní přestavby, početní se vyskytují výrazně častěji • nejčastější příčinou mozaicismu je nondisjunkce v časném postzygotickém mitotickém dělení (např. ztráta chromosomu č.21 z buňky zygoty s trisomií tohoto chromosomu) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) DEFINICE MOZAIKY VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) DEFINICE MOZAIKY Jedinec nebo tkáň obsahuje 2 nebo více buněčných klonů s odlišným karyotypem pocházejících z jediné zygoty, které vznikly v důsledku nondisjunkce při mitotickém dělení. (Chiméra – buňky jedince pocházejí z více zygot.) Vytvořilo Oddělení lékařské genetiky FN Brno 45,X[6]/46,XX[194] Karyotyp vyšetřujeme metodou analýzy chromosomů s G – pruhy. Při nálezu alespoň 1 mitózy s abnormálním počtem gonosomů materiál vyšetříme metodou I-FISH (analýza interfázních jader) za použití sond pro gonosomy. Touto metodou stanovíme zastoupení patologické linie v karyotypu vyšetřované tkáně. VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS - gonosomy VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS - gonosomy 3% = hraniční patologický nález Obr. 52 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS - gonosomy VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS - gonosomy 45,X[6]/46,XX[194] vyšetření % zastoupení jednotlivých linií buněk v periferní krvi pacientky metodou FISH z interfázních jader (3% zastoupení buněčné linie 45,X) 1 signál (přítomen 1 chromosom X (1 centromera) v jádře buňky) 2 signály (přítomny 2 chromosomy X (2 centromery) v jádře T-lymfocytu) Obr. 53 (Dokumentace OLG FN Brno) Při vyšetření použita centromerická sonda chromosomu X (cep X) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace 12 letý pacient s diagnózou malý vzrůst VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace 12 letý pacient s diagnózou malý vzrůst buněčná linie 46,X,r(Y)? Obr. 54 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace buněčná linie 46,X,mar(Y)? Obr. 55 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace buněčná linie 46,X,t(Y;9)(p11?;q12?) t(Y;?), přítomna oblast SRY buněčná linie Obr. 56 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace buněčná linie 45,X Obr. 57 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – kombinace početní a strukturní aberace Karyotyp – chromosomy s G - pruhy: 46,X,r(Y)?[5]/46,X,t(Y;9)(p11.32?;q12?)[4]/45,X[1] Nálezy metodou FISH: Vyšetření na interfázních jádrech: XY [120] X [70] Vyšetření na mitózách: t(Y;?), přítomna oblast SRY [26] X + marker z chromosomu Y, oblast SRY přítomna [17] X [7] složitý zápis i interpretace složitých karyotypů v mozaice Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS - význam VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS - význam • je obtížné posoudit význam nálezu mozaiky - záleží na typu chromosomové abnormality - význam má % zastoupení linie s patologickým karyotypem - % zastoupení jednotlivých buněčných linií může být v různých tkáních rozdílné (vyšetření z periferní krve, stěru z bukální sliznice pro ověření a porovnání) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – prenatální diagnostika VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – prenatální diagnostika AMC – odběr plodové vody – přítomnost pravého mozaicismu u plodu (v těle plodu jsou přítomny 2 nebo více buněčných linií, jejichž karyotyp je odlišný) např. 47,XX,+21 [35] / 46,XX [65] – riziko vzniku pseudomozaiky kultivačního původu (kultivační artefakt) (např. přítomnost nadbytečného chromosomu nebo strukturní přestavby v 1 mitóze) vyloučení kultivačního artefaktu - kultivace 2 paralelních kultur z AMC - opakovaný odběr (AMC, CVS) - riziko kontaminace mateřskou krví při odběru - po kultivaci nemůže ovlivnit výsledek karyotypu plodu, protože buňky mateřské krve se nenakultivují v médiu specifickém pro kožní fibroblasty, (ale může ovlivnit výsledek analýzy metodou PCR – izolovaná DNA je směsí DNA kožních fibroblastů plodu a krevních buněk matky) - riziko kontaminace mateřskou tkání při odběru – může ovlivnit výsledek karyotypu plodu, kožní fibroblasty matky i plodu podléhají kultivaci mozaicismus - přítomnost 2 nebo více buněčných linií ve vyšetřované tkáni, které se liší karyotypem - NE VŽDY SE JEDNÁ O PRAVÝ MOZAICISMUS INVAZIVNÍ METODY PRENATÁLNÍ DIAGNOSTIKY analýza buněk plodu Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – prenatální diagnostika VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – prenatální diagnostika – pravý mozaicismus – rozdílný karyotyp u embrya a v extraembryonální tkáni (kromě toho jak u plodu, tak v klcích, může být karyotyp s pravou mozaikou nebo bez mozaiky) - riziko vzniku pseudomozaiky kultivačního původu hrozí u dlouhodobě kultivovaných vzorků - při dlouhodobé kultivaci existuje riziko vzniku pseudomozaiky způsobené kontaminací mateřskou tkání (pouze u plodů ženského pohlaví) – prevence – pečlivé oddělení mateřské tkáně před kultivací - kontaminace mateřskou krví pro cytogenetické vyšetření nevadí (buňky krve se nenakultivují za podmínek kultivace choriových klků); pro molekulárně genetické vyšetření je kontaminace krví matky na závadu – izolujeme DNA současně z krve i klků – směs DNA plodu a matky) Přibližně 2% vyšetření vzorků z CVS přinášejí nejednoznačný výsledek v důsledku chromosomového mozaicismu (zahrnuje pravý mozaicismus a pseudomozaicismus). V těchto případech je pro potvrzení případné chromosomové aberace doporučeno indikovat AMC. INVAZIVNÍ METODY PRENATÁLNÍ DIAGNOSTIKY CVS - biopsie choriových klků (chorionic villi sampling) analýza extraembryonální tkáně (plodový obal chorion) Vytvořilo Oddělení lékařské genetiky FN Brno VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – prenatální diagnostika VROZENÉ CHROMOSOMOVÉ ABERACE (VCA) MOZAICISMUS – prenatální diagnostika – je možný rozdílný nález karyotypu embrya a extraembryonální tkáně - riziko, že placenta má normální karyotyp a plod trisomii je minimální - sporné nálezy jsou potvrzovány AMC placentární mozaicismus – možný zdroj falešně pozitivních výsledků pravý mozaicismus u choriových klků Obr. 58 (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno VZNIK MOZAIKY (vždy de novo, nedědí se) VZNIK MOZAIKY (vždy de novo, nedědí se) Vytvořilo Oddělení lékařské genetiky FN Brno M fáze buněčného cyklu = MITÓZA postupná kondenzace chromatinu až do maxima v metafázi, vznik chromosomů (chromosomy tvořeny dvěma chromatidami) oddělení sesterských chromatid v centromeře v anafázi (chromosomů je dvojnásobný počet a jsou tvořeny jednou chromatidou) – podélné dělení centromery segregace dceřinných chromatid (samostatných chromosomů), pohybují se k protilehlým pólům buňky VZNIK MOZAICISMU - SESTERSKÉ CHROMATIDY SE NEROZEJDOU K OPAČNÝM PÓLŮM (abnormální rozchod, mitotická nondisjunkce) mitóza je dokončena cytokinezí - rozdělením cytoplazmy původně mateřské buňky za vzniku dvou dceřinných buněk, jejichž jádra obsahují stejnou genetickou výbavu jako buňka mateřská (dělení buňky) rozchod dceřinných chromatid v anafázi mitózy MITÓZA (proces dělení somatických buněk)MITÓZA (proces dělení somatických buněk) Obr. 60 (Alberts, 1986) Obr. 59 (Nussbaum, 2004) Vytvořilo Oddělení lékařské genetiky FN Brno ROZESTUP SESTERSKÝCH CHROMATID V ANAFÁZI MITÓZY ROZESTUP SESTERSKÝCH CHROMATID V ANAFÁZI MITÓZY M fáze = MITÓZA chromosomy během metafáze a anafáze mitózy průběh rozchodu chromatid metafázní dvouchromatidový chromosom dva jednochromatidové chromosomy Obr. 61 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno CHROMOSOMY V PÁRU (HOMOLOGNÍ CHROMOSOMY) CHROMOSOMY V PÁRU (HOMOLOGNÍ CHROMOSOMY) • jeden chromosom pochází od jednoho, druhý od druhého rodiče • abnormalita s klinickými důsledky (postižení jedince) – chromosomy v páru jsou zděděny od 1 rodiče (uniparentální disomie) – abnormalitu nelze prokázat vyšetřením karyotypu, ale molekulárně genetickými metodami Obr. 62 (Dokumentace OLG FN Brno) Vytvořilo Oddělení lékařské genetiky FN Brno UNIPARENTÁLNÍ DISOMIE (UPD) klinický význam UNIPARENTÁLNÍ DISOMIE (UPD) klinický význam chromosomy v páru zděděny od stejného rodiče genomový imprinting – existují rozdíly v genové expresi mezi alelami, které se nacházejí na chromosomech, zděděných od otce a od matky – jsou důsledkem genomového imprintingu (metylace chromatinu, různý metylační vzor na chromosomu mateřského a otcovského původu, dochází k ovlivnění exprese genů, nedochází ke změně sekvence DNA) – genová exprese párových chromosomů se vzájemně doplňuje, společně se podílejí na vzniku normálního fenotypu jedince - párové chromosomy pocházejí od stejného rodiče – mají stejný metylační vzor – abnormální fenotyp (např. syndrom Prader Willi / Angelman, chromosom 15 – uniparentální disomie simuluje mikrodeleční syndrom, geny se neexprimují buď v důsledku chybění oblasti (delece) nebo zametylování (inaktivace) stejné oblasti na obou párových chromosomech – chybí funkční (nezametylovaná) alela od druhého rodiče) - imprinting je reverzibilní – v germinální linii v procesu vzniku gamet dochází ke změně imprintingu – podle pohlaví rodiče mechanismy vzniku – „trisomy rescue“ (ztráta nadbytečného chromosomu v buňkách embrya), „monosomy rescue“ (duplikace přítomného chromosomu) nemendelovská dědičnost Vytvořilo Oddělení lékařské genetiky FN Brno VÝZNAM VYŠETŘENÍ VCAVÝZNAM VYŠETŘENÍ VCA - objasnit příčinu zdravotních potíží pacienta - stanovit prognózu onemocnění, nabídnout pacientovi možnosti léčby a péče - prevence výskytu vrozených chromosomových aberací v rodině VCA léčbou nevymizí Vytvořilo Oddělení lékařské genetiky FN Brno Doporučená literaturaDoporučená literatura 1) Nussbaum R.L., McInnes R.R., Willard H.F.: Klinická genetika, Triton, 6. vydání, 2004, ISBN 80-7254-475-6 Vytvořilo Oddělení lékařské genetiky FN Brno Použitá literaturaPoužitá literatura 1) Balíček P.: Pericentrické inverze lidských chromozómů a jejich rizika. Časopis lékařů českých, 140, 2001, č.2 2) Balíček P.: Paracentrické inverze lidských chromozómů a jejich rizika. Časopis lékařů českých, 143, 2004, č.1 3) ISCN 1995, Mitelman (ed), S. Karger, Basel 1995, ISBN 3-8055-6226-8 4) Kotzot D.: Complex and segmental uniparental disomy (UPD): review amd lessons from rare chromosomal complements. J Med Genet 2001;38:497-507 5) Nussbaum R.L., McInnes R.R., Willard H.F.: Klinická genetika, Triton, 6. vydání, 2004, ISBN 80-7254-475-6 6) Vargas M.T., Fernández-Novoa M.C.: Balanced reciprocal translocation mosaicism: clinical implications. Two new cases.Genetic Counseling, Vol. 12, No 3, 2001, pp. 269-271 1) Alberts a kol.: Molekulární biologie buňky, překlad do ruského jazyka, „Mir“ 1986 2) ISCN 1995, Mitelman (ed), S. Karger, Basel 1995, ISBN 3-8055-6226-8 3) Nussbaum R.L., McInnes R.R., Willard H.F.: Klinická genetika, Triton, 6. vydání, 2004, ISBN 80-7254-475-6 4) Therman E., Susman M.: Human Chromosomes, Structure, Behavior, and Effects, Springer – Verlag, Third edition, 1993, ISBN 0-387-97871-2 Text: Obrázky: