* Encoding: UTF-8. *** pomocne vypocty pro ziskani potrebnych promennych. *kategorizace veku. RECODE Age (Lowest thru 59=1) (59 thru 69=2) (69 thru 79=3) (79 thru Highest=4) INTO Age_kat. EXECUTE. VALUE LABELS Age_kat 1 "<60" 2 "60-70" 3 "70-80" 4 ">80". *kategorizace veku - 2. zpusob. RECODE Age (MISSING=COPY) (80 THRU HI=4) (70 THRU HI=3) (60 THRU HI=2) (LO THRU HI=1) (ELSE=SYSMIS) INTO Age_kat. VARIABLE LABELS Age_kat 'Age (Binned)'. FORMATS Age_kat (F5.0). VALUE LABELS Age_kat 1 '< 60' 2 '60 - 69' 3 '70 - 79' 4 '80+'. VARIABLE LEVEL Age_kat (ORDINAL). EXECUTE. *kategorizace MMSE_24. RECODE MMSE_24 (Lowest thru 24=1) (24 thru Highest=0) INTO mmse_24_kat. EXECUTE. VALUE LABELS mmse_kat mmse_24_kat 0 "v norme" 1 "mimo normu". *pridani popisku k promenne Group_3kat. VALUE LABELS Group_3kat 1 "CN" 2 "MCI" 3 "AD". *vytvoreni promenne Gender_rek2, kde hodnota "F" bud nahrazena za "Z". STRING Gender_rek2 (A8). RECODE Gender_rek ('F'='Z') (ELSE=Copy) INTO Gender_rek2. EXECUTE. RECODE mmse_kat (0=2) (ELSE=Copy) INTO mmse_kat2. EXECUTE. val lab mmse_kat2 1 'mimo normu' 2 'v norme'. *** kontingencni tabulky. *kontingencni tabulka absolutnich cetnosti. CROSSTABS /TABLES=Group_3kat BY Age_kat /FORMAT=AVALUE TABLES /CELLS=COUNT /COUNT ROUND CELL. *kontingencni tabulka procent. *radkovych. CROSSTABS /TABLES=Group_3kat BY Age_kat /FORMAT=AVALUE TABLES /CELLS=COUNT ROW /COUNT ROUND CELL. *sloupcovych. CROSSTABS /TABLES=Group_3kat BY Age_kat /FORMAT=AVALUE TABLES /CELLS=COUNT COLUMN /COUNT ROUND CELL. *celkovych. CROSSTABS /TABLES=Group_3kat BY Age_kat /FORMAT=AVALUE TABLES /CELLS=COUNT TOTAL /COUNT ROUND CELL. *celkovych bez absolutnich cetnosti (tzn. jenom procenta). CROSSTABS /TABLES=Group_3kat BY Age_kat /FORMAT=AVALUE TABLES /CELLS=TOTAL /COUNT ROUND CELL. *kontingencni tabulka ocekavanych cetnosti. CROSSTABS /TABLES=Group_3kat BY Age_kat /FORMAT=AVALUE TABLES /CELLS=EXPECTED /COUNT ROUND CELL. *Pearsonuv chi-kvadrat test. CROSSTABS /TABLES=Group_3kat BY Age_kat /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT /COUNT ROUND CELL. *Fisheruv exaktni test u tabulek vetsich nez 2x2. CROSSTABS /TABLES=Group_3kat BY Gender_rek /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT /COUNT ROUND CELL /METHOD=EXACT TIMER(5). *Fisheruv exaktni test u tabulek 2x2 (vypocita se automaticky). temp. sel if Group_3kat=3. CROSSTABS /TABLES=Gender_rek BY mmse_kat /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT /COUNT ROUND CELL. *McNemaruv test. temp. sel if Group_3kat=3. CROSSTABS /TABLES=mmse_kat BY mmse_24_kat /FORMAT=AVALUE TABLES /STATISTICS=CHISQ MCNEMAR /CELLS=COUNT /COUNT ROUND CELL. *Relativni riziko (RR) a pomer sanci (OR) - pro zeny versus muze. CROSSTABS /TABLES= Gender_rek BY mmse_kat2 /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. *Relativni riziko (RR) a pomer sanci (OR) - pro muze versus zeny. CROSSTABS /TABLES= Gender_rek2 BY mmse_kat2 /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. *Relativni riziko (RR) a pomer sanci (OR) vcetne p-hodnoty. LOGISTIC REGRESSION VARIABLES mmse_kat /METHOD=ENTER Gender_rek /CONTRAST (Gender_rek)=Indicator /PRINT=CI(95) /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). *** Reseni ukolu 1. *kategorizace vysky. RECODE Height_cor (MISSING=COPY) (180 THRU HI=3) (170 THRU HI=2) (LO THRU HI=1) (ELSE=SYSMIS) INTO Height_cor_kat. VARIABLE LABELS Height_cor_kat 'Height categorized'. FORMATS Height_cor_kat (F5.0). VALUE LABELS Height_cor_kat 1 '< 170 cm' 2 '170 - 180 cm' 3 '180 a vice cm'. VARIABLE LEVEL Height_cor_kat (ORDINAL). EXECUTE. *tabulka absolutnich cetnosti. CROSSTABS /TABLES=Gender_rek BY Height_cor_kat /FORMAT=AVALUE TABLES /CELLS=COUNT /COUNT ROUND CELL. *tabulka ocekavanych cetnosti. CROSSTABS /TABLES=Gender_rek BY Height_cor_kat /FORMAT=AVALUE TABLES /CELLS=EXPECTED /COUNT ROUND CELL. *Pearsonuv chi-kvadrat test. CROSSTABS /TABLES=Gender_rek BY Height_cor_kat /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT /COUNT ROUND CELL. *** Reseni ukolu 2. temp. sel if Gender_rek="M". CROSSTABS /TABLES=group_01_CnMci BY mmse_kat /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT /COUNT ROUND CELL. *** Pomocny - ruzne situace pri vypoctu RR a OR. CROSSTABS /TABLES= mmse_kat BY Gender_rek /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. CROSSTABS /TABLES= mmse_kat BY Gender_rek2 /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. CROSSTABS /TABLES= Gender_rek BY mmse_kat /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. CROSSTABS /TABLES= Gender_rek2 BY mmse_kat /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. CROSSTABS /TABLES= mmse_kat2 BY Gender_rek /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. CROSSTABS /TABLES= mmse_kat2 BY Gender_rek2 /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. CROSSTABS /TABLES= Gender_rek BY mmse_kat2 /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL. CROSSTABS /TABLES= Gender_rek2 BY mmse_kat2 /FORMAT=AVALUE TABLES /STATISTICS=CHISQ RISK /CELLS=COUNT ROW /COUNT ROUND CELL.