Fyziologie srdce * i A KEEP CALM AND... 11* a ...ok, not THAT calm ! 1 V Funkce Srdce je pumpa : Funkcí srdce je přečerpávání (pumpování) krve do cévního systému. Protože cévní systém je uzavřený, srdce vytváří klesající tlakový gradient na začátku a na konci cévního systému, který je hnací silou pro tok krve cévami. Srdeční aktivita • Elektrická - srdeční buňky jsou schopné vytvářet akční potenciál a vést vzruch (EKG, VKG,...) • Mechanická - pumpa, kontrakce srdečního svalu (FKG, TK, pulzová vlna, ultrazvuk) Morfologie trochu komplikovanější, než se zdá.... Morfologie - stavba srdce Pravé a levé srdce jsou sériově zapojené pumpy, (pravé srdce - plíce - levé srdce - velký oběh - ....) Pravá komora Adapted from CorelDraw 9Library http://wwwipnotebookxom/_media/CvAnatomyHeartApicalFourChamberView.gif Nelamte lidem srdce. Mají jen jedno. Lamte jim kosti. Mají jich 206. HiTRÁDi Z) Histologie • Vlastnosti srdečních buněk: excitabilita, kontraktilita, vodivost, automatičnost, rytmičnost • Buňky převodního systému (primárně tvorba a vedení AP, sekundárně kontrakce) • Buňky pracovního myokardu sinového a komorového (primárně kontrakce, sekundárně vedení AP) • Další pojivové tkáně, vlákna (kolagenní, elastická), cévy,... Myokard • Příčně pruhovaný srdeční sval s (aktin a myozin, mnoho mitochondrií, sarkoplazmatické retikulum - zásobník Ca2+) • Interkalární disky - spojení svalových vláken * • Nexy (gap junction)- kanály mezi buňkami, průtok iontů, , , r ,v , Interkalární disk vedeni vzruchu - funkční syncytium http://medcell.med.yale.edu/histology/muscle_lab/images/quiz5.jpj Metabolické nároky srdce a ischemie • Srdce je jako domácí prasátko, zpracuje, co se mu dává • V klidu • 60 % volné mastné kyseliny, triglyceridy • 35% sacharidy • 5% ketolátky • Fyziologicky jen oxidatívni fosforilace - maximalizace tvorby ATP, vysoké množství mitochondrií • Za anaerobních podmínek (ischémie) se pyruvát redukuje na laktát 45 odstraňovány (laktát, NADH+, H+) • Uvolnění troponinu z cytoplazmy myocytů - anaerobní glykolýza • Stačí malá ischemie pro narušení metabolismu • Ztráta kontraktilní funkce, arytmie, smrt buněk • Hromadění AMP, produkty metabolismu nejsou - marker infarktu myokardu Další markery • Kreatinin kynaza (CK) • Izoenzym glykogenfosforylasy (GPBB) • myoglobin -•-GPBB Time after onset of chest pain (h) Myoglobin —•—CK-MB —•—Troponin T 10 24 Morfologie - koronárni řečiště „ Superior vena cava Aortic semilunar valve Right atrium pravá koronárni tepna Posterior- interventricular artery Right marginal artery-^ Epicardial coronary arteries r Cardiac 1 muse e y ^ Subendocardial arterial plexus ) aorta Pulmonary trunk Levá koronárni tepna uch cín lui 11 Circumflex artery Anterior interventricular artery Left ventricle Věnčité (koronárni) tepny vystupují z aorty (za chlopní) a zásobují srdeční sval krví. Hustá kapilarizace - poměr počtu svalových vláken ku kapilárám je cca 1:1. Žilní krev ústí do pravé síně, některá rovnou do komor. http://4.bp.blogspotxom/-r3lsX9XBJeg/TbdnDjCoe6l/AAAAAAAAAsg/bRfw5bo6hY8/sl600/Coronary+arteries.jpg Koronárni oběh Diastola Systole _A_ Diastole aortální tlak průtok krve levou arterií průtok krve 80 r 60 pravou 40 koronárni koronárky se plní v diastolické fázi srdečního cyklu, protože během systoly jsou cévy utlačeny kontrakcí svalu hnací silou je tedy diastolický tlak žilní krev ústí do pravé síně (70%) nebo rovnou do komor větší průtok je levou koronárkou dobře vyvinutá metabolická autoregulace (dilatace cév při zvýšene zatezi) Méně výhodné perfúzní poměry pro subendokardiální vrstvy Epikardiální tepny Transmurální tepny Arterioly Subendokardiální plexus http://www.kardio-czxz/data/clanek/699/dokumenty/27-patofyziologie-srdecni-ischemie.pdf Morfologie - převodní systém srdeční • Tvorba a přednostní vedení akčního potenciálu • Synchronizace a koordinace vedení vzruchu srdcem Sinoatriální uzel (SA) Preferenční sinové dráhy Atrioventrikulární uzel (AV) Akční potenciál - pracovní myokard Na kanál se uzavřel Fáze 1-Pomalé otevírání Ca kanálů pomalé zavírání Ca kanálů Fáze 2-Fáze ^to^ Faze 3_ Repolanzace Fáze 4 -Zavření K kanálů cas Otevření napěťově řízených kanálů vstup Na do buňky Klidový potenciál - záporné napětí na membráně (cca - 90 mV) Jedině v tomto období je možné vyvolat depolarizaci a AP Akční potenciál (AP) • V průběhu AP nelze vyvolat další depolarizaci, buňka je v refrakterní fázi, čímž brání vzniku tetanického stahu • Má několik fází • Depolarizace • Fáze plato - její hlavní funkcí je prodloužení refrakterity buňky (absolutní refrakterita, nelze vyvolat další AP) • Repolarizace - relativní refrakterita (další příchozí AP může vyvolat následnou depolarizaci, která je však patologická) Akční potenciál - pracovní myokard Akční potenciál (AP) • Depolarizace - vstup Na+ do buňky (Na je depolarizačním iontem, rychlý) • Fáze plató - vstup Ca2+ do buňky a výstup K+ z buňky (zároveň pumpování Na+ a Ca2+ z buňky) • Repolarizace - výstup K z buňky (zároveň pumpování Na+ (Na/K - ATPáza) a Ca2+ z buňky (Ca-ATPáza)) Pozn: lonty vstupují a vystupují kanálem pasivně po kone. a el. gradientu. Pumpování iontů je aktivní děj, většinou proti gradientu > E *u CL > O c -ro -O E QJ "O T3 =3 O i_ CL u Akční potenciál pracovního myokardu c O *3 >QJ CL 100 200 2 0 -2 -80 ■100 .- výstup 100 200 Čas [ms ._ vstup ..... Čas [ms Akční potenciál - pacemakerová buňka (sinoatriálního uzel) Nemá stabilní klidový potenciál (prepotenciál) • dochází k pomalé depolarizaci způsobené vstupem Ca2+ a Na+ do buňky pomalými kanály Akční potenciál (AP) • k vlastní rychlé depolarizaci dochází, když prepotenciál překročí práh (- 40 mV) • Depolarizace - vstup Ca2+ do buňly (vápnik je depolarizačním iontem, je pomalejší) • Repolarizace - výstup K z buňky (zároveň pumpování Na+ (zároveň pumpování Na+ (Na/K - ATPáza) a Ca2+ z buňky (Ca-ATPáza)) Pozn: lonty vstupují a vystupují kanálem pasivně po kone. a el. gradientu. Pumpování iontů je aktivní děj, většinou proti gradientu Pomalý depolarizační prepotenciál umožňuje rytmické vznikání AP v SA uzlu - pacemaker Podobný tvar AP má buňka AV uzlu > E "o c OJ Q. f C -(U -Q E o T3 =3 O Q. u c O >0J Q. (TJ .N _l_20 Akční potenciál SA uzlu Tnestabilní °._kl. pot. g -20-- -40-- -60-- -80-- o------Ä # % práh 100 2 0 -2 -80 -100 100 200 200 Akční potenciál pracovní a pacemakerové buňky Pracovní myokard • Stabilní klidový potenciál (-90 mV) • Sodíkový depolarizační proud Pacemakerová buňka • Nestabilní klidový potenciál (-60 až -40 mV) • Vápníkový depolarizační proud +20 'o c (D -t-> O Q. > O C i— _Q E Akční potenciál pracovního myokardu Akční potenciál SA uzlu O U > O >i_ O E o > fU dp/dtn STK Indexy kontraktility odvozené z izovolumické fáze systoly V praktikách jste dělali průměrnou rychlost nárůstu tlaku během izovolumické i * i Ar>iA+ DTK—EDP kontrakce aP/at = —- 1 čas IVK Častěji se však používá dP/dt max- nejvyšší rychlost nárůstu tlaku v komoře za čas Srdeční komora by měla vyvinout za krátký časový úsek dostatečný tlak, takže porucha kontraktility povede ke snižování těchto indexů. Pozn. d znamená diferenci (u nespojitých veličin) nebo derivaci (u spojitých veličin), takže dTznamená změnu tlaku, dt znamená změnu času. Často se využívá znaku delta A end-diastolickýtlak cas Nespěte! Elektrokardiografie Trochu od konce.... Nejdříve si ukážeme křivku EKG... .....a pak jak vzniká depolarizace komor - QRS depolarizace síní repolarizace komor T Elektrický dipól EKG: Elektrická aktivita srdce měřená z povrchu těla depolarizovaná buňka Depolarizační vlna + nedepolarizovaná buňka Elektrický dipól depolarizovaná tkáň Elektrický vektor Depolarizační vlna Dílčí elektrický vektor pro daný úsek tkáně Výsledný elektrický vektor Elektrický dipól Elektrokardiografie EKG: Elektrická aktivita srdce měřená z povrchu těla Elektrický vektor srdeční (šipka) vzniká součtem dílčích elektrických vektorů v srdci Elektrický vektor má v daném čase • Velikost - určená počtem buněk, které mění svoji polaritu v daném směru Depolarizační Elektrokardiografie Elektrický vektor srdeční vzniká součtem dílčích elektrických vektorů v srdci Elektrický vektor má v daném čase • Velikost - určená počtem buněk, které mění svoji polaritu v daném směru • Směr- kolmý na depolarizační vlnu El. vektor je proměnlivý v čase (tak, jak se šíří depolarizační nebo repolarizační vlna) a vlákna EKG svody Záporná Svod měří potenciálů napětí mezi Napětí sníi V = O2-0 Kladná elektroda a vlákna ktrodách Depolarizace komor zamrzlá v čase tvoří el. vektor - šipka Vektokardiografie Kmit R ve II svodu Špička šipky (elektrický vektor) během srdečního cyklu opisuje 3 smyčky Vektokardiografie - jak vzniká EKG Tak, jak se v průběhu srdečního cyklu pohybuje el. vektor po smyčce, „vrhá kolmý stín" na svod („pohyblivý papír"). Vykresluje tak křivku EKG, což je záznam napěťových změn na daném svodu. Záleží, z jakého úhlu se na srdce díváme (pOZici SVOdu) Kmit Q ve II II SVOd svodu Kmit S ve II svodu Elektrick střed srdce Repolarizace komor (vlna T) Depolarizace komor (QRS) Rolující papír, na který se promítá elektrický vektor Depolarizace síní (vlna P) Kmit R ve II aVL Kmit i svodu Elektrický střecUrdce Kmit R ve svodu aVL Repolarizace komor (vlna T) Depolarizace komor (QRS) Depolarizace síní (vlna P) Kmit svodu Záleží, z jakého úhlu se na srdce díváme (pozici svodu) EKG ze dvou svodů, které jsou na sebe kolmé - dívají se na srdce z různých, na sebe kolmých, úhlů Co z toho vyplývá? - To, co je ve dvou svodech popsané jako kmit R, je odrazem depolarlzace dvou různých míst srdeční svaloviny. (Aneb jak to dopadá, když lékař popisuje něco, o čem nemá nejmenší ponětí, co to znamená. A lékařská věda má problém opustiti tradice.) EKG - základní, bipolární (Einthovenovy svody) EKG - základní, bipolární (Einthovenovy svody) EKG - základní (Einthovenovy svody) video EKG - základní (Einthovenovy svody) L F EKG - trocha historie EKG - historie EKG - Wilsonova svorka Wilsonova svorka: • Vzniká spojením končetinových elektrod přes odpory • elektricky představuje střed srdce (reálně je vyvedena stranou nebo dopočítána) • Pasivní elektroda (konstantní potenciál) Aktivní elektroda: proměnný potenciál Pasivní elektroda (neaktivní): konstantní potenciál EKG - Wilsonova svorka Wilsonova svorka: • Vzniká spojením končetinových elektrod přes odpory • elektricky představuje střed srdce (reálně je vyvedena stranou nebo dopočítána) • Pasivní elektroda (konstantní potenciál) Wilsonova svorka reálně EKG - Wilsonovy svody (unipolární) - zapomněnka R Wilsonovy svody: • Spojeni Wilsonovy svorky s aktivní končetinovou elektrodou • Aktivní elektrody mají vždy kladný náboj L F EKG - augmentované Golbergerovy svody (unipolární) aktivní elektroda F EKG - augmentované Golbergerovy svody (unipolární) F EKG - Wilsonovy a augmentované svody R Augmentované svody mají sice stejný směr, jako Wilsonovy svody („dívají se na srdce ze stejného směru"), ale poskytují zesílený signál aVR F Končetinové svody - frontální rovina I L 90° Elektrická osa srdeční 120 aVL -30 Elektrická osa srdeční: průměrný směr elektrického vektoru srdečního v průběhu depolarizace komor: QRS komplexu (lze odhadnout podle velikosti kmitu R) 90' Srdeční osa fyziologicky směřuje dolu, doleva, dozadu Rozmezí fyziologické: Střední typ 0°-90° Levý typ -30° - 0° Pravý typ 90°-120° Deviace doprava: > 120 ° (hypetrofie PK, dextrokardie) Deviace doleva: < -30° (hypetrofie LK, těhotenství, obezita) Elektrická OSa Srdeční Průměrná výchylka komplexu QRS v každém svodu 1. Nalezení 1,11 a III svodu mm 2. Suma QRS komplexu (suma kladných a záporných malý čtverců od izolinie). Q = -l Q = -l Q = 0 R = 5 R = 6 R = 4 S = -l s = o s = o 3 5 4 3. Zakreslení sum do trojúhelníku 150° 180° 150 -90° 90° 60° Srdeční osa - 62° Fyziologické rozmezí: -30° -110° Vektokardiografie Elektrický vektor se pohybuje ve třech rozměrech. Křivka EKG záleží na směru svodu, na který se vektor promítá. Končetinové svody se „dívají" na srdeční elektrickou aktivitu jen ve frontální rovině. Ale co ostatní roviny? —» hrudní svody Vertikální rovina QRS EKG - hrudní svody (unipolární) • Spojení hrudní elektrody (aktivní, kladné) s Wilsonovou svorkou (záporná, neaktivní, elektrická 0 srdce) EKG v hrudních svodech - všimněte si změn QRS od záporného po kladný charakter Zóna přechodu - kladný a záporný kmit v QRS jsou zhruba stejné + 0 EKG - 12 svodové EKG aVF 3 Einthovenovy svody (bipolární)-l, II, III 3 Golgbergerovy augmentované svody (unipolární) - aVL, aVR, aVF 6 hrudních svodů (unipolární) aVR VI V4 aVL V2 V5 aVF V3 V6 EKG křivka EKG (II svod): • P: depolarizace síní Úsek PQ: síně jsou depolarizované, komory se ještě nezačaly depolarizovat Q: první negativní kmit QRS komplexu (depolarizace komorového septa) R: první pozitivní kmit QRS komplexu (depolarizace srdečního hrotu) S: negativní kmit následující po R (depolarizace bazálni části levé kmory) Usek ST: komory jsou depolarizované a ještě se nezačaly repolarizovat • P: repolarizace komor Název Umístění a popis Fyziologické pozadí Norma Vlna P První kulovitá vlna (Negativní i pozitivní) Depolarizace síní 80 ms Interval PQ Interval od počátku vlny P po počátek Doba od aktivace SA 120-200 (PR) kmitu Q (nebo i R pokud není přítomna Q > uzlu po aktivaci Purkyňových vláken ms Úsek PQ (PR) Konec vlny P do začátku Q (nebo R nebo pokud není Q kmit přítomen) Kompletní depolarizace síní, převod z AV uzlu na komory 50-120 ms Kmit Q První odklon od osy dolů Depolarizaci septa a papilárních svalů. - Komplex QRS Začátek kmitu R ,kmit R až konec kmitu S Depolarizaci komor 80-100ms Kmit R Výchylka směrem nahoru bez ohledu nato, zda jí předchází či nepředchází kmit Q Depolarizace komor - Kmit S Odklon od izolinie směrem dolů, následující vlnu R, nezávisle na tom, zda ji předchází nebo nepředchází vlna Q. Šíření vzruchu na komory Úsek ST Interval izoelektrické linie mezi koncem QRS komplexu a začátkem vlny T Kompletní depolarizace komor 80-120 ms Interval QT Začíná kmitem Q ( nebo R pokud Q není přítomno) a končí koncem vlny T Elektrická systola < 420ms Vlna T Druhá kulovitá vlna (negativní i pozitivní) Repolarizace komor 160 ms Pro zajímavost, netřeba ke zkoušce Arytmie porucha vzniku a/nebo šíření vzruchu v srdci Ext rasy stoly Supraventrikulární - ektopický vzruch vzniká v síni nebo v převodním systému AV, • QRS komplex extrasystoly má normální tvar (vzruch se komorou šíří normálně), • vlna P nemá normální tvar (může být záporná či zakrytá QRS), • může být s postextrasystolickou pauzou (pokus se vzruch šíří zpětně síněmi a vybije SA) p' P: Sinus beat P': Aula) premature complex Ventrikulární- ektopický vzruch vzniká v komoře • QRS komplex nemá normální tvar (obludy) -vzruch se komorou šíří nestandardně • při pomalé srdeční frekvenci je bez kompenzační pauzy (extrasystola je vmezeřená mezi normální QRS) • pokud další vzruch pocházející z SA uzlu přijde v čase, kdy je komora ještě refrakterní, obsahuje kompenzační pauzu Ventricular Extrasystole Extrasystole Pause Pro zajímavost, netřeba ke zkoušce Arytmie - fibrilace Fibrilace: nesynchronizovaná aktivita kardiomyocytů Sinová- chybí P, „zubatá'' izolinie, RR nepravidelné, frekvence 80 - 180 bpm, není život ohrožující, ale vyčerpává srdce tfévvréJľľlfľŤ fibrilace normal Komorová - srdce nefunguje jako pumpa, poškození mozku po 3 - 5 minutách fibrilace, bez včasné defibrilace přechází v asystolii ll||gl^llp|i|| Asystolie- není přítomná elektrická aktivita, nedá se řešit defibrilací I I - ■I ti Pro zajímavost, netřeba ke zkoušce p^y b\0k Atrioventrikulární blok M stupne Mobitz I or Wenckebach řtt 1 M JLa_ Mobitz II PR = 0.16s Normal complex PR = 0.38s AV blok I. stupně (prodloužení převodu vzruchu ze síně na komory, prodloužený PQ int.) AV blok II. stupně (některé vzruchy se nepřevedou: výskyt P, po kterých nenásleduje QRS) AV blok III. stupně Kompletní blokáda převodu vzruchů ze síní na komory, P a QRS se objevují nesynchronizované Metody vyšetření srdce • Fonokardiografie - vyšetření srdečních ozev • Echokardiografie - 2D, 3D, 4D, dopler • Katetrizace - měření tlaků, teploty, průtoku, objemů, biopsie • Jiné zobrazovací metody - MRI, rentgen, CT JPEG 6.32:1 Q=90 (lossy) LA Lt Atrium RV Rt Ventricle LV Lt Ventricle