logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Opakování Modelová rozložení náhodné veličiny Normální rozložení dat Základy testování hypotéz Biostatistika logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Základy popisné statistiky Vizualizace dat Opakování logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Opakování 1.Co jsou kvalitativní a kvantitativní data? 2.Jaký je rozdíl mezi spojitými a diskrétními daty? 3.Uveďte příklady binárních / nominálních / ordinálních dat. 4.Uveďte příklady spojitých a diskrétních dat. 5.Jakými charakteristikami popisujeme kvalitativní data? 6.Jakými charakteristikami popisujeme kvantitativní data? 7.Jak správně vizualizujeme kvalitativní data? 8.Jak správně vizualizujeme kvantitativní data? 9. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Parametry rozložení Přehled modelových rozložení Logaritmicko-normální rozložení Modelová rozložení logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Výběrové rozložení hodnot lze modelově popsat, a definovat tak pravděpodobnost výskytu X f(x) x f(x) x f(x) x j(x) j(x) j(x) logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Parametry rozložení —Soubor dat (řada čísel) můžeme charakterizovat parametry jeho rozložení —Hlavní skupiny těchto parametrů můžeme charakterizovat jako ukazatele: ¡Středu (medián, průměr, geometrický průměr) ¡Šířky rozložení (rozsah hodnot, rozptyl, směrodatná odchylka) ¡Tvaru rozložení (skewness, kurtosis) ¡Kvantily rozložení – kolik % řady dat leží nad a pod kvantilem — logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Rozložení Parametry Stručný popis Normální Průměr (m) Rozptyl (s2) Symetrická funkce popisující intervalovou hustotu četnosti; nejpravděpodobnější jsou průměrné hodnoty znaku v populaci. Log-normální Medián Geometrický průměr Rozptyl (s2) Funkce intervalové hustoty četnosti, která po logaritmické transformaci nabude tvaru normálního rozložení. Weibullovo a - parametr tvaru b - parametr rozsahu hodnot Změnou parametru a lze modelovat distribuci doby přežití, např. stresovaného organismu. Rozložení využívané i jako model k odhadu LC50 nebo EC50 u testů toxicity. Rovnoměrné Medián Geometrický průměr Rozptyl (s2) Všem hodnotám proměnné přiřazena stejná pravděpodobnost. Triangulární f(x) = [b - ABS (x - a)] / b2 a - b < x < a + b Pravděpodobnostní funkce pro typ rozložení, kdy jsou střední hodnoty výrazně pravděpodobnější než hodnoty okrajové. Gamma Parametry distribuční funkce: a - parametr tvaru b - parametr rozsahu hodnot Umožňuje flexibilní modelování distribučních funkcí nejrůznějších tvarů. Např. c2 rozložení je rozložení typu Gamma. Gamma rozložení s a = 1 je známo jako exponenciální rozložení. Stručný přehled modelových rozložení I. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Stručný přehled modelových rozložení II. Rozložení Parametry Stručný popis Beta Parametry distribuční funkce: a - parametr tvaru b - parametr rozsahu hodnot Pravděpodobnostní funkce pro proměnnou omezenou rozsahem do intervalu [0; 1]. Je matematicky komplikovanější, ale velmi flexibilní při popisu změn hodnot proměnné v ohraničeném intervalu. Studentovo Stupně volnosti - uvažuje velikost vzorku Průměr Rozptyl Simuluje normální rozložení pro menší vzorky čísel. Pro větší soubory (n > 100) se limitně blíží k normálnímu rozložení. Pearsonovo (Chí-kvadrát) Stupně volnosti - uvažuje velikost vzorku Slouží především k porovnání četností jevů ve dvou a více kategoriích. Používá se k modelování rozložení odhadu rozptylu normálně rozložených dat. Fisher-Snedecorovo Dvojí stupně volnosti - uvažuje velikost dvou vzorků Používá se k testování - F test pro porovnání dvou výběrových rozptylů, ANOVA atd. Stručný přehled modelových rozložení II. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Log-normální rozložení lze jednoduše transformovat f(x) Medián x Průměr f(y) Medián y Průměr = Y = ln [X] • EXP (Y) = Geometrický průměr X logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Normální rozložení Pravidlo 3 sigma Parametry normálního rozložení Vizuální ověření normality dat Normální rozložení logo-IBA •Nejklasičtějším modelovým rozložením, od něhož je odvozena celá řada statistických analýz, je tzv. normální rozložení, známé též jako Gaussova křivka. • •Popisuje rozdělení pravděpodobnosti spojité náhodné veličiny: např. výška v populaci, chyba měření… • •Je kompletně popsáno dvěma parametry: μ – střední hodnota σ2 – rozptyl Označení: N(μ, σ2) •Normalita je klíčovým předpokladem řady statistických metod •Pro ověření normality existuje řada testů a grafických metod Soubor:Normal Distribution PDF.svg Normální rozdělení Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek logo-IBA Pravidlo 3 sigma — •V rozmezí μ ± 3σ by se mělo vyskytovat 99,7 % všech hodnot • • • • • • • • • • • •Použití: zhodnotíme tvar rozdělení (pouze orientačně) a přítomnost odlehlých hodnot Soubor:Standard deviation diagram.svg 99,7 % všech hodnot Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek logo-IBA Vizuální ověření normality —Pro hodnocení tvaru rozložení lze využít histogram (nevýhoda: nutné určit „vhodný“ počet sloupců) — — — — — — — —Další možnosti: 1.Q-Q graf (kvantil-kvantilový graf) 2.P-P graf (pravděpodobnostně-pravděpodobnostní graf) 3.N-P graf (normální-pravděpodobnostní graf) — logo-IBA Řešení v softwaru Statistica — 1 • V případě, že máme v datech několik stejných hodnot, je vhodné odškrtnout Neurčovat průměrnou pozici svázaných pozorování V menu Graphs zvolíme 2D Výběr rozdělení 3 např. po tep_pred logo-IBA Rozdíl mezi N-P, Q-Q, P-P grafem • Pouze výměna os • Znázorněn pozorovaný a teoretický kvantil ??? • Vykresleno kumulativní rozdělení PAMATUJ: Pocházejí-li data z normálního rozložení, pak body budou ležet okolo přímky http://files.mscck-trmice.webnode.cz/200000297-22250231ed/vyk%C5%99i%C4%8Dn%C3%ADk.png logo-IBA Jak se projeví asymetrie dat v diagnostických grafech? Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Výukové materiály: Výpočetní statistika, RNDr. Marie Budíková, Dr., 2011 Konkávní křivka Konvexní křivka logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Princip statistického testování hypotéz Pojmy statistických testů Normalita dat a její význam pro testování Ověření normality dat pomocí testu Základy testování hypotéz logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Princip testování hypotéz Cílová populace Vzorek Reprezentativnost ? Závěr ? Interpretace —Formulace hypotézy —Výběr cílové populace a z ní reprezentativního vzorku —Měření sledovaných parametrů —Použití odpovídajícího testu závěr testu —Interpretace výsledků Měření parametrů Testy hypotéz logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Statistické testování – základní pojmy Nulová hypotéza HO Alternativní hypotéza HA Testová statistika Kritický obor testové statistiky 0 T Pozorovaná hodnota – Očekávaná hodnota Variabilita dat Testová statistika = HO: sledovaný efekt je nulový HA: sledovaný efekt je různý mezi skupinami * Velikost vzorku Statistické testování odpovídá na otázku, zda je pozorovaný rozdíl náhodný či nikoliv. K odpovědi na otázku je využit statistický model – testová statistika. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek, E. Koriťáková Není rozdíl v sys. tlaku u pacientů a kontrol. Sys. tlak vyšší u pacientů než u kontrol. Hypotézy – příklady logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Možné chyby při testování hypotéz Závěr testu Hypotézu nezamítáme Hypotézu zamítáme β 1- β 1- α α —I přes dostatečnou velikost vzorku a kvalitní design experimentu se můžeme při rozhodnutí o zamítnutí/nezamítnutí nulové hypotézy dopustit chyby. Správné rozhodnutí Správné rozhodnutí Chyba II. Druhu Falešně negativní závěr testu Chyba I. Druhu Falešně pozitivní závěr testu logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Možné chyby při testování hypotéz logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Význam chyb při testování hypotéz Pravděpodobnost chyby 1. druhu a Pravděpodobnost nesprávného zamítnutí nulové hypotézy, hladina významnosti Pravděpodobnost chyby 2. druhu b Pravděpodobnost nerozpoznání neplatné nulové hypotézy Síla testu 1-b Pravděpodobnostně vyjádřená schopnost rozpoznat neplatnost hypotézy logo-IBA logomuni Způsoby testování —Testování H0 proti HA na hladině významnosti α můžeme provést třemi různými způsoby: — 1.Kritický obor (označení W), neboli obor zamítnutí H0 , 2.Interval spolehlivosti, 3.P-hodnota. 4. — — Vytvořil Institut biostatistiky a analýz, Masarykova univerzita logo-IBA logomuni Způsoby testování: P-hodnota —Významnost hypotézy hodnotíme dle získané tzv. p-hodnoty, která vyjadřuje pravděpodobnost, s jakou číselné realizace výběru podporují H0, je-li pravdivá. —P-hodnotu porovnáme s α (hladina významnosti, stanovujeme ji na 0,05, tzn., že připouštíme 5% chybu testu, tedy, že zamítneme H0, ačkoliv ve skutečnosti platí). —P-hodnotu získáme při testování hypotéz ve statistickém softwaru. — —Je-li p-hodnota ≤ α, pak H0 zamítáme na hladině významnosti α a přijímáme HA. —Je-li p-hodnota > α, pak H0 nezamítáme na hladině významnosti α. — —P-hodnota vyjadřuje pravděpodobnost za platnosti H0, s níž bychom získali stejnou nebo extrémnější hodnotu testové statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Parametrické vs. neparametrické testy Parametrické testy Neparametrické testy •Mají předpoklady o rozložení vstupujících dat (např. normální rozložení) •Při stejném N a dodržení předpokladů mají vyšší sílu testu než testy neparametrické •Pokud nejsou dodrženy předpoklady parametrických testů, potom jejich síla testu prudce klesá a výsledek testu může být zcela chybný a nesmyslný •Nemají předpoklady o rozložení vstupujících dat, lze je tedy použít i při asymetrickém rozložení, odlehlých hodnotách, či nedetekovatelném rozložení •Snížená síla těchto testů je způsobena redukcí informační hodnoty původních dat, kdy neparametrické testy nevyužívají původní hodnoty, ale nejčastěji pouze jejich pořadí logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek One-sample vs. two-sample testy Jednovýběrové testy (one-sample) Dvouvýběrové testy (two-sample) •Srovnávají jeden vzorek (one sample, jednovýběrové testy) s referenční hodnotou (popřípadě se statistickým parametrem cílové populace) •V testu je tedy srovnáváno rozložení hodnot (vzorek) s jediným číslem (referenční hodnota, hodnota cílové populace) •Otázka položená v testu může být vztažena k průměru, rozptylu, podílu hodnot i dalším statistickým parametrům popisujícím vzorek •Srovnávají navzájem dva vzorky (two sample, dvouvýběrové testy) •V testu jsou srovnávány dvě rozložení hodnot •Otázka položená v testu může být opět vztažena k průměru, rozptylu, podílu hodnot i dalším statistickým parametrům popisujícím vzorek •Kromě testů pro dvě skupiny hodnot existují samozřejmě i testy pro více skupin dat μ logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek One-tailed vs. two-tailed testy Jednostranné testy (one–tailed) Oboustranné testy (two–tailed) •Hypotéza testu je postavena asymetricky, tedy ptáme se na větší než/ menší než •Test může mít pouze dvojí výstup – jedna z hodnot je větší (menší) než druhá a všechny ostatní případy •Hypotéza testu se ptá na otázku rovná se/nerovná se •Test může mít trojí výstup – menší - rovná se – větší než •Situace nerovná se je tedy souhrnem dvou možných výstupů testu (menší+větší) 1 Kritický obor 2 Kritický obor logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Nepárový vs. párový design Nepárový design Párový design •Skupiny srovnávaných dat jsou na sobě zcela nezávislé (též nezávislý, independent design), např. lidé z různých zemí, nezávislé skupiny pacientů s odlišnou léčbou atd. •Při výpočtu je nezbytné brát v úvahu charakteristiky obou skupin dat •Mezi objekty v srovnávaných skupinách existuje vazba, daná např. člověkem před a po operaci, reakce stejného kmene krys atd. •Vazba může být buď přímo dána, nebo pouze předpokládána (v tom případě je nutné ji ověřit) •Test je v podstatě prováděn na diferencích skupin, nikoliv na jejich původních datech > logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Důležité poznámky k testování hypotéz •Nezamítnutí nulové hypotézy neznamená automaticky její přijetí! Může se jednat o situaci, kdy pro zamítnutí nulové hypotézy nemáme dostatečné množství informace. •Dosažená hladina významnosti testu (ať už 0,05, 0,01 nebo 0,1) nesmí být slepě brána jako hranice pro existenci / neexistenci testovaného efektu. •Malá p-hodnota nemusí znamenat velký efekt. Hodnota testové statistiky a p-hodnota mohou být ovlivněny velkou velikostí vzorku a malou variabilitou pozorovaných dat. •Na výsledky testování musí být nahlíženo kriticky – jedná se o závěr založeny „pouze“ na jednom výběrovém souboru. •Statistická významnost indikuje, že pozorovaný rozdíl není náhodný, ale nemusí znamenat, že je významný i ve skutečnosti. Důležitá je i praktická (klinická) významnost. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Vliv velikosti vzorku na výsledky testování n1 = 10, n2 = 10 n1 = 1000, n2 = 1000 p = 0,797 p < 0,001 p = 0,140 n1 = 100, n2 = 100 Statistická významnost způsobená velkým N Dvě skupiny pacientů s nepatrným rozdílem v dané charakteristice, který ale není klinicky významný. jde o statistickou vs. klinickou významnost (měření tlaku na levé a pravé ruce u několika tisíc lidí – rozdíl byl 1 mmHg, ale kvůli tak obrovskému N byl rozdíl statisticky významný) v neuroanalýzách spíš opačný problém – tak málo pacientů, že i když tam je klinický rozdíl, tak statisticky významné to nevychází logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Statistické testy a normalita dat —Normalita dat je jedním z předpokladů tzv. parametrických testů (testů založených na předpokladu nějakého rozložení) – např. t-testy —Pokud data nejsou normální, neodpovídají ani modelovému rozložení, které je použito pro výpočet (t-rozložení), a test tak může lhát — —Řešením je tedy: ¡Transformace dat za účelem dosažení normality jejich rozložení ¡Neparametrické testy – tyto testy nemají žádné předpoklady o rozložení dat Typ srovnání Parametrický test Neparametrický test 2 skupiny dat nepárově: Nepárový dvouvýběrový t-test Mannův-Whitneyův test 2 skupiny dat párově: Párový t-test Wilcoxonův test, znaménkový test Více skupin nepárově: ANOVA (analýza rozptylu) Kruskalův- Wallisův test Korelace: Pearsonův koeficient Spearmanův koeficient logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Testy normality —Testy normality pracují s nulovou hypotézou, že není rozdíl mezi zpracovávaným rozložením a normálním rozložením. Vždy je ovšem dobré prohlédnout si i histogram, protože některé odchylky od normality, např. bimodalitu některé testy neodhalí. •Chí-kvadrát test dobré shody V testu dobré shody jsou data rozdělena do kategorií (obdobně jako při tvorbě histogramu), tyto intervaly jsou normalizovány (převedeny na normální rozložení) a podle obecných vzorců normálního rozložení jsou k nim dopočítány očekávané hodnoty v intervalech, pokud by rozložení bylo normální. Pozorované normalizované četnosti jsou poté srovnány s očekávanými četnostmi pomocí c2 testu dobré shody. Test dává dobré výsledky, ale je náročný na n, tedy množství dat, aby bylo možné vytvořit dostatečný počet tříd hodnot. •Kolmogorovův - Smirnovův test Tento test je často používán, dokáže dobře najít odlehlé hodnoty, ale počítá spíše se symetrií hodnot než přímo s normalitou. Jde o neparametrický test pro srovnání rozdílu dvou rozložení. Je založen na zjištění rozdílu mezi reálným kumulativním rozložením (vzorek) a teoretickým kumulativním rozložením. Měl by být počítán pouze v případě, že známe průměr a směrodatnou odchylku hypotetického rozložení, pokud tyto hodnoty neznáme, měla by být použita jeho modifikace – Lilieforsův test. •Shapirův-Wilkův test Jde o neparametrický test použitelný i při velmi malých n (10) s dobrou sílou testu, zvláště ve srovnání s alternativními typy testů, je zaměřen na testování symetrie. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Společné cvičení logo-IBA Společné cvičení – ověřování normality dat Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek 1. Načtěte si do programu STATISTICA soubor 03_spolecne_cviceni_pacienti.sta. 2. Vypište základní popisné statistiky pro proměnné Leukocyty, Výška a Náklady za hospitalizaci pro celý soubor pacientů. Normální rozdělení – proměnná Leukocyty: 3. Ověřte normalitu proměnné Leukocyty pomocí: ·histogramu (Nápověda: Graphs – Histogram), ·krabicového grafu (Nápověda: Graphs – 2D – Box Plots), ·diagnostických grafů (Q-Q grafu, N-P grafu a P-P grafu) (Nápověda: Graphs – 2D – Quantile-Quantile Plots / Normal Probability Plots / Probability-Probability Plots), ·Shapirova-Wilkova testu nebo Lilieforsovy modifikace Kolmogorovova-Smirnovova testu (Nápověda: lze provést čtyřmi způsoby: 1) v nastavení histogramu: záložka Advanced → Statistics: vybereme test; 2) v nastavení N-P grafu: záložka: Quick → Statistics: zaškrtneme test; 3) v menu Basic statistics → Frequency tables → záložka Normality → vybereme test a klikneme na Tests for Normality); 4) v menu Basic statistics → Descriptive statistics → záložka Normality → vybereme test a klikneme na Histograms) 4. Podívejte se, jak vypadají jednotlivé diagnostické grafy v případě normálního rozdělení. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Normální rozdělení s odlehlou hodnotou – proměnná Výška: 5. Ověřte normalitu proměnné Výška pomocí: ·histogramu, ·krabicového grafu, ·diagnostických grafů (Q-Q grafu, N-P grafu a P-P grafu), ·Shapirova-Wilkova testu / Lilieforsovy modifikace Kolmogorovova-Smirnovova testu. 6. Jak se projeví odlehlá hodnota v grafech? 7. Zkopírujte proměnnou výška (nebo vytvořte pomocí vzorce) do nové proměnné a vymažte v této nové proměnné odlehlou hodnotu (nápověda: seřaďte si data podle proměnné výška: karta Data → Sort → vložíme proměnnou výška). Ověřte, zda se po vynechání odlehlé hodnoty data řídí normálním rozložením. Odlehlou hodnotu (řádek 16, hodnota 100, nahraďte hodnotou 144). Společné cvičení – ověřování normality dat Zapnutí filtru: Data – Auto Filter – Auto Filter Odmazávání odlehlé hodnoty je možné jen v případě, že se jedná o chybný (nereálný) údaj. Pokud je údaj správný, tak je vhodnější použít neparametrické testy. To nahrazení hodnoty 100 hodnotou 144 je potřebné kvůli samostatnému cvičení, kde se počítá BMI. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Společné cvičení – ověřování normality dat Logaritmicko-normální rozdělení – proměnná Náklady za hospitalizaci: 9. Vykreslete histogram proměnné Náklady za hospitalizaci. Proložte histogram nejdříve normálním rozložením, poté log-normálním rozložením. 10. Dále ověřte normalitu dat pomocí: ·diagnostických grafů (Q-Q grafu, N-P grafu a P-P grafu), ·Shapirova-Wilkova testu / Lilieforsovy modifikace Kolmogorovova-Smirnovova testu. 11. Jak se výsledky liší ve srovnání s daty, která se řídí normálním rozdělením? 12. Transformujte proměnnou Náklady za hospitalizaci pomocí přirozeného logaritmu do nové proměnné (nápověda: Data → Transforms: LogNaklady=Log(v10)). 13. Ověřte normalitu dat nové proměnné LogNaklady pomocí: ·histogramu, krabicového grafu, diagnostických grafů (Q-Q grafu, N-P grafu a P-P grafu), Shapirova-Wilkova testu / Lilieforsovy modifikace Kolmogorovova-Smirnovova testu. 14. Vypočtěte průměr a medián proměnné Náklady za hospitalizaci. Podívejte se na histogram proměnné Náklady za hospitalizaci a zhodnoťte vztah průměru a mediánu. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Samostatné cvičení logo-IBA Samostatné cvičení – ověřování normality dat Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek 1. Načtěte si do programu STATISTICA data 03_spolecne_cviceni_pacienti.sta (pokud je nemáte načtené ze společného cvičení). Přidejte za proměnnou váha novou proměnnou BMI (body mass index – index tělesné hmotnosti), kterou vypočítáte z proměnné výška a váha. Poznámka: V případě, že jste ze samostatného cvičení nepřepsali odlehlou hodnotu proměnné výška, učiňte tak nyní (hodnotu 100 přepište na hodnotu 144). 2. Vypište zvlášť pro muže a ženy (proměnná pohlaví) základní popisné statistiky následujících proměnných: váha, výška, BMI (počet hodnot, průměr, medián, směrodatnou odchylku, minimum a maximum). Výsledek znázorněte v jedné tabulce (nápověda: změňte nastavení formy výstupů v sekci By Group). 3. Vykreslete kategorizované histogramy proměnných výška, váha a BMI pro muže a ženy zvlášť. Zkuste si proložit histogramy postupně normálním rozdělením a dalšími rozděleními ze záložky Advanced → Fit types. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Samostatné cvičení – ověřování normality dat 4. Pro proměnné výška, váha a BMI (opět pro muže a ženy zvlášť) vykreslete Q-Q graf, N-P graf a P-P graf. Které proměnné dle těchto diagnostických grafů podle vás mají normální rozložení? Zapište svůj odhad do připravené tabulky. 5. Otestujte normalitu dat proměnných výška, váha a BMI pro muže a ženy zvlášť pomocí Shapirova-Wilkova testu. Zapište výsledek (p-hodnotu) do připravené tabulky. Srovnejte své odhady z diagnostických grafů s výsledky testů. 6. V případě, že se dle diagnostických grafů nebo S-W testu data řídí normálním rozdělením, jaký je v uvedených případech odhad parametrů tohoto rozdělení (střední hodnoty a rozptylu)? Hodnoty zaznamenejte do tabulky. logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Proměnná Normalita dle Q-Q / N-P / P-P grafu (ano/ne) p-hodnota Shapirova-Wilkova testu Odhad střední hodnoty Odhad rozptylu Výška Muži Ženy Váha Muži Ženy BMI Muži Ženy Tabulka: Vizuální a testové ověření normality. Samostatné cvičení – ověřování normality dat logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Proměnná Normalita dle Q-Q / N-P / P-P grafu (ano/ne) p-hodnota Shapirova-Wilkova testu Odhad střední hodnoty Odhad rozptylu Výška Muži Ne/ne/ne 0.037 Ženy Ano/ano/ano 0.539 161.2 17.3 Váha Muži Ne/ne/ne 0.004 Ženy Ano/ano/ano 0.784 65.9 25.1 BMI Muži Ano/ano/ano 0.529 25.3 3.6 Ženy Ano/ano/ano 0.200 25.4 4.3 Výsledky: Tabulka: Vizuální a testové ověření normality. Samostatné cvičení – ověřování normality dat logo-IBA Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Samostatné cvičení – ověřování normality dat Poznámky k nejčastějším chybám: 1.Parametry normální rozdělení jsou: střední hodnota a rozptyl. Nejlepším nestranným odhadem střední hodnoty u normálního rozdělení je průměr (nikoliv medián, ale měl by v případě normálního rozdělení stejný nebo podobný jako průměr), nejlepším nestranným odhadem rozptylu jako parametru je výběrový rozptyl. 2.Nepleťte si rozptyl a směrodatnou odchylku. Směrodatná odchylka je odmocnina z rozptylu. Na rozdíl od rozptylu je ve stejných jednotkách jako hodnocený parametr. Další chyby: 1.Přehozené skupiny pohlaví (záměna žen a mužů). 2.Odhad střední hodnoty a rozptylu měl být vyplněn pouze tam, kde jste pomocí testu nezamítli nulovou hypotézu o normalitě dat. 3.Správná interpretace např. výšky může být: „Pomocí Shapirova-Wilkova testu můžeme předpokládat, že se výška u žen v našem hodnoceném souboru řídí normálním rozdělením. U mužů jsme však nulovou hypotézu zamítli, tedy test prokázal, že výška u mužů nemá normální rozdělení.“