Institute for Microbiology, Medical Faculty of Masaryk University and St. Anna Faculty Hospital in Brno

Miroslav Votava

MICROBIOLOGY AND MEDICINE

The 1st lecture for the 2nd-year students

February 16, 2015

What is the Medical Microbiology?

Medical microbiology = a complex of sciences dealing with microorganisms (= microbes) important in the medicine

Objects of medical microbiology:

- a) Pathogenic microbes (causing diseases of human beings or animals)
- b) Normal microflora (microbes commonly present in healthy persons or animals)
- Mutual relationship between microbes and their hosts (even we need the microbes)
- Relationship between microbes and the environment (including methods how to eradicate the microbes)

"Other" microbiologies

- 1) There are two branches of the medical microbiology: human and veterinary
- Here we are going to regard medical microbiology as the science about microbes important in human medicine only
- Clinical microbiology = a segment of the medical microbiology dealing with the etiology, pathogenesis and laboratory diagnostics of diseases caused by microbes
- 2) Other types of microbiology:
 environmental microbiology (m. of soil, water etc.)
 phytopathological m. (m. of plant diseases)
 food microbiology (m. of milk, meat, wine, beer etc.)
 other industrial microbiologies

Different objects and sections of microbiology

- bacteria
- micromycetes (moulds & yeasts)
- (algae)
- parasites
 - protozoa
 - helminths
 - arthropods
- viruses

bacteriology

mycology

(algology)

parasitology

protozoology

helminthology

entomology

virology

General microbiology

special microbiology

"Must-knows" about each microbe –

1. Classification, morphology, structure
Is it a bacterium, yeast, mold or protozoan?
If a bacterium: is it Gram-positive, Gram-negative, or does it stain in yet another way?
Is it a coccus, rod, filament, spiral?
How are the cells relatively arranged? In pairs, clumps, chains, tetrads?

Do they produce spores, capsules, granules?

2. Physiology, biochemistry, genetics, tenacity

Is it a strict anaerobe (does the oxygen kill it)?

Has it any important bichemical property?

Or genetical one?

Is it resistant (robust), or delicate?

"Must-knows" about each microbe -

3. Antigenic structure

Does it exist in one antigenic type or in several ones?

4. Pathogenicity

Which diseases or syndromes does it cause? How are they called in Latin?

5. Pathogenesis

Portal of entry, spread through the body, elimination? How do the symptoms develop?

Which factors of pathogenicity (virulence) has it?

6. Immunity

Does it actually develop after the contact with the microbe?

Is it short-lasted, or life-long; humoral, or cellular one?

"Must-knows" about each microbe – III

7. Epidemiology

What is the source of infection: man, animal or environment?

How is the agent transmitted?

8. Prevention, if necessary prophylaxis

Does a vaccination exist, or passive immunization?

What type of vaccine is in the use?

9. Treatment

What is the treatment of choice? If it is an antibotics, which one?

"Must-knows" about each microbe – IV

10. Laboratory diagnostics

Direct demonstration (= detection of the agent in question – microscopy, culture, detection of antigens, nucleic acid), or

indirect one (= detection of antibodies)?

If <u>direct</u> one, what is sampled from the patient?

In which way is the specimen examined?
If by the culture, is a special medium required?

How is the isolated strain identified?

If <u>indirect</u> one, is a special serologic reaction required?

What is considered as a positive result?

"Must-knows" about microbiology of different infectious diseases and syndromes

- A) Which microbe is the etiological agent of the infectious disease in question?
- B) Which microbes (bacteriae, yeasts, moulds, viruses or parasites) are the most important causes of the syndrome in question?

Do they differ according to e.g. the age of the patient?

Anniversaries in 2015 – I

- 265 1750 John Pringle was the first to use the term antiseptic
- 180 1835 Agostino Bassi introduced the idea of microbes as disease agents, with mould *Beauveria bassiana* in silkworms
- 165 1850 Casimir Davaine observed the agent of anthrax in blood
- 160 1855 * Josef Hlava, a forgotten discoverer of Entamoeba histolytica
- 150 1865 † Ignaz Semmelweis, who attempted to introduce disinfecting obstetricians' hands in order to prevent puerperal fever (childbed fever)
- 140 1875 * Stanislav Prowazek, the discoverer of the agents of trachoma and typhus
- 135 1880 Fanny Hesse inspired her husband to solidify cultivation media by means of agar
- 130 1885 Louis Pasteur started vaccinating against rabies

Anniversaries in 2015 – II

- 125 1890 Emil von Behring and Kitasato discovered diphtheria antitoxin
- 120 1895 Richard Pfeiffer described bacteriolysis, dissolving of bacteria with fresh blood of immune individuals † Louis Pasteur, the discoverer of vaccination against rabies, pasteurization, anaerobes and sporeforming microbes
- 115 1900 Paul Ehrlich elaborated the theory of functioning of antibodies
 - William Leishman described the agent of kala-azar, the protozoan Leishmania donovani
- 110 1905 Fritz Schaudin and Hoffmann discovered the agent of syphilis, the spirochete *Treponema pallidum*
- 105 1910 † Robert Koch, the discoverer of the agents of tuberculosis and cholera, cultivation on gelatine and microbe staining

Anniversaries in 2015 – III

- 100 1915 Paul Ehrlich and Hatta created salvarsan, the first effective remedy for syphilis

 Twort & d Hérelle discovered bacteriophages
 - 75 1940 Florey & Chain prepared and tested pure penicillin
 - 55 1960 Woodward synthesized tetracycline
 Tyrrell et al. isolated common cold viruses
 Enders et al. prepared the vaccine against
 measles

Burnet & Medawar: Nobel price for the discovery of acquired immunologic tolerance

Anniversaries in 2015 – IV

50 1965 Nobel price: Jacob & Monod for the discovery of regulation in bacteriae, Lwoff for explaining of lysogeny
 40 1975 Nobel price: Dulbecco, Temin & Baltimore: the relationship between tumor viruses and

cellular genome

10 2005 Nobel price: Warren & Marshall – the discovery of the role of *Helicobacter pylori* in gastric and duodenal inflammations and ulcers

Preliminary Curriculum of lectures, 2014/15, spring term

- 1. Microbiology and medicine
- 2. Morphology and structure of bacteria
- 3. Bacterial growth, growth curve
- 4. Tenacity of microbes (their resistance to the environtment)
- 5. Microbial biofilm
- 6. 8. Antimicrobial therapy
- 9. 10. Pathogenicity and virulence
- 11. 12. Pathogenesis of infection
- 13. 14. Course anf forms of infection
- 15. Active and passive immunization

Recommended textbook

Greenwood, D., Slack, R., Barer, M., Irving, W.: Medical Microbiology, 18th Ed., Churchill Livingstone, 2012, 800 pp.

You may use also

Murray, P.R., et al.: Medical Microbiology, 7th Ed., Mosby, 2009, 947 pp.

Goering, R., et al.: Mims' Medical Microbiology, 5th Ed., Saunders, 2012, 580 pp.

Recommended textbook II

Gladwin, M., Trattlen, B.: Clinical Microbiology Made Ridiculously Simple, 25th Printing, MedMaster, Inc., 2012, Miami, Fl., approx. 400 pp.

Further recommended literature

Paul de Kruif: Microbe Hunters

Attention! If you are not going to become a microbiologist as I did please read the book with the extreme caution!

Other examples and questions

Examples of other works of fiction connected with the medicine in general and the microbiology in particular as well as possible questions please send to

mvotava@med.muni.cz

How to get to the text of the lecture

Student
Study Materials
Subject: ZLLM0421p
Learning Materials
Lectures in English