Institute for Microbiology, Medical Faculty of Masaryk University and St. Anna Faculty Hospital in Brno

Miroslav Votava

BACTERIAL GROWTH

The 3rd lecture for 2nd-year students of General Medicine March 2, 2015

Size of bacteria – revision

Pathogenic bacteria: mainly around 1 – 5 µm $(1 \mu m = 10^{-3} mm)$ Genus Staphylococcus: the diameter circa 1 µm **Relatively big: genera Bacillus and Clostridium** (robust rods around 1 - 2 10 μ m) **Relatively long: old cultures of most rods** (fibers up to 50 µm long) **Relatively small: genus Haemophilus** (in the sputum approximately 0.3 0.6 µm) **Even smaller:** rickettsiae (circa 0.5 µm) chlamydiae (elementary bodies circa 0.3 µm) mycoplasmas (circa $0.2 - 0.25 \mu m$)

Arrangement and shape of cocci – revision

- a) in clumps: Staphylococcus aureus
- b) in chains: Streptococcus pyogenes
- c) lancet-like diplococci: Streptococcus pneumoniae
- d) flattened diplococci: Neisseria gonorrhoeae
- e) cocci in tetrads: Micrococcus luteus

Arrangement and shape of rods I – revision

- a) absolute majority of rods: e.g. Escherichia coli
- b) delicate streptobacilli: Haemophilus ducreyi
- c) coccobacilli in pairs or diplobacilli: Moraxella lacunata
- d) robust rods, rounded ends: Clostridium perfringens
- e) robust rods, flat up to concave ends, bamboo cane-like chains: *Bacillus anthracis*

Arrangement and shape of rods II – revision

- f) club-like in palisades: Corynebacterium diphtheriae
- g) slender, in hinted palisades: Mycobacterium tuberculosis
- h) branched, fragmented: Nocardia asteroides
- i) spindle-like: Fusobacterium fusiforme
- j) minute, pleomorphic: Haemophilus influenzae

Curved and spiral rods – revision

- a) curved rods, crescent-shaped: Vibrio cholerae
- b) thick spirals: Spirillum minus
- c) uneven spirals: Borrelia recurrentis
- d) delicate, regular spirals: Treponema pallidum
- e) very fine spirals with bent ends: Leptospira icterohaemorrhagiae

cytoplasmic membrane (G+)

(G–)

Gram staining – revision

Sensitivity to antibiotics – revision

Effect mostly on Gram-positives: Effect mostly on Gram-negatives:

aminoglycosides (gentamicin) monobactams (aztreonam) polypeptides (colistin) 3rd gen. cephalosporins (cephtriaxon)

Resistance to the environment – an addition

Gram-positives

Gram-negatives

They <u>endure</u> well <u>drying up</u> and higher salt concentrations

- \rightarrow and so we find them:
- <u>on skin</u> (staphs, propionibacteria)
- <u>in soil</u> (clostridia, bacilli, nocardiae, moulds)

They <u>endure</u> well the effect of <u>toxic substances</u> and extremes of pH

 \rightarrow and so we find them:

 above all <u>in moist places</u> (enterobacteriae, pseudomonads, other non-fermenting rods, vibria)

Growth cycle of bacteria

Bacteria reproduce by <u>binary fission</u>

- Period I (initiation): the cell grows, inside it proteins initiating the next step accumulate
- Period C (chromosome replication): the chromosome diverges from one spot in both directions opposite one another
- Period D (division):
 - supply of macromolecules is created
 - cytoplasmatic membrane inserts between the replicated chromosomes and separates them
 - cell wall grows into the cell at a particular spot and forms a septum that ultimately divides the maternal cell into two daughter cells

Division of bacterial cell

Division & arrangement of cocci Cocci, dividing in one plane: streptococci is chains Cocci, in different planes: staphylococci **Cocci, in two perpendicular planes:** micrococci tetrads

Notice that after dividing cocci touch each other!

Division and arrangement of rods

Rods, transverse division: majority (chains of

rods)

Rods, <u>lengthwise division</u>: mycobacteria corynebacteria (arrangement in palisades)

Generation time

Generation time = duration of the growth cycle = = duplication time = duration of doubling the number of bacteria Generation time of bacteria: on average cca 30 min Escherichia coli under ideal conditions 20 min Mycobacterium tuberculosis approximately 12 hrs Since during each generation time the number of bacteria doubles, bacteria multiply by geometric progression

Geometric progression – I

Number of bacteria by generation time 0.5 hour

time (hrs)	number	time (hrs)	number
0	2 ⁰ =1	4	2 ⁸ =256
0.5	2 ¹ =2	4.5	2 ⁹ =512
1	2 ² =4	5	2 ¹⁰ =1024
1.5	2 ³ =8	5.5	2 ¹¹ =2048
2	2⁴=16	6	2 ¹² =4096
2.5	2⁵=32	12	2 ²⁴ ≈ 10 ⁷
3	2 ⁶ =64	18	2 ³⁶ ≈ 10 ¹¹
3.5	2 ⁷ =128	24	2 ⁴⁸ ≈ 10 ¹⁴

Geometric progression – II

If the generation time is 30 min, <u>after 24 hrs</u> theoretically one cell gives origin to 2⁴⁸ = 2.8 10¹⁴ cells, <u>actually</u> it is by approximately <u>5 orders less</u> (i.e. <u>around 10⁹ cells</u>)

10⁹ bacteria is such an amount that it is visible even by the naked eye:

Liquid medium (broth) becomes 1. <u>cloudy</u> or 2. a <u>sediment</u> appears at the bottom or 3. a <u>pellicle</u> is seen at the top

On a <u>solid</u> medium (agar) a bacterial <u>colony</u> forms

What is a bacterial colony?

- Bacterial colony = a form on the surface of the agar, containing mutually touching cells, cca 10⁹ living and cca 10⁵ already dead
- Appearance of the colony depends apart from other things on the
 - 1. microbial species (e.g. on the size of its cells)
 - 2. sort of culture medium (e.g. on the amount of its nutrients)
 - 3. distance among colonies (the higher distance, the larger and more typical the colony)

Features of a bacterial colony

- **Bacterial colony can have up to 10 features:**
- 1. Size usually around 1-2 mm
- 2. Shape round, oval, irregular, lobular etc.
- 3. Profile flat, convex, dish-shaped etc.
- 4. Margins straight, fibrous, with projections etc.
- 5. Surface smooth & glossy, matt, rough, wrinkled
- 6. Transparency transparent, nontransparent
- 7. Colour colourless, pigmented (yellowish etc.)
- 8. Changes in vicinity pigmentation, haemolysis
- 9. Consistency sticky, mucous, crumbly, rooted
- 10. Smell foul, pungent, of jasmin, sperm, fruit etc.

Geometric progression – III

<u>Consequences will become evident by the quantitative</u> <u>examination of urine:</u>

- From the external orifice of urethra bacteria can be flushed into urine up to the concentration of 10³/ml
- = a mere contamination (in cystitis the urine contains >10⁵ bacteria/ml, i.e. >10⁵ CFU, colony forming units)
- In 1 µl of this urine there will be 1 bacterium (1 CFU)
- \rightarrow in this case from 1 µl only 1 colony will appear

The result of the examination will be:

10³ CFU/ml = probably contamination

However, it applies only when the urine is processed immediately

But what if the urine takes several hours to get into the laboratory in the hot summer?

Geometric progression – IV

Urine is a good culture medium, bacteria multiply in it even during the transportation At the generation time of 30 min: After 2 hrs: from 1000 cells \rightarrow 16,000 cells from 1 µl of urine 16 colonies will grow The result: 10⁴ CFU/ml = suspect finding After 4 hrs: from 1000 cells \rightarrow 256 000 cells from 1 µl of urine 256 colonies will grow The result: >10⁵ CFU/ml = positive finding (of course a false one!) \rightarrow the urine must be processed up to 2 hrs after the

sampling or placed in refrigerator at 4 C

Microbial growth curve – I

- The result 10⁹ cells/24 hrs applies for the <u>stationary culture</u>, in which nutrients are consumed and products of metabolism accumulate
- the speed of multiplication changes depending on time
- ⇒ growth phases exist that can be depicted by the growth curve

Microbial growth curve – II

Growth curve depicts the number of viable cells in the logarithmic scale, depending on the age of culture

Growth phases

- 1. lag phase
- 2. log (exponential) phase
- 3. stationary phase
- 4. death phase

There are gradual transitions between the phases

Microbial growth curve – III

Growth Curve in a Closed System

approximately 24 hrs

What is a logarithm?

In the equation

 $10^3 = 1000$

10 is a base, 3 is an exponent The exponent (3) = logarithm of the number 1000 (at the base 10)

Logarithms at the base 10 = common logarithms

In general: Logarithm of the number <u>a</u> is an exponent (e) to the power of which the base (B) is raised so that it equals the number <u>a</u> Therefore: if <u>a</u> = B^e , then $\log_B \underline{a} = e$ Example: if <u>a</u> = 1000 = 10³ (and B = 10), then $\log \underline{a} = 3$

Microbial growth curve – III

Growth Curve in a Closed System

approximately 24 hrs

Microbial growth curve – IV

Lag phase: microbes grow, but do not divide Logarithmic phase: cells divide at a constant speed (generation time is constant); relation between the number of the living cells and the time is exponential Stationary phase: the number of cells is stable **Death phase: sometimes it proceeds** according to the exponential curve

Continuous culture

The culture is continually supplied with nutrients and simultaneously disposed of the products of metabolism as well as the reproduced cells **Culture vessels are called fermentors** Used in industry for the production of microbial mass, but mostly for the production of various substances (organic acids, antibiotics, enzymes, vitamins etc.)

Recommended reading material Paul de Kruif: Microbe Hunters Paul de Kruif: Men against Death Axel Munthe: The Story of San Michele

mvotava@med.muni.cz

Thank you for your attention