5. Imunologie 5.0 Úvod Obranyschopnost organismu zajišťují jednak anatomické bariéry (kůže, sliznice), jednak fyziologické mechanismy, a jednak vlastní imunitní systém. Imunitní systém spolu s nervovým a hormonálním udržuje rovnovážný stav organismu – homeostázu. Rozlišuje vlastní od cizího a cizí se snaží eliminovat. Imunita se dá rozdělit na nespecifickou (vrozenou, zaměřenou všeobecně) a specifickou (získanou během života, zaměřenou proti konkrétnímu mikrobu, resp. jinému nežádoucímu vlivu). Obě spolu souvisejí: tam, kde se uplatňuje specifická imunita, dojde vždycky zároveň k vybuzení imunity nespecifické. Jak specifická, tak i nespecifická imunita se dá rozdělit na buněčnou (s cizorodým materiálem se potýká přímo buňka) a humorální (buňka tvoří chemické látky, a právě tyto látky ničí cizorodé agens.) 5.1 Anatomické bariéry a fyziologické mechanismy 5.1.1 Anatomické bariéry Kůže a sliznice tvoří přirozené anatomické bariéry. Kůže je neprostupná pro naprostou většinu mikrobů. Neporušenou kůží může pronikat jen málo organismů. Z bakterií jsou to např. leptospiry, kromě nich už jen některá stádia parazitů. Pokud už jsou v kůži trhlinky, může pronikat například původce tularemie, zlaté stafylokoky, pyogenní streptokoky, ale také Bacillus anthracis, tedy původce sněti slezinné, a dále některé viry a houby. K porušení kůže dojde při bodnutí členovce (klíšťová encefalitida, borrelióza, malárie, mor aj.), při úrazu (infekce ran, např. stafylokoky), při kousnutí (vzteklina, pasteurelová infekce) a při popálení (pseudomonády). K porušení kůže také samozřejmě dochází při medicínskýchzákrocích od odběru krve až po náročnou operaci. Proto je bezpodmínečně nutné pokaždé, když porušujeme integritu kůže, bezpodmínečně zachovávat zásady asepse. Sliznice jsou daleko prostupnější. Proto většina infekce má jednotlivé sliznice jako určité brány vstupu: sliznici dýchacích cest si vybírají nejen respirační viry, ale i např. viry spalniček, zarděnek apod. Sliznici trávicích cest si vybírají původci střevních infekcí, ale i např. virus dětské obrny. Sliznice močových cest a pohlavních orgánů může být vstupní branou nejen lokalizovaných infekcí (třeba kapavky), ale i celkových (třeba AIDS). Další infekce mohou pronikat například spojivkovým vakem. Další bariéry jsou uvnitř organismu, především hematoencefalická bariéra. Ta slouží k tomu, aby mikrob, který už pronikl do organismu, nemohl proniknout do CNS. Tato anatomická bariéra ovšem bohužel také poněkud kombinuje léčbu, protože ztěžuje nejen průnik mikrobů, ale také antibiotik. Proto je nutno k léčbě zánětů mozkových blan vybírat taková antibiotika, která hematoencefalickou bariérou pronikají. 5.1.2 Fyziologické mechanismy Mezi fyziologické mechanismy se dá počítat všechno, co škodlivé mikroby vypuzuje z těla, případně je ničí. Uplatnění fyziologických mechanismů je v řadě případů spojeno se systémy nespecifické imunity. U všech sliznic se na obraně podílí samotná skladba sliznice, která omezuje schopnost mikrobů adherovat. Jednotlivé sliznice však navíc mají své vlastní mechanismy, kterými se brání infekci. 5.1.2.1 Dýchací cesty V dýchacích cestách se uplatňuje neustálé kmitání řasinek, které vypuzují z dýchacích cest nejen mikroorganismy, ale i prachové částice, zkrátka vše, co by jinak mohlo proniknout do plicních sklípků a oslabit tím jejich funkci. Mimo to se uplatňuje smrkání, kýchání a kašel, a to zejména v případě, kdy již došlo k infekci. Pokud těmito mechanismy dochází k vypuzování hlenohnisu a bakterií, je to v pořádku a není dobré kašel či kýchání tlumit. Proto také pacienti s produktivním kašlem mají užívat expektorancia, která podporují vykašlávání hlenů, a nikoli antitusika, která kašel tlumí. Jiná situace je u neproduktivního kašle, který už není obranným mechanismem hostitelského organismu, ale spíše nástrojem, pomocí kterého mikroby hostitelský mechanismus oslabují. Zde jsou antitusika na místě. 5.1.2.2 Trávicí cesty Problematickým místem je dutina ústní, zejména místo přechodu mezi zubem a dásní. Velkou roli zde hraje složení vícedruhového mikrobiálního biofilmu, který zahrnuje jak bakterie škodlivé, tak i neškodné či možná dokonce prospěšné. Dobrým nástrojem ochrany trávicích cest je produkce kyseliny chlorovodíkové v žaludku. Tato produkce je regulována neurohumorálními mechanismy a její poruchy mohou být spojeny např. i se stresem. S trochou nadsázky tedy lze říci, že k prevenci trávicích infekcí patří i dobrá psychická pohoda. Účinným mechanismem je také samotná střevní peristaltika, která omezuje možnosti mikrobů uchytit se na určitém místě sliznice. Při infekci se tělo brání jednak zvracením, jednak průjmem. Podobně jako u kašle zde platí, že zvracení a průjem není dobré tlumit (např. preparáty typu Reasec), ledaže jde o úporný průjem, který je již spíše důsledkem zlovůle mikroorganismu než nástrojem obrany lidského těla, případně o průjem evidentně neinfekční. Na obraně střeva před infekcí se také podílí přítomnost normální mikroflóry, která neumožňuje usídlení patogenních organismů. 5.1.2.3 Močové cesty a mužské pohlavní orgány V případě ochrany močových cest (a u muže také prostaty a varlat) před infekcí je nejúčinnější samotný proud moče, který vyplaví mikroby z močových cest. Významným faktorem je přitom délka močové trubice, která je větší u mužů, díky čemuž je u mužů menší frekvence zánětů močového měchýře. Oslabení proudu moče ve vyšším věku (u žen oslabení svaloviny pánevního dna po porodech, u mužů hyperplazie prostaty) se projevuje zvýšenou frekvencí infekcí močových cest. V některých případech však může dojít k tomu, že infekce postupně přejde do bezpříznakové kolonizace, a dokonce tak vlastně vzniká mikroflóra, která neumožňuje vniknutí dalších patogenů. 5.1.2.4 Pochva Pochva představuje velmi složitý ekosystém. Na ochraně tohoto ekosystému před vetřelci se podílí jednak normální mikroflóra (zejména laktobacily, jejichž bakteriociny neumožňují usídlení jiných organismů) a jednak také nízké pH; platí přitom, že přítomnost laktobacilů je na nízké pH vázána a naopak že pH je udržováno mimo jiné i díky činnosti laktobacilů. Poševní ekosystém je ovšem poměrně zranitelný a ovlivnitelný hormonálními vlivy (zejména pokud jde o pohlavní hormony), výživou apod. 5.1.2.5 Ostatní Oči jsou chráněny produkcí slz a kmitáním řas, uši produkcí mazu. Existují také celkové ochranné mechanismy, např. horečka, kde opět platí pravidlo – netlumit, dokud není reakce přemrštěná. Horečka (či zvýšená teplota) je však již přímým důsledkem fungování mechanismů nespecifické imunity (viz kapitola 5.2). 5.2 Nespecifická imunita 5.2.1 Buněčná složka Tuto složku tvoří různé typy bílých krvinek – vlastně všechny kromě lymfocytů, které patří k imunitě specifické. Navíc sem patří některé tkáňové buňky, které jsou bílým krvinkám podobné. Všechny se podílejí na pohlcování cizorodých materiálů, hlavně mikrobů. I když patří do nespecifické imunity, spolupracují i s protilátkami a lymfocyty ze specifické imunity. 5.2.1.1 Neutrofily Je jich nejvíc, Jejich životnost je krátká. Nedělí se, pro doplnění počtu musí "uzrát" nové. 5.2.1.2 Monocyty a makrofágy Monocyty se nacházejí v periferní krvi, makrofágy ve tkáních). Na rozdíl od neutrofilů mají dlouhou životnost a mohou se dělit. 5.2.1.3 Eozinofily Jsou zmnoženy u některých typů alergie a u napadení těla červy. 5.2.1.4 Bazofily a mastocyty Bazofily se nacházejí v krvi, mastocyty ve tkáních. Po aktivaci (kontaktu s cizorodým materiálem) uvolňují histamin a jiné látky. 5.2.1.5 Lymfocyty: NK-buňky Název pochází z anglického „natural killer“. Na rozdíl od většiny jiných typů lymfocytů NK-buňky přímo, bez imunizace zabíjejí cizorodé nebo i vlastní, ale "zvrhlé" buňky (nádorové, nakažené). 5.2.2 Humorální – látková složka Vedle buněčné složky se na nespecifické imunitě podílí i řada chemických látek. Většina z nich je ovšem produkována právě bílými krvinkami. Buněčná a humorální složka tedy v praxi není oddělitelná a vždy fungují obě společně. · Komplement je složitý systém. Jeho složky se označují jako C1 až C9, některé složky ale mají více částí, a s funkcí komplementu souvisejí i další bílkoviny. Složky komplementu celkem tvoří asi 7–10 % sérových globulinů, hlavně z beta-frakce. Komplement může být aktivován nespecificky (pomalu) nebo pomocí protilátek (rychle). Druhá možnost již předpokládá, že je zároveň aktivní i specifická část imunity. V případě druhé možnosti se aktivují jiné složky než v případě možnosti první. Funkce komplementu: o chemotaxe – "přilákání" baktérií o opsonizace – "ochucení" baktérií, aby "chutnaly" leukocytům o podíl na ničení baktérií a jiných cizorodých faktorů · Interleukiny jsou produkovány různými leukocyty po kontaktu s cizorodým materiálem, mnoho typů. Funkce interleukinů: o horečka (protože zvýšená teplota ničí některé mikroby, zejména viry) o mobilizace některých hormonů a naopak utlumení těch, které nejsou při infekci potřeba o spousta dalších vlivů na chování makroorganismu · Lymfokiny – produkovány některými lymfocyty. Funkce lymfokinů: o "přilákání" a aktivace buněk, zodpovědných za zánět (neutrofily, makrofágy) o podpora množení aktivovaných lymfocytů · Interferony – účinné proti virům a některým nádorům (používají se i léčebně) · Histamin a další látky uvolňované bazofily se podílejí na rozvoji takzvaných atopických příznaků – rýma, astma, kopřivka. Projevuje se tedy hlavně u alergií. 5.2.3 Reakce akutní fáze Reakce akutní fáze je to, co nastává při náhlé změně homeostázy organismu. Může být důsledkem infekce, ale také neinfekčního zánětu, přítomnosti nádoru, úrazu, těhotenství a různých dalších dějů. Jde o složitý systém, a proto některé složky této reakce se začínají objevovat velice rychle, jiné spíše pozvolna. Posouzení složek reakce akutní fáze je důležité při diagnostice těžkých stavů, zejména sepse, kdy hodnoty jednotlivých markerů indikují stav infekce a případně i způsob léčby. Jednotlivé složky reakce, zvlášť CRP, jsou mnohem více zvýšené u bakteriální infekce než u virové. Proto se jejich hodnocení dá použít i jako orientační odlišení bakteriální infekce od virové. Sledování CRP se tak stává užitečným nástrojem antibiotické politiky, protože dokáže eliminovat zbytečné podávání antibiotik u virových infekcí. Mezi jednotlivé složky reakce akutní fáze patří zejména · C-reaktivní protein (CRP), vhodný především pro praxi praktického lékaře k předběžnému odlišení bakteriální infekce od virové · Prokalcitonin, někdy přesnější, ale vhodný spíše pro včasné rozpoznání septických stavů · Interleukin 6 (IL-6) · Presepsin Drobné rozdíly při interpretaci jednotlivých markerů jsou intenzivně diskutovány ve snaze najít vhodná doporučení pro lékaře od praktických až po ty v nemocniční intenzivní péči. 5.3 Specifická imunita 5.3.1 Lymfocyty Specifická imunity souvisí především s lymfocyty. Ty vznikají v kostní dřeni, vyskytují se hlavně v mízních uzlinách a slezině, při kontaktu s cizorodým materiálem se začnou mohutně množit 5.3.1.1 T-lymfocyty Zrají částečně v brzlíku – jsou zodpovědné za buněčnou imunitu 5.3.1.2 B-lymfocyty a plasmatické buňky B-lymfocyty se vyskytují v krvi, z nich se vytvářejí tzv. plasmatické buňky zejména v lymfoidních tkáních – produkují protilátky specificky proti "svým" antigenům (viz dále) 5.3.2 Antigeny Antigen je cizorodá struktura, která vyvolává tvorbu protilátek (viz dále). Je to vždy makromolekula (bílkoviny, polysacharidy, nukleové kyseliny); malé molekuly jsou antigenní jen po navázání na makromolekulu. Příklady antigenů: · mikrobiální antigeny (různé povrchové struktury mikrobů – bílkoviny, polysacharidy apod.) · alergeny – antigeny ze zevního prostředí, které vyvolávají přecitlivělost · autoantigeny – vlastní antigeny, které se změnily a imunitní systém je přestal tolerovat · nádorové markery – změněné znaky na nádorových buňkách · histokompatibilní (HLA) – antigenní znaky na vlastních buňkách, význam při transplantacích, určení otcovství. Organismus jimi rozeznává "svoje" od "cizího" · podobně antigeny na erytrocytech rozhodují o krevních skupinách 5.3.3 Protilátky Protilátky jsou gama globuliny. Jsou přítomny v séru a v menší míře i ve tkáních. Jsou produkovány B-lymfocyty. Protilátka se vždy vytváří jako odezva makroogranismu na podráždění určitým mikrobem. O využití protilátek v diagnostice bylo psáno v druhé kapitole. 5.3.3.1 Účinky protilátek 1. přímé zneškodnění – možné jen u virů a bakteriálních jedů, ne však u celých baktérií, 2. opsonizace ("ochucení" bakterií), 3. posílení funkce komplementu 5.3.3.2 Třídy protilátek: · IgG – největší část protilátek, začnou se tvořit později, ale po prodělané infekci zůstává celoživotně určitá hladina IgG proti danému mikrobu; zvýšená hladina ukazuje na chronickou infekci; procházejí placentou · IgM – velká molekula, placentou neprocházejí; tvoří se jako první při infekci i očkování; zvýšená hladina ukazuje na čerstvou infekci, nepřetrvává dlouho · IgA – hlavně na sliznicích (slizniční imunita) · IgD – stopová množství, funkce málo známá · IgE – souvisí s přecitlivělosti (alergií) Při narození má novorozenec nejprve IgG od matky, pak si sám začne tvořit své vlastní IgG a pak teprve i IgM 5.3.4 Lymfoidní tkáně Jsou to tkáně, ve kterých se vyskytují ze zvýšené míře lymfocyty a další bílé krvinky. · lymfatické uzliny, slezina – obsahují hlavně T-lymfocyty a plasmatické buňky · roztroušené lymfoidní tkáně všude ve sliznicích, někde méně, někde (červovitý výběžek slepého střeva) více · pro imunitu nepostradatelná játra 5.3.5 Protinádorová imunita Je to buňkami zprostředkovaná imunita. Podílejí se na ní zejména NK-buňky a interferon 5.4. Poruchy imunity 5.4.1 Imunodeficity U imunodeficitů některé složky imunitního systému chybějí nebo jsou defektní. Klinicky významné poruchy imunity jsou vrozené nebo získané 5.4.1.1 Deficity nespecifické buněčné imunity Jsou to hlavně deficity různých bílých krvinek kromě lymfocytů. Je u nich sklon ke kožním infekcím a abscesům. Léčba: transfúze leukocytárních koncentrátů 5.4.1.2 Deficity nespecifické humorální imunity Jde hlavně o deficit komplementu. Je tu sklon k bakteriálním infekcím. Léčba: mražená plasma (obsahuje komplement) 5.4.1.3 Deficity specifické buněčné imunity (T-lymfocytů) Představují sklon k infekcím virovým, parazitárním, plísňovým, tuberkulóze. Do této skupiny patří i AIDS. Léčba: záleží na příčině, u AIDS je primární antivirotická léčba. 5.4.1.4. Deficity specifické humorální (=protilátkové) imunity Chybí některé imunoglobuliny, je sklon ke všem infekcím, hlavně bakteriálním. Léčba: pacientovi se dodají čištěné imunoglobuliny, nejlépe lidské. 5.4.2 Imunologická přecitlivělost Je to chorobný stav nadměrné imunity. 5.4.2.1 Alergie časného typu – atopická onemocnění Projevují se po kontaktu s alergenem (pyl, prach, roztoči, chlad, plísně, potraviny). Uvolní se IgE, histamin a látky rozšiřující cévy. Projevy mohou být různé, i podle typu kontaktu: · alergická rýma · atopické astma ("záducha" v průduškách) · atopická dermatitida (kopřivka) · průjmy, zvracení, bolesti břicha · anafylaktický šok – nejzávažnější, při proniknutí alergenu do krev. oběhu např. injekce cizorodého séra, antibiotika, včelí bodnutí; místní reakce: otok, celková reakce: pokles TK, dušnost při otoku dýchacích cest; léčba: adrenalin, kortikoidy, antihistaminika, (Claritin, Zaditen, Dithiaden), vyhýbat se alergenu 5.4.2.2 Přecitlivělost pozdního typu Souvisí s buněčnou imunitou. Po setkání se známým antigenem se projeví se zpožděním (24–48 h). Chorobné projevy zahrnují neinfekční záněty kůže – např. po některých kovech a chemikáliích – a také odvrhnutí štěpu (někdy až po letech). Využitím této přecitlivělosti je tuberkulínová zkouška. 5.4.2.3 Přecitlivělost cytotoxická a imunokomplexová Buňky jsou poškozeny specifickými protilátkami a jejich komplexy s antigenem (imunokomplexy) – např. transfúzní reakce, sérová nemoc, hemolytické anémie 5.4.2.4 Přecitlivělost stimulační Je to přecitlivělost vyvolává nadprodukci některých hormonů (např. štítné žlázy) 5.4.3 Nemoci z autoimunity Nejde zde ani o nedostatečnou, ani o přemrštěnou imunitu, ale o stav, kdy je porušena tolerance vlastních antigenů. Například jsou to různé krvácivé a revmatické nemoci. 5.4.4 Vyšetřování v imunologické laboratoři Pro kontrolu stavu imunity se používají různá imunologická vyšetření. Zde je možno podat jen základní přehled těchto vyšetření. · Počty, druhové rozdělení a funkčnost různých typů bílých krvinek, včetně nejrůznějších podtypů lymfocytů a jejich poměrů. Vzorkem je v tomto případě zpravidla nesrážlivá krev v EDTA. · Hladiny různých složek humorální imunity (specifické i nespecifické). Zde se posílá zpravidla srážlivá krev. · Kožní testy na alergeny – spadá do oblasti alergologie, která na imunologii úzce navazuje. Test se provádí přímo na kůži pacienta. 5.5 Imunoterapie (léčení imunopreparáty) Imunoterapie zahrnuje veškeré použití imunologicky aktivních preparátů. Používá se k profylaxi, prevenci i léčení chorob. Patří sem · Imunizace – viz dále · Imunosuprese – potlačení imunitních reakcí – u nadměrné nebo špatné imunity · Imunostimulace – povzbuzení nedostatečné imunity · Desenzibilizace – podávají se mikrodávky antigenu, aby si na ně organismus "zvykl" a nereagoval přehnaně; dávky se postupně zvyšují 5.5.1 Umělá imunizace – úvod Umělou imunizaci dělíme na dvě skupiny. Aktivní imunizace = očkování; do organismu je vnesena očkovací látka, obsahující antigen. Tělo je antigenem "vyprovokováno" a vytváří protilátky. Pasivní imunizace: do organismu jsou vneseny už hotové protilátky nebo sérum, které je obsahuje. Jenže protilátky od cizího člověka (natož od zvířete) nikdy nejsou stejné, a v těle fungují méně účinně než vlastní. Představte si hladového muže na břehu řeky. Jak mu nejlépe pomoci? Když mu nachytáte ryby, nasytíte ho hned, ale až ryby sní, bude mít zase hlad. Když ho naučíte ryby chytat, bude se umět nasytit celý zbytek života. Zato to bude chvíli trvat. První postup připomíná pasivní imunizaci, druhý aktivní; oba mají výhody a nevýhody; někdy je potřeba obě metody zkombinovat (podat protilátku i antigen). 5.5.2 Aktivní imunizace – očkování U aktivní imunizace je důležité, aby očkovací látka obsahovala antigen, schopný vyprovokovat tvorbu protilátek, a přitom aby podání očkovací látky nevyvolávalo příslušnou nemoc. Nejlepší by bylo mít zcela čistý antigen, očištěný od jiných součástí mikroba, které mohou být případně jedovaté. To ale ne vždycky jde. 5.5.2.1 Očkovací látky proti bakteriálním nákazám · Očkování živými bakteriemi se provádí u tuberkulózy. Očkování se provádí ihned po narození a nepřeočkovává se, jen se kontroluje stav imunity (tzv. tuberkulínovým testem). · Bakteriny – celé usmrcené bakterie. Používaly se u očkování proti černému kašli. · Anatoxiny neboli toxoidy se používají tam, kde bakterie škodí hlavně prostřednictvím toxinů (jedů). Anatoxin je vlastně jed zbavený jedovatosti (toxicity), který si zachovává antigenní působení. Např. tetanus a záškrt. · Čištěné povrchové antigeny (např. polysacharidové), např. Haemophilus influenzae b, Neisseria meningitidis aj. · Rekombinantní vakcíny se vyrábějí tak, že se gen pro bílkovinu, která má funkci antigenu, vloží do genomu vhodného nosiče (například Escherichie coli). 5.5.2.2 Očkovací látky proti virovým nákazám · Živé vakcíny – pěstují se oslabené kmeny virů na buněčných kulturách. U oslabených osob mohou vyvolat různé reakce. Spalničky, zarděnky, příušnice. U Sabinovy vakcíny proti dětské obrně šlo o tvorbu slizničních IgA protilátek v trávicích cestách. Vakcína se proto podávala na lžičce. · Usmrcený virus – virus je vypěstován a poté usmrcen, nejčastěji formaldehydem. Klíšťová encefalitida, žloutenka A, dětská obrna – Salkova vakcína (nyní používána místo Sabinovy) · Chemovakcíny – antigen byl získán chemickou cestou (rekombinací DNA). Např. látka Engerix proti hepatitidě B. 5.5.2.3 Pomocné látky Kromě antigenu obsahují očkovací látky také další složky. Mnohé očkovací látky jsou naadsorbovány na hydroxid hlinitý. Většina očkovacích látek je chráněna proti znehodnocení použitím konzervačního činidla (obvykle tiomersalu). 5.5.2.4 Počty dávek Obvykle není dostačující jedna dávka očkovací látky. V řadě případů je zapotřebí použít dvě nebo tři dávky v poměrně rychlém sledu a později pak udržovací (boosterovou) dávku. V některých případech musí být dávka opakována v pravidelných několikaletých intervalech po celý život (např. u tetanu 10–15 let). 5.5.2.5 Očkování v praxi 5.5.2.5.1 Pravidelná očkování (očkování očkovacího kalendáře) Některá očkování jsou povinná po všechny, obvykle děti v předškolním věku. Existuje norma, podle které děti v určitém věku podstupují určitá očkování – tzv. očkovací kalendář. Tím, že je dítě očkováno, chrání nejen sebe, ale i své vrstevníky: epidemie nevznikne, dokud je dostatečná proočkovanost populace. Odpůrci očkování by si tedy měli uvědomit, že očkování není jen „jejich věc“. Měli by si také uvědomit, že některé zdánlivě banální choroby (třeba spalničky, zarděnky či příušnice) mají závažné komplikace (spalničková encefalitida, zarděnky těhotných, příušnicemi způsobený zánět varlat u dospělých). Vzhledem k tomu, že v očkovacím schématu probíhají neustále průběžné změny, uvedeme jen přehled očkování, nikoli přehled jejich kombinací. Trendem je nahrazování celobuněčných očkovacích látek vakcínami s čištěnými antigeny, případně i vyráběnými rekombinantně, a trendem je také používání vícečetných vakcín (trivakcíny a tetravakcíny dnes ustupují hexa-, hepta- či oktavakcínám). · Očkovací látky proti bakteriálním infekcím o Záškrt (jde především o difterický toxin) o Tetanus (opět se jedná hlavně o jeho toxin) o Dávivý kašel o Haemophilus influenzae b · Tuberkulóza – pouze je-li dítě vyhodnoceno jako rizikové · Očkovací látky proti virovým infekcím o Spalničky o Zarděnky o Příušnice o Žloutenka (hepatitida) typu B o Dětská obrna (donedávna perorální živá Sabinova vakcína, dnes usmrcená Salkova, podávaná injekčně, obvykle v rámci hexavakcíny) 5.5.2.5.2 Očkování mimo očkovací kalendář Vedle všeobecně povinných očkování existují ještě další (povinná nebo doporučená): * očkování, která nejsou povinná, ale jsou hrazená: očkování proti pneumokokům a očkování proti lidským papilomavirům u třináctiletých dívek, u některých rizikových skupin také očkování proti chřipce * pro určité profese (zdravotníci – žloutenka B v dospělosti) * pro osoby cestující do zahraničí (tyfus, cholera, ale i třeba žloutenka A); vhodnost těchto očkovacích látek je vždy nutno pečlivě posoudit, zpravidla je dobré obrátit se na odborníky v oblasti cestovní či tropické medicíny · očkování rizikových skupin – sem dnes patří i dříve povinné očkování proti tuberkulóze, které se dnes provádí jen výběrově u dětí s rizikem * k profylaxi zejména u vztekliny (k riziku už došlo, není to tedy prevence). * nadstandardní očkování, která si zájemci musí zaplatit, např. vakcína proti viru klíšťové encefalitidy (nebo jim je zaplatí zaměstnavatel, třeba lesní závod). speciální očkovací látky k cílenému předcházení nebo i léčbě některých závažných onemocnění. Riziko nemocničních infekcí Pseudomonas aeruginosa se snaží snížit očkovací látka Psaeva. U chronických stafylokokových infekcí lze použít preparát Stafana. Používají se i tzv. stockované vakcíny, vyráběné přímo v mikrobiologických laboratořích a zahrnující antigeny z kmenů, které právě kolují mezi lidmi. Pokud jsou mikroby získány pomnožením kmenů získaných přímo od pacienta, hovoří se o tzv. autovakcínách (posiluje se reakce na pacientovy vlastní kmeny). 5.5.3 Pasivní imunizace Pasivní imunizace se používá k léčbě a k profylaxi (pojem profylaxe viz výše). K pasivní imunizaci se používá sér (antisér), a to jednak homologních (tj. lidských), jednak heterologních (zvířecích). Séra (zvláště heterologní) musí být pečlivě čištěna, a i tak dochází záhy k jejich vypuzení, takže jejich účinek netrvá dlouho. Homologní séra mohou být specifická nebo nespecifická. Nespecifická séra (NORGA = Normální Gamaglobulin) k nitrosvalové a IVEGA či NIGA k nitrožilní aplikaci) jsou získána z krve mnoha dárců, takže by měla obsahovat protilátky proti všem běžným chorobám. Obsahují ovšem také řadu jiných bílkovin, které mohou imunitní systém spíše narušit. Proto se s jejich používáním čím dál více váhá. Ze specifických protilátek (tj. proti konkrétní chorobě) se užívá TEGA (proti tetanu), HEPAGA – proti hepatitidě B, globuliny proti botulismu (BOSEA), plynaté sněti (GASEA) a stafylokokovým infekcím (STASEA).