GAS TRANSPORT

- RESPIRATORY MUSCLES
- LUNGS ELASTICITY
- COMPLIANCE
- WORK OF BREATHING

- $\cdot O_2$
- $\cdot CO_2$

FORCES PARTICIPATING IN RESPIRATION

- ACTIVE FORCES performed by respiratory muscles
- **PASSIVE FORCES represented by:**
 - lungs elasticity
 - chest elasticity

QUIET RESPIRATION

INSPIRATION - active forces of inspiratory muscles prevail EXPIRATION - passive (elastic) forces only

- RESPIRATORY MUSCLES
 - LUNGS ELASTICITY
 - COMPLIANCE
 - WORK OF BREATHING

- $\cdot O_2$
- $\cdot CO_2$

RESPIRATORY MUSCLES

INSPIRATORY muscles

QUIET breathing

- diaphragm ($\geq 80 \%$)
- external intercostals ($\leq 20 \%$)

FORCED breathing

• accessory inspiratory muscles (scalene muscles, ...)

EXPIRATORY muscles

Only at **FORCED** breathing

- internal intercostals
- muscles of the anterior abdominal wall (abdominal recti, ...)

- RESPIRATORY MUSCLES
- LUNGS ELASTICITY
 - COMPLIANCE
 - WORK OF BREATHING

- O₂
- $\cdot CO_2$

1 kPa = 7.5 mm Hg

LUNGS ELASTICITY

INHERENT TISSUE ELASTICITY

(elastin and collagen fibres)

SURFACE TENSION FORCES

(physical properties of air-liquid interface)

LAW OF LAPLACE

spherical structures

- **P** distending pressure (transmural ΔP)
- r radius
- T surface tension

- COLLAPSE OF ALVEOLI
- EXPANSION OF ALVEOLI

ATELECTASIS

BULLOUS EMPHYSEMA

SURFACTANT

SURFACE TENSION LOWERING AGENT

EFFECT MAINLY IN THE EXPIRED POSITION

PHOSPHOLIPID

dipalmitoyl fosfatidyl cholin

ALVEOLAR EPITHELIAL CELLS

exocytosis of lamellar bodies

TYPE II

surfactant

cycle

specialized granular epithelial cells

PRODUCTION OF SURFACTANT

TYPE I

thin epithelial cells
DIFFUSION OF GASSES

fatty acids, choline, glycerol, amino acids, etc.)

INFANT RESPIRATORY DISTRESS SYNDROME

PATCHY ATELECTASIS AFTER CARDIAC SURGERY

Factors involved in HYSTERESIS LOOP

- LAPLACE LAW (opening pressure of alveoli)
- Dynamic changes in the DENSITY OF SURFACTANT MOLECULES during inspiration and expiration

- RESPIRATORY MUSCLES
- LUNGS ELASTICITY
- COMPLIANCE
 - WORK OF BREATHING

- O₂
- $\cdot CO_2$

COMPLIANCE (VOLUME STRETCHABILITY)

STATIC MEASUREMENT IN CLOSED SYSTEM

$$C = \frac{\Delta V}{\Delta P}$$

compliance is
decreased

tiffness of the tissue

TOTAL RESPIRATORY SYSTEM (lungs and chest)

compliance is increased the tissue

- RESPIRATORY MUSCLES
- LUNGS ELASTICITY
- COMPLIANCE
- WORK OF BREATHING

- $\cdot O_2$
- $\cdot CO_2$

ELASTIC (STATIC) WORK

W_{ELAST} (J)

CLOSED SYSTEM

TOTAL SYSTEM intrapulmonary pressure P_A

LUNGS transpulmonary pressure $P_{TP} = P_A - P_{PL}$

 $\begin{array}{c} \textbf{CHEST}\\ \textbf{intrapleural pressure}\\ \textbf{\textit{P}}_{\textbf{\textit{PL}}} \end{array}$

TOTAL ELASTIC (STATIC) WORK OF INSPIRATORY MUSCLES

AT QUIET INSPIRATION (V ~ 500 ml)

ELASTIC FORCES OF THE CHEST HELP inspiratory muscles to increase thoracic cavity

ACTIVE AND PASSIVE (ELASTIC) FORCES IN RESPIRATORY SYSTEM

TOTAL WORK OF BREATHING

(total work of respiratory muscles)

ELASTIC (STATIC) WORK (65%)

to overcome the elastic forces of the lungs and chest

DYNAMIC WORK (35%)

- to overcome the resistance of air passages during the air movement – AERODYNAMIC RESISTANCE (~ 28%)
- to overcome the friction during the mutual movement of inelastic tissues – VISCOUS RESISTANCE ($\sim 7\%$)

RESISTANCE OF AIR PASSAGES

HAGEN-POISEUILLE'S LAW

(laminar flow Q)

$$R = \frac{8 n l}{\pi r^4}$$

$$l$$
 ... length r ... radius η ... viscosity

LAMINAR FLOW

TURBULENT FLOW

REYNOLDS NUMBER Re

$$Re = \frac{2r\rho v}{\eta}$$

Critical velocity

r ... radius v ... velocity ρ ... density η ... viscosity

TOTAL WORK OF RESPIRATORY MUSCLES [J] DURING RESPIRATORY CYCLE AT QUIET BREATHING

DYNAMIC PRESSURE-VOLUME DIAGRAM

$$W_{INSPIR} = W_{ELAST} + W_{DYN insp}$$

$$W_{EXPIR} = -W_{ELAST} + W_{DYN expir}$$

$$W_{DYN} = W_{DYN insp} + W_{DYN expir}$$

DYNAMIC WORK W_{DVN} is done to overcome

- aerodynamic resistance
- frictional (viscose) resistance

 W_{DYN} is finally transformed into heat energy (loss of energy)

INCREASED RESISTANCE OF AIR PASSAGES

CLINICAL IMPLICATION

NORMAL LUNGS

1 kPa = 7.5 mm Hg

OBSTRUCTIVE LUNG DISEASE (asthma bronchial)

Expiratory muscles are active to overcome the resistance of air passages

- RESPIRATORY MUSCLES
- LUNGS ELASTICITY
- COMPLIANCE
- WORK OF BREATHING

- O₂
- CO₂

HAEMOGLOBIN

 $Hb_4 + 4 O_2 \leftrightarrow Hb_4 O_8$ oxygenation

tetramer

fetal Hb

Fe³⁺ (methaemoglobin) oxidation

O₂-HAEMOGLOBIN DISSOCIATION CURVE

physically dissolved O_2 (1.4%)

- RESPIRATORY MUSCLES
- LUNGS ELASTICITY
- COMPLIANCE
- WORK OF BREATHING

$$\cdot$$
 O_2 \cdot CO_2

TRANSPORT OF CO₂

HAMBURGER CHLORIDE SHIFT

CA – carbonic anhydrase

 \circ $CO_2 + Hb-NH_2 \rightarrow Hb.NH-COO^-$ (carbamino-Hb) (~5.3%)

 \circ $CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+$

~60% in plasma, ~29% in red blood cell

CO, DISSOCIATION CURVE

TISSUES: DEOXY-Hb binds \mathbf{H}^+ more readily (weaker acid) $\Rightarrow \uparrow$ amount of chemically bound CO_2

LUNGS: H^+ is released from OXY-Hb ⇒ ↓ amount of chemically bound CO_2

PROCESSES UNDERLYING TRANSPORT O2 AND CO2

IN RED BLOOD CELLS

- OCCUR SIMULTANEOUSLY
- FACILITATE EACH OTHER

TISSUES

uptake of CO_2 by blood $\stackrel{\longrightarrow}{\leftarrow}$ release of O_2 from Hb

LUNGS

binding of O_2 to Hb \rightleftharpoons release of CO_2 from blood

BOHR'S AND HALDANE'S EFFECTS

