Variability of cardiovascular signals Cardiovascular signal variability • Cardiovascular signals (C-V signals) • Easy to measure • EGG: RR intervals, heart rate - HR (1/RR) • Blood pressure: systolic (SBP), diastolic (DBP), mean (MAP), pulse pressure (PP) • Difficult to measure directly (bioimpedance method), can be evaluated indirectly from blood pressure wave (Windkessel model) • Stroke volume (SV), cardiac output (CO), total peripheral resistance (TPR) • Very difficult to measure directly (invasive measurement) • Blood flow and pressure in various places of vessels Signal: time series Beat to beat (for example 5 minutes) • RR interval: 805, 820, 815, 817, 822, 816,….. ms • Hear rate: 70, 73, 68, 65, 67, 71,….. bpm • Systolic blood pressure: 115, 117, 120, 116, 121, 119,….. mmHg SBP [mmHg] RR [ms] 700 800 900 110 120 130 20 40 60 80 100 120 s RR interval R ECG SBP Blood pressure DBP Signal: time series Every 15 minutes • 24-hour blood pressure measurement, ECG Holter 8 9 1110 12 13 14 1615 17 18 19 2120 22 23 24 21 3 4 5 76 120 140 100 80 60 [mmHg] SBP DBP heart rate vigil sleeping Blood pressure h Variability of cardiovascular signals • Cardiovascular system is regulated by negative feedback • Negative feedback forms oscillations in the signals – the longer feedback loop, the slower oscillations • Analysis of oscillations in the C-V signals contains information about regulatory mechanism System B Signal 2Signal 1 System A Negative feedback loop Brief introduction in theory of systems 𝐴 𝑧 = 𝐴11 𝑧 𝐴12 𝑧 𝐴21 𝑧 𝐴22 𝑧 = 𝐴 𝑘 𝑧−𝑘 𝑝 𝑘=0 = 𝑎11,1 𝑧−1 + 𝑎11,2 𝑧−2 + ⋯ + 𝑎11,𝑛 𝑧−𝑝 𝑎12,1 𝑧−1 + 𝑎12,2 𝑧−2 + ⋯ + 𝑎12,𝑛 𝑧−𝑝 𝑎21,0 + 𝑎21,1 𝑧−1 + 𝑎21,2 𝑧−2 + ⋯ + 𝑎21,𝑛 𝑧−𝑝 𝑎22,1 𝑧−1 + 𝑎22,2 𝑧−2 + ⋯ + 𝑎22,𝑛 𝑧−𝑝 𝑆11 𝑓 = Δ 𝑧 2 ∙ 1 − 𝐴22 𝑧 2 𝜆1 2 + 𝐴12 𝑧 2 𝜆2 2 , 𝑆22 𝑓 = Δ 𝑧 2 ∙ 𝐴21 𝑧 2 𝜆1 2 + 1 − 𝐴11 𝑧 2 𝜆2 2 𝑆12 𝑓 = Δ 𝑧 2 ∙ 1 − 𝐴22 𝑧 𝐴21 𝑧−1 𝜆1 2 + 1 − 𝐴11 𝑧−1 𝐴12 𝑧 𝜆2 2 , kde ∆ 𝑧 = 1 − 𝐴11 𝑧 1 − 𝐴22 𝑧 − 𝐴12 𝑧 𝐴21 𝑧 −1 . 𝐻 𝑓 = 𝐼 − 𝐴(𝑧) −1 = 𝐻11 𝑓 𝐻12 𝑓 𝐻21 𝑓 𝐻22 𝑓 𝑆 𝑓 = 𝐻 𝑧 ∙ Λ ∙ 𝐻′ 𝑧−1 = 𝑆11 𝑆12 𝑆21 𝑆22 , Λ = 𝜆1 2 0 0 𝜆2 2 Brief introduction in theory of systems 𝐴 𝑧 = 𝐴11 𝑧 𝐴12 𝑧 𝐴21 𝑧 𝐴22 𝑧 = 𝐴 𝑘 𝑧−𝑘 𝑝 𝑘=0 = 𝑎11,1 𝑧−1 + 𝑎11,2 𝑧−2 + ⋯ + 𝑎11,𝑛 𝑧−𝑝 𝑎12,1 𝑧−1 + 𝑎12,2 𝑧−2 + ⋯ + 𝑎12,𝑛 𝑧−𝑝 𝑎21,0 + 𝑎21,1 𝑧−1 + 𝑎21,2 𝑧−2 + ⋯ + 𝑎21,𝑛 𝑧−𝑝 𝑎22,1 𝑧−1 + 𝑎22,2 𝑧−2 + ⋯ + 𝑎22,𝑛 𝑧−𝑝 𝑆11 𝑓 = Δ 𝑧 2 ∙ 1 − 𝐴22 𝑧 2 𝜆1 2 + 𝐴12 𝑧 2 𝜆2 2 , 𝑆22 𝑓 = Δ 𝑧 2 ∙ 𝐴21 𝑧 2 𝜆1 2 + 1 − 𝐴11 𝑧 2 𝜆2 2 𝑆12 𝑓 = Δ 𝑧 2 ∙ 1 − 𝐴22 𝑧 𝐴21 𝑧−1 𝜆1 2 + 1 − 𝐴11 𝑧−1 𝐴12 𝑧 𝜆2 2 , kde ∆ 𝑧 = 1 − 𝐴11 𝑧 1 − 𝐴22 𝑧 − 𝐴12 𝑧 𝐴21 𝑧 −1 . 𝐻 𝑓 = 𝐼 − 𝐴(𝑧) −1 = 𝐻11 𝑓 𝐻12 𝑓 𝐻21 𝑓 𝐻22 𝑓 𝑆 𝑓 = 𝐻 𝑧 ∙ Λ ∙ 𝐻′ 𝑧−1 = 𝑆11 𝑆12 𝑆21 𝑆22 , Λ = 𝜆1 2 0 0 𝜆2 2 MATRIXES !!! POLYNOMIALS!!! poly…. WHAT?! Brief introduction in theory of systems • Biological systems are complex – more than one input, system setting and outputs can change • System transforms input signal into output signal – analysis of input/output signals helps to understand the sys • noise: another input signal – we do not care about signal and/or signal origin is unknown System B Signal 2Signal 1 System A Feedback loop Another source of oscillations (noise) Another source of osculation (noise) Source of oscillations System B Signal 2Signal 1 System A Feedback loop deflection Transferred deflection Lag of system B Oscillatory period – given by feedback length Frequency of oscillation = 1/period → frequency (spectral) analysis contain information about system Feedback loop - baroreflex heart signal: heart rate arteries signal: blood pressure resistance arteries signal: peripheral resistance CNS: vasomotor centre CNS: kardiomotor centre Sympathetic efferent pathways Parasympathetic efferent pathways Methods of the variability assessment Time-domain methods Frequency-domain methods Statistic methods Geometric methods Non-linear methods (index of ireversibility, entropy based indices, symbolic analysis…) Statistic methods Mean24-h ± SD24-h SD24-h counted from all RR-intervals in 24 hours SD24-h counted from all normal RR-intervals in 24 hours Mean5 min ± SD5 min Mean5 min ± SD5 min Mean5 min ± SD5 min Mean5 min ± SD5 min …… SD counted from all Mean5 min SD counted from all SD5 min (Variations on Standard Deviation) Geometric methods 840 828 760 756 808 856 768 780 808 756 708 728 756 732 708 x y x y x y x y x y RR (ms) Geometric methods Frequency domain methods – spectral analysis Spectrum Signal in frequency domain Time series Signal in time domain Signal is decomposed in individual frequencies amplitude time (s) 504030200 10 0.50.40.30.20 0.1 amplitude frequency (Hz) Frequency domain methods – spectral analysis Spectrum Signal in frequency domain Time series Signal in time domain Signal is decomposed in individual frequencies amplitude time (s) 504030200 10 0.50.40.30.20 0.1 amplitude frequency (Hz) amplitude time (s) frequency (Hz) T=50 s T=10 s T=3 s a=0.5 a=0.3 a=0.2 period T amplitude a frequency f = 1/T f = 1/3 = 0.33 Hz f = 1/10 = 0.1 Hz f = 1/50 = 0.02 Hz 0.5 0.2 0.3 + + = + + = 0.5 0.2 0.3 0.330.02 0.1 f = 0,02 Hzf = 0,1 Hzf = 0,33 Hz Spectrum Frequency domainTime domain How the spectrum is formed? Blood pressure variability – spectrum of SBP Signal: beat-to beat series of systolic blood pressure (5 minutes) Ludwig (1847), Einbrodt (1860)Traube (1865), Hering (1869), Mayer (1876) Not in spectrum Frequency (Hz) 0.50.40.30 0.1 0.2 0 0,04 0,08 0,12 SpektcumSBP(n.u.) Heart rate variability (HRV) Signal: beat-to-beat RR-intervals (5 min) Frequency (Hz) čas RR-interval(ms) 0.50.40.30 0.1 0.2 0 100 200 300 PowerofRR(ms2) Spestrum of RR intervals is similar to the spectrum of heart rate Baroreflex heart signal: heart rate arteries signal: blood pressure resistance arteries signal: peripheral resistance CNS: vasomotor centre CNS: kardiomotor centre Sympathetic efferent pathways Parasympathetic efferent pathways peripheral (vascular, sympathetic) branch of baroreflexu Cardiac (parasympathetic) branch Baroreflex heart signal: heart rate arteries signal: blood pressure resistance arteries signal: peripheral resistance CNS: vasomotor centre CNS: kardiomotor centre Physiological significance – frequency bands High frequency (HF) Intrathoracal pressure changes influencing blood pressure Very low frequency (VLF) Low frequency (LF) Slow hormonal changes, RAS, changes of vascular tonus Respiratory sinus arrhythmia baroreflex band: baroreflex Systolicblood pressure Heartrate 0.50.40.30 0.1 0.2 0 0,04 0,08 0,12 0 0,0 0,2 SpectrumSBP(n.u.)SpectrumHR(n.u.) Variability source: respiration Variability source: High frequency (HF) Intrathoracic pressure changes influencing blood pressure Very low frequency (VLF) Low frequency (LF) Respiratory sinus arrhythmia baroreflex band: baroreflex Systolicblood pressure Heartrate 0.50.40.30 0.1 0.2 0 0,04 0,08 0,12 0 0,0 0,2 SpectrumSBP(n.u.)SpectrumHR(n.u.) parasympathetic activity Time lag < 1 s Time lag > 6 s Slow oscillations Quck oscillations High frequency (HF) Very low frequency (VLF) Low frequency (LF) band: Systolicblood pressure Heartrate 0.50.40.30 0.1 0.2 0 0,04 0,08 0,12 0 0,0 0,2 SpectrumSBP(n.u.)SpectrumHR(n.u.) parasympathetic activity Time lag < 1 s Time lag > 6 s Slow oscillations Quck oscillations baroreflex Mechanical transfer CNS (n. vagus) Thoracic pressure changes Changes of TPR (sympathetic nerves) ??? Variability changes: orthostatic challenge Heart rate Systolic pressure frequency ↓HF-HR ↑LF-HR ↑LF-SBP Orthostatic challenge: • Increase of sympathetic activity → increase of low frequency HR and SBP variability (LF-HR, LF-SBP) • Decrease of parasympathetic activity → decrease of variability in respiratory frequency (HF-HR) analysis of autonomic nervous system function Sympatho-vagal ratio LF-HR/HF-HR Heart rate variability (HRV) changes HRV in respiratory frequency decreases in stress situations (↑sympathetic activity) • Physiologically – sport, mental stress • Pathologically – diabetes, hear failure • Transplanted heart • Predictor of the cardiovascular risk heart signal: RR intervals arteries signal: systolic pressure (SBP) CNS: kardiomotoric centrum Afferent neural pathways Efferent neural pathways RR → SBP SBP → RR Evaluation of baroreflex function Baroreflex sensitivity (BRS) BRS: change of cardiac cycle caused by change of SBP by 1 mmHg [ms/mmHg] SBP [mmHg] RR [ms] 700 800 900 110 120 130 20 40 60 80 100 120 s RR interval BRS: slope RR SBP R ECG SPB Blood pressure DBP Cardiac baroreflex can be evaluted by analysis of SBP- HR interaction Laboratory methods: - Phenylephrin application (standard) - neck suction - Valsalva manoeuvre Spontaneous methods: in time domain: sequence analysis in spectral domain: cross-spectral analysis, -index Baroreflex sensitivity 0.50.40.30 0.1 0.2 0 0,04 0,08 0,12 0 0,0 0,2 SpectrumSBPSpectrumRRSpectral methods BRS: change of RR caused by change of SBP by 1 mmHg [ms/mmHg] • Change of RR – amplitude of RR in the spectrum of RR • Change of SBP – amplitude of SBP in the spectrum of SPB • → dividing of spectra→ alpha index • Complication – not every oscillation in RR is caused by oscillation in SBP 𝑎𝑙𝑝ℎ𝑎 𝑖𝑛𝑑𝑒𝑥 = 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑅𝑅 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑆𝐵𝑃 Spectral methods Cross -spectrum RR and SBP: • Contains inly these frequencies occurring in both signals simultaneously • Advantage – we can analyse only special frequencies asociated with baroreflex 0.50.40.30 0.1 0.2 spectrumSBPcros-spectrumSBPxRR 𝒈𝒂𝒊𝒏 = 𝒄𝒓𝒐𝒔𝒔 − 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎 𝑹𝑹 𝒙 𝑺𝑩𝑷 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎 𝑺𝑩𝑷 LF BRS 0.50.40.30 0.1 0.2 0 4 8 12 Gain(ms/mmHg) Baroreflex sensitivity – physiological significance • Baroreflex function – regulation of blood pressure changes by changes of HR and TPR • Cardiac branch of baroreflex is mediated by vagal nerves → BRS is increased in higher vagal activity and decreased in sympathetic activity → BRS is decreased in stress → BRS depends on RR interval length • Long-time decreased BRS reflects dysfunction in blood pressure regulation – cardiovascular risk normal BRS RR SBP RR SBP decreased BRS Decreased BRS • Physiologically • psychic stress – increased sympathetic activity • Physical exercise – increased sympathetic activity • In old age • Pathologically • hypertension – decreased baroreceptor sensitivity (atherosclerosis, increased arterial stiffness) • diabetes – neuropathy of autonomic nervous system • Chronic depression (neurogenic) • Heart insufficiency/failure – heart do not response • Transplanted heart - denervation • Myocardial infarction – heart do not response Disadvantages of methods • Sinus rhythm without ectopic beats • Long recording >5min, stationary signal • BRS is a parameter of cardiac baroreflex function, information about vascular part of baroreflex is missing • Causality of RR-SBP is neglected Take home message 1 • Variability of cardiovascular signals contain information about regulatory mechanisms • Analysed signals: time series • ECG: beat-to-beat RR intervals, heart rate (HR) • Continual record of blood pressure: beat-to-beat systolic pressures (SBP) • Main methods of variability analysis • Standard deviations and derived parameters • Spectral analysis • Analysis of RR-SBP interaction: baroreflex sensitivity (definition: change of RR caused by change of SBP by 1 mmHg) • Heart rate variability (HRV) – assessment of ANS activity • decreased – increased cardiovascular risk • Blood pressure variability (less analysed) • decreased – increased cardiovascular risk • Baroreflex sensitivity (BRS) • normal(> 4 mmHg) – baroreflex function is OK • decreased (< 3 mmHg) – increased cardiovascular risk • Hypertension, diabetes, heart failure, stress • Predictors od sudden cardiac death: zero values of BRS and HRV • Spectra RR and SBP • Frequency bands (VLF, LF a HF) • HF (0.15-0,5Hz): parasympathetic activity, respiration • LF (around 0,1 Hz): sympathetic/parasym. activity, baroreflex • VLF (< 0,03): low changes in vascular system (hormones, TPR, RAS,…) Take home message 1 Thank you