Institute for Microbiology, Medical Faculty of Masaryk University and St. Anna Faculty Hospital in Brno

Miroslav Votava

PATHOGENICITY AND VIRULENCE

The 7th lecture for 2nd-year students March 23, 2015

Resistance of biofilm towards toxic substances – revision

MICROBES IN THE BIOFILM FORM ARE ALWAYS MORE RESISTANT THAN IN THE PLANKTONIC FORM

- Higher resistance applies also to disinfectants and antibiotics
- Differences in sensitivity sometimes amount up to 3 orders
- General mechanism of the higher resistance is not known
- In each microbe-antimicrobial combination the mechanism can be different

Possible causes of higher resistance of biofilm – revision

1. More difficult penetration of toxic matter through the biofilm

2. Character of environment in the biofilm is altered

3. Also the microbial population in the biofilm is altered

Biofilm and disease 1 – revision

Biofilm takes part in the pathogenesis of **1.** chronic infections in general

- 2. infections of implanted devices
 - the progress of these infections is slow
 - they are without distinctive symptoms
 - acute exacerbations occur occasionally
 - the effect of antibiotic therapy is transitory only
 - after stopping antibiotics infections recur (even if bacteria grown from them appear sensitive *in vitro*)

Biofilm and disease 2 – revision Chronic infections of <u>natural bodily surfaces</u>

dental caries (oral streptococci, mainly *Streptococcus mutans*) periodontitis (Gram-negative oral anaerobes) otitis media (Haemophilus influenzae) **osteomyelitis** (Staphylococcus aureus) cholecystitis and cholangoitis (enterobacteria) prostatitis (Escherichia coli) subacute bacterial endocarditis (oral streptococci) pneumonia in cystic fibrosis (Pseudomonas aeruginosa)

Biofilm and disease 3 – revision

Chronic infections of artificial surfaces central venous catheters (coagul. neg. staphylococci, candidae) prosthetic heart valves (Staph. aureus, Staph. epidermidis) joint prostheses (Staphylococcus aureus, Staph. epidermidis) surgical sutures (Staphylococcus aureus, Staph. epidermidis) vascular grafts (Gram-positive cocci) endotracheal tubes (various bacteria and yeasts) intrauterine contraceptive devices (Actinomyces israelii) urinary catheters (*E. coli* or others, mainly Gram-negative rods) contact lenses (Pseudomonas aeruginosa, Gram-positive cocci)

Pathogenicity

<u>Pathogenicity</u> = <u>ability</u> of a microbe to be harmful to health and to cause disease **Infectiousness =** ability to cause infection **Infection – broader term than disease** In the disease the symptoms of disease are present (the infection is manifest) But the infection may proceed without symptoms (inapparent infection) **Apart from infections microbes can cause** food poisoning, as well

Ecological remark

Ecology = science on mutual relations among organisms and relations between organisms and their environment

<u>Symbiosis</u> = close association of two different organisms

Three forms of symbiosis:

Mutualism – both partners benefit from the association and are unable to survive without it

<u>Commensalism</u> – the association is beneficial for one partner and indifferent to the other

Parasitism – the association benefits one partner and harms the other (the host)

→ consequence = pathogenicity

Infection

The definition of infection is not easy

- Infection = situation when the etiological agent of infection invades an organism and multiplies in it; or it settles on bodily surfaces and acts adversely there
- Colonization = settlement of bodily surface by a nonpathogenic microbe (or by a pathogen that does not cause pathological symptoms there)

History of infectious diseases – I Leviticus (3rd book of Moses) – ban of pork Quarantine (= 40 days) – plague Fracastoro (1485-1553): "De contagione" 1676 van Leeuwehoek – observed bacteria 1838 Schönlein – mould in hair during favus **1850 Davaine – bacteria in sheep with anthrax 1857 Pasteur – microbes → spoil wine and beer** 1865 Villemin – microscopically: bacteria in TBC 1869 Pasteur – parasites in silkworm 1876 Lister – antisepsis **1876 Robert Koch and Louis Pasteur – anthrax**

History of infectious diseases – II

- <u>Physiological thesis</u> of Hippocrates:
 The disease (incl. the infectious one) = consequence of certain inadequacy of organism
 <u>Microbial antithesis</u> of Pasteur and Koch:
 The cause of the infectious disease is a microbe
- Ecological synthesis:
- = synthesis of physiological thesis and microbial antithesis – for the occurence of the infectious disease 1. the microbe, 2. the host and 3. their environment are responsible

Koch's postulates

A particular microbe is the etiological agent, if

- 1. it is present in every case of the disease and its localization in the body corresponds to the damages observed;
- 2. it is isolated from the host and kept in pure culture for several generations;
- 3. by means of the microbe grown in this way it is possible to imitate the disease in another host;
- 4. it is again isolated from the experimentally infected host.

Relationship between the microbe and the host

The relationship is <u>dynamic</u> and influenced by the <u>environment</u>:

microbe <u>host</u> environment

Illness is not a rule – peaceful coexistence is usually better for the parasite In spite of that the host tries to get rid of the parasite – to destroy, remove or at least to localize it

Pathogenicity

- Pathogenicity = the ability to cause a disease It depends on both microbial and host species
- Particular microbial species is pathogenic for a specific host species only, for another species it may be non-pathogenic
- This <u>host species</u> is <u>susceptible</u> to the relevant microbial species, to a different microbial species it can be resistant

Primary and opportune pathogens

Primary (obligate) pathogens → cause disease even in otherwise healthy individuals = chiefly agents of classical infections (diphtheria, typhoid fever, plague, gonorrhea, tetanus, influenza, morbilli etc.)

- Opportunistic (facultative) pathogens → cause disease under certain conditions or at a certain disposition only = usually members of normal flora
- when they reach another site in the body
- or when the immunity of the individual is lowered

Natural and experimental pathogenicity – examples

Microbes naturally pathogenic for man & animals: Staph. aureus, Francisella tularensis, Clostridium botulinum, rabies v., tick-borne encephalitis v. **Microbes pathogenic for animals experimentally:** Bacillus anthracis, Streptococcus pneumoniae, Clostridium tetani – mouse Mycobact. tuberculosis, rickettsiae – guinea pig Treponema pallidum, herpes simplex v. - rabbit **Microbes pathogenic for man only:** Neisseria gonorrhoeae, Haemophilus ducreyi **Microbes non-pathogenic for man:** Majority of soil and water microorganisms

Opportunistic pathogens – I

Typical opportunistic pathogen: <u>Escherichia coli</u>

A part of normal colonic flora (but <1 % only) Outside the large intestine = pathogen

- cystitis, pyelonephritis, urosepsis
- cholecystitis, peritonitis
- wound infections

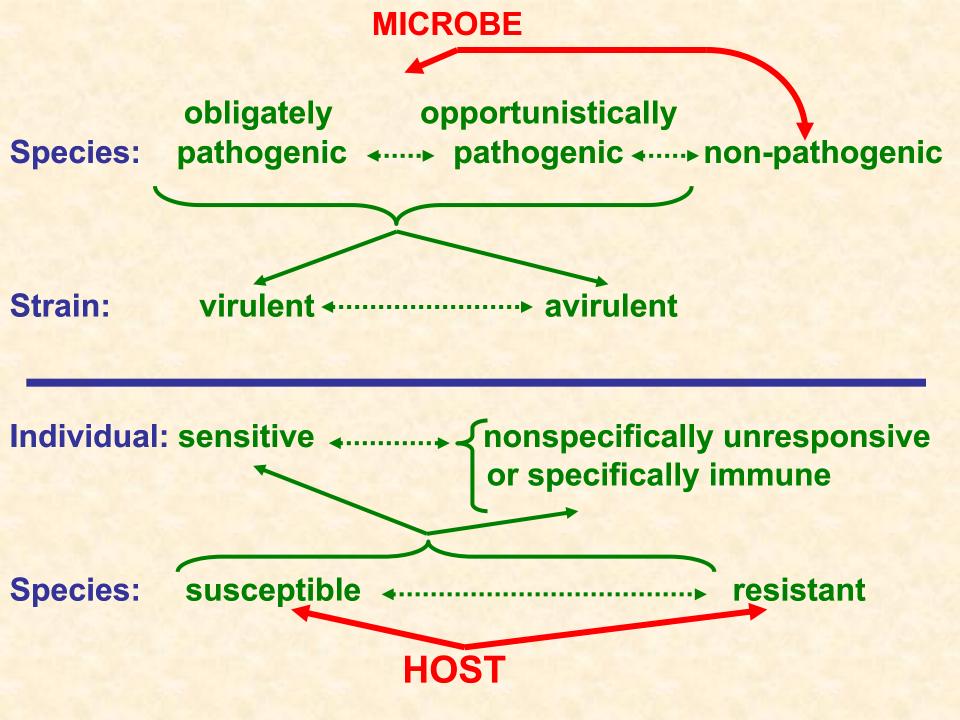
At lowered immunity (newborns):

- meningitis
- diarrhea (EPEC serotypes 055, 0111)

Opportunistic pathogens – II

Another opportunistic pathogen: <u>Staphylococcus epidermidis</u>

Part of normal skin and mucosal flora


- **Outside the skin and mucosae = pathogen**
- wound infections (also surgical: sternum, eye)
- cystitis
- **At lowered immunity:**
- above all blood stream infections in individuals with i.v. catheters, infections of implants and other devices
- sepsis in newborns and neutropenic individuals

Virulence

Virulence = degree (measure) of pathogenicity Virulence = property of certain strain of the microbe a pathogenic species can incorporate highly virulent strains as well as almost avirulent ones Indicator of strain virulence: ability to kill LD₅₀ = 50% lethal dose (the amount of microbe that is able to kill exactly ½ of experimental animals) Increasing virulence: repeated passages of the strain (be cautious with the strains from dissection material) Attenuation = artificial weakening of virulence (attenuated strains serve for the preparation of vaccines)

Attenuation – an example

- <u>BCG-vaccine against TBC</u> (bacille Calmette-Guérin) Original strain – *Mycobacterium bovis* – is less pathogenic for man than *Mycob. tuberculosis* The selected strain was "tormented" 12 years on potato with bile until it lost most of its virulence (it is almost avirulent)
- In a normal newborn BCG causes only a local process in the site of injection or in a regional lymph node
- Very rarely in an immunodeficient newborn it can cause the generalized infection

Recommended reading material

Paul de Kruif: Microbe Hunters Paul de Kruif: Men against Death **Axel Munthe: The Story of San Michele Sinclair Lewis: Arrowsmith** André Maurois: La vie de Sir Alexander Fleming Hans Zinsser: Rats, Lice, and History **Michael Crichton: Andromeda Strain**

> <u>mvotava@med.muni.cz</u> Thank you for your attention