Acute peripheral arterial occlusion

Tomáš Novotný II. chirurgická klinika LF MU a FN u sv. Anny

Acute ischemia

- result of a sudden deterioration in the arterial blood supply
- Causes
 - arterial embolism
 - arterial thrombosis
 - other causes
 - trauma
 - iatrogenic causes
 - occlusion of a vascular reconstruction

Arterial embolism

- result of a material (embolus) passing through the arterial tree and obstructing a peripheral artery
- Source
 - the heart
 - atherosclerotic debris
 - tumors
 - foreign bodies
 - **–** ...

Arterial thrombosis

- most commonly the result of progressive atherosclerotic narrowing in peripheral arteries
- hypercoagulable states
- shock
- arterial dissection

Clinical presentation

- depends on
 - size of occluded artery
 - available collaterals
 (physiological or developed)
- e.g. superficial femoral artery occlusion in the presence of wellestablished collaterals may be entirely asymptomatic

Clinical presentation

- sensory loss
- motor loss
- sudden pain
- cold leg
- white leg
- absent peripheral pulses

Clinical presentation

- sensory loss
- motor loss
- sudden pain
- cold leg
- white leg
- absent peripheral pulses

Clinical assessment

- History
- clinical presentation assessment, duration
- source of embolism
 - atrial fibrillation, previous myocardial infarctions, valvular heart disease, ...
- peripheral arterial disease
 - intermittent claudication
- atherosclerosis risk factors

Physical findings

- rule of Ps
 - pain
 - pallor
 - paresis
 - pulse deficit
 - paresthesia
 - poikilothermia
- aneurysms
- irregular pulse
- contralateral extremity

Embolism vs. thrombosis

- Embolism
- History
 - source of embolism
 - no claudication
- Physical findings
 - irregular pulse, ...
 - normal peripheral pulses in contralateral extremity

- Thrombosis
- History
 - no source of embolism
 - claudication
- Physical findings
 - regular pulse, ...
 - no peripheral pulses in contralateral extremity

Embolism might occur in a patient with claudication/peripheral arterial
 disease and without known sources of embolism in history and vice versa!

Classification of Acute Limb Ischemia

Category / class	Description / Prognosis	FINDINGS		DOPPLER SIGNALS	
		Sensory Loss	Muscle Weakness	Arterial	Venous
I. Viable	Not immediately threatened	None	None	Audible	Audible
II. Threatened					
a. Marginally	Salvageable if promptly treated	Minimal (toes) or none	None	Inaudible	Audible
b. Immediately	Salvageable with immediate revascularization	More than toes, associated with rest pain	Mild, moderate	Inaudible	Audible
III. Irreversible	Major tissue loss or permanent nerve damage inevitable	Profound, anesthetic	Profound, paralysis (rigor)	Inaudible	Inaudible

Diagnosis

- the anatomical location of arterial occlusion
 - aortic occlusion
 - iliac occlusion
 - femoropopliteal occlusion
 - popliteal and infrapopliteal occlusion
- Imaging may be valuable
- However, there may be no time!

Aortic occlusion

Diagnosis - imaging

- Computed
 Tomographic (CT)
 Angiography
- usually available 24/7
- the investigation of choice for acute arterial ischemia

Diagnosis - imaging

- Duplex ultrasonography
 - availability?
- Digital subtraction angiography
 - less accessible than CT angiography
 - best choice when an endovascular solution to the arterial occlusion is likely
- Magnetic resonance angiography (MRA)
 - not suitable
 - usually not available at off hours

Initial management

Anticoagulation

- immediate anticoagulation with intravenous calcium heparin can stabilize the condition of the leg
- the potential for immediate reversal with protamine makes calcium heparin the drug of choice

Ancillary supportive measures

- oxygen delivered by facemask
- intravenous fluid administration
- analgesia

Treatment

Anticoagulation

Operative intervention

- embolectomy or thrombectomy using Fogarty catheters
- vascular reconstruction (bypass, endarterectomy, patch angioplasty)

Endovascular intervention

- percutaneous intra-arterial thrombolysis
- mechanical thrombectomy / aspiration embolectomy

Treatment selection

- Category I
 - medical therapy
 - elective revascularization (optional)
- Category IIa
 - immediate revascularization not necessary
 - endovascular or surgical options may be considered
- Category IIb (sensory and motor deficit)
 - immediate revascularization is necessary
 - surgical revascularization is generally preferred
 - endovascular options may be considered

Treatment selection

- Category III
 - primary amputation should be considered

Operative intervention

- Embolectomy or thrombectomy
 - balloon catheters are passed proximally and distally until no visible thrombus is removed and a pulse or backflow is established
 - completion angiography is important to evaluate the effectiveness of thrombus removal

Operative intervention

Bypass

Endarterectomy and patch plasty

Endovascular treatment

- Catheter-directed thrombolysis
 - tissue plasminogen activators are used (e.g. Actilyse)

Endovascular treatment

- Percutaneous mechanical thrombectomy
 - devices
 - hydrodynamic
 - rotational
 - aspiration thrombectomy catheters

Prognosis

- The medical state of a patient who presents with acute leg ischemia is a good prognostic index of survival.
- The outcome after treatment for acute limb ischemia is often poor.

Upper limb ischemia

- Patients are on average about 4 years older.
- seldom threatens the limb
- treatment is to prevent late complications
 - activity-induced arm fatigue and pain (up to 50% patients have late symptoms if untreated)
- cardiac embolism is the main cause
- atherosclerosis is rare

Upper limb ischemia

- often cold feeling and numbness rather than pain in the arm
- diagnosis is clinical
 - (can be confirmed by duplex imaging)
- up to 20% of patients with acute arm ischemia do not survive the acute event!

Compartment syndrome

- is an increase in intracompartmental pressure
- up to 20% of patients after revascularization
- mechanism is ischemia-reperfusion
- risk factors
 - prolonged ischemia time (>6 hours); young age; insufficient arterial collaterals; acute time course for arterial occlusion; hypotension; poor back-bleeding from the distal arterial tree at embolectomy

Compartment syndrome

Fasciotomy

Fasciotomy - indications

ICP, Intracompartmental pressures.

 Pain with passive motion of muscles traversing the same compartment or Paresis or paresthesias referable to the 	 Acute ischemia >6 □ hr with few collaterals Combined arterial and venous traumatic injuries
examined serially due to obtundation or need for other operations. • ICP minus mean blood pressure <40 □ mm □ Hg •	 Phlegmasia cerulea dolens Tense compartment after crush injury Tense compartment after fracture

Systemic sequelae of myonecrosis

 large quantities of intracellular potassium, phosphate, myoglobin, and creatine phosphokinase are liberated

Hyperkalemia

dialysis or continuous veno-venous hemofiltration might

be needed

Myoglobinuria

tea-colored urine

Systemic sequelae of myonecrosis

• Myoglobinuria induces

- renal vasoconstriction
- tubular cast formation
- direct heme protein-induced cytotoxicity

• Management of myoglobinuria

- aggressive crystalloid infusion
- forced diuresis
- alkalinization of the urine with bicarbonate (optional)
- hemodialysis is not a useful

Thank you for your attention!

