Laboratorní diagnostika (Ca, fosfáty, PTH, PTHrP, vitamin D, paraproteiny aj.) Metabolismus vápníku a fosfátů Vápník v lidském těle • V lidském těle cca 1000 – 1100 g vápníku • Většina - tvrdé tkáně (– 99 %) • Velmi malé množství vápníku intracelulárně • 55 % endoplasmatické retikulum, dále mitochondrie • Cytoplasmatická koncentrace (10-7 mol.L-1) X krevní plazma (10-3 mol.L-1) • Regulační a signální role vápenatých iontů • Svalová kontrakce • přenos nervového vzruchu • sekreční mechanismy • buněčný cyklus a proliferace • buněčná smrt • hemokoagulace, atd. 2,5–7,5 mmol/den Duodenum + jejunum – 90 % ! Nízký příjem – kompenzační mechanismus – ileum a jejunum Doherty, A.H., C.K. Ghalambor, and S.W. Donahue. 2015. Evolutionary Physiology of Bone: Bone Metabolism in Changing Environments. Physiology 30:17-29. An interplay between mitochondria, endoplasmic reticulum and cytoplasm in handling ROS and calcium ions. Briefly, endoplasmic reticulum is the crucial and major site for calcium storage in cell. Sarco-/endoplasmic reticulum Ca2+-ATPase represents the most important transport mechanism for influx of calcium ions. On the other hand, mitochondria represent the second most important calcium store in the cell. However, these two organelles are closely connected in calcium handling, mainly in response to ROS. Increase in ROS levels in the mitochondria, where the respiratory chain (RCH) represents the major site for creation of ROS, triggers the ER to release calcium and sensitizes a calcium-releasing channel in the ER membrane, sending a feedback signal. On the other hand, process of folding proteins contributes significantly to creation ROS directly in ER. When incorrect disulfide bonds form, they need to be reduced by GSH, resulting in a further decrease of GSH/GSSG ratio, altering the redox state within the ER. Alternatively, misfolded proteins can be directed to degradation through ER-associated degradation machinery. Accumulation of misfolded proteins in the ER initiates the unfolded protein response, which includes involvement of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme (IRE), and activating transcription factor 6 (ATF6). All these proteins influence cellular responses at different levels (transcription, translation, antioxidant defence). Calcium ions released from ER during these processes (inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) – accumulated in membranes with close connection with mitochondria - in mitochondrial associated membranes (MAMs) trigger mitochondrial ROS stimulation via stimulation of the tricarboxylic acid cycle. Mitochondria release calcium ions via mitochondrial sodium/calcium exchanger (mNCX), influx of calcium ions from cytoplasm in provided by voltage-dependent anion channel (VDAC) and calcium uniporter. Increased load of mitochondria with calcium ions stimulate release of cytochrome c and proapoptic factors via mitochondrial permeability transition pore (mPTP).Orig. Babula Kopic, S., and J.P. Geibel. 2013. GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH. Physiological Reviews 93:189-268. NCX - sodium-calcium exchanger PMCA - plasma membrane calcium ATPase TRPV6 - transient receptor potential cation channel subfamily V member 6 Kopic, S., and J.P. Geibel. 2013. GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH. Physiological Reviews 93:189-268. Bers, D.M. 2008. Calcium cycling and signaling in cardiac myocytes. In Annual Review of Physiology. Annual Reviews, Palo Alto. 23-49. Bers, D.M. 2008. Calcium cycling and signaling in cardiac myocytes. In Annual Review of Physiology. Annual Reviews, Palo Alto. 23-49. Vápník v séru • 2.5 mmol.L-1 , resp. 2.2 – 2.6 mmol.L-1 (100 mg.L-1) • Horní mez 4 – 5 mmol.L-1 • Dolní mez 1 mmol.L-1 • Cca 60 % v difuzibilní formě: • Filtrována ledvinami • 50 % ionizované – volné (Ca2+) (1.1 – 1.3 mmol.L-1) • 10 % v nízkomolekulárních komplexech (citráty, fosfáty, hydrogenuhličitany) • Cca 40 % v nedifuzibilní formě: • Proteinově vázané vápenaté ionty • Albumin 90 %, globuliny 10 % • Neprochází glomeruly • Biologicky neaktivní, ALE snadno se uvolní při hypokalcemii • Hypoalbuminemie – klesá frakce vázaná na albumin (pokles o 10 g.L-1 nevede ke změněně koncentrace ionizovaného vápníku) • Hyperproteinémie (maligní myelom) – vzestup celkové kalcemie (bez změny koncentrace volného ionizovaného vápníku) • pH: • Alkalóza – klesá množství ionizovaného vápníku • Acidóza – stoupá množství ionizovaného vápníku • Kompetice H+ a Ca2+ o vazebná místa albuminu CASR Kopic, S., and J.P. Geibel. 2013. GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH. Physiological Reviews 93:189-268. DiGirolamo, D.J., T.L. Clemens, and S. Kousteni. 2012. The skeleton as an endocrine organ. Nature Reviews Rheumatology 8:674-683. Kostní tkáň a tři typy buněk BMU - basic multicellular unit 90 – 130 dní Doherty, A.H., C.K. Ghalambor, and S.W. Donahue. 2015. Evolutionary Physiology of Bone: Bone Metabolism in Changing Environments. Physiology 30:17-29. Remodelace kostní tkáně • Genetické faktory • 60 – 80 % množství kostní tkáně determinováno geneticky • Černoši versus Asiati • Mechanické faktory • Mechanické požadavky • Význam fyzické aktivity • Cévní/nervové faktory • Vaskularizace • Inervace – neuropeptidy a jejich receptory • Výživové faktory • Příjem vápníku • Návyky – káva, kouření, alkohol, nadbytek soli – rizikové faktory osteopenie • Funkce endokrinního systému • Kromě výše uvedených také: • Androgeny • Estrogeny • Progesteron • Inzulin • Glukokortikoidy • Růstový hormon – IGF-1/2! - Snížený příjem vápníku - Snížený příjem vitamínu D - Nižší expozice slunci Lokální remodelace kostní tkáně • Růstové faktory: • Polypeptidy produkovány kostní tkání nebo extraoseálně • Modulace růstu, proliferace, diferenciace • BMP • PDGF (Platelet - derived growth factor) • FGF (Fibroblastic growth factor) – mitogenní účinek na osteoblasty • EGF (Epidermal growth factor) • VEGF (Vascular endothelial growth factor) – stimulace angiogeneze a proliferace endotelu, regenerace (fraktury) • GM-CSF (Granulocyte / macrophage - colony stimulating factor) – osteoklastogeneze • M-CSF (Macrophage-colony stimulating factor) – první fáze osteoklastogeneze • TNF (Tumor necrosis factor) – stimulace kostní resorpce • ! OPG Lokální remodelace kostní tkáně • Cytokiny – buňky imunitního systému, celá řada úloh (imunitní odpověď, zánět, hematopoéza, autokrinní/parakrinní efekt, pleiotropní efekt) - RANKL • Interleukin 1 • Přímá stimulace osteoklastické resorpce • Inhibice apoptózy osteoklastů • Interleukin 6 • Stimulace resorpce kosti • Osteoklastogeneze • Interleukin 11 • Kostní dřeň • Stimulace osteoklastogeneze • Prostaglandiny • Stimulace resorpce kostní tkáně • Leukotrieny Development schema of haematopoietic precursor cell differentiation into mature osteoclasts, which are fused polykaryons arising from multiple (10–20) individual cells. Maturation occurs on bone from peripheral blood-borne mononuclear cells with traits of the macrophage lineage shown below. M-CSF (CSF-1) and RANKL are essential for osteoclastogenesis, and their action during lineage allocation and maturation is shown. OPG can bind and neutralize RANKL, and can negatively regulate both osteoclastogenesis and activation of mature osteoclasts. Shown below are the single-gene mutations that block osteoclastogenesis and activation. Those indicated in italic font are naturally occurring mutations in rodents and humans, whereas the others are the result of targeted mutagenesis to generate null alleles. Shown above are the single-gene mutant alleles that increase osteoclastogenesis and/or activation and survival and result in osteoporosis. Note that all of these mutants represent null mutations with the exception of the OPG and sRANKL transgenic mouse overexpression models (in blue-outlined boxes). Schematic representation of the mechanism of action of a, pro-resorptive and calcitropic factors; and b, anabolic and anti-osteoclastic factors. RANKL expression is induced in osteoblasts, activated T cells, synovial fibroblasts and bone marrow stromal cells, and subsequently binds to its specific membrane-bound receptor RANK, thereby triggering a network of TRAF-mediated kinase cascades that promote osteoclast differentiation, activation and survival. Conversely, OPG expression is induced by factors that block bone catabolism and promote anabolic effects. OPG binds and neutralizes RANKL, leading to a block in osteoclastogenesis and decreased survival of pre-existing osteoclasts. Endokrinní regulace kostního metabolismu Kopic, S., and J.P. Geibel. 2013. GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH. Physiological Reviews 93:189-268. Přímý efekt na kostní tkáň? (osteoblasty) Kopic, S., and J.P. Geibel. 2013. GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH. Physiological Reviews 93:189-268. Vitamín D Parathormon Barret, K.E., Boitano, S., Barman, S.M., Brooks, H.L. Ganong´s Review of Medical Physiology. 23rd Ed. McGraw-Hill Companies 2010 PTH1R versus PTH2R A, PTH secretion by dispersed normal human parathyroid cells in culture in response to varying concentrations of extracellular calcium. B, The four-parameter model describing the inverse sigmoidal relationship between extracellular calcium and PTH secretion. Parameter 1 is the maximal secretory rate, parameter 2 is the slope of the curve at the midpoint, parameter 3 is the set point, and parameter 4 is the minimum secretory rate. Kopic, S., and J.P. Geibel. 2013. GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH. Physiological Reviews 93:189-268. OPG – osteoprotegrin; RANK - receptor activator of nuclear factor kB Kopic S, Geibel JP: GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH. Physiol Rev 2013, 93(1):189-268. DiGirolamo, D.J., T.L. Clemens, and S. Kousteni. 2012. The skeleton as an endocrine organ. Nature Reviews Rheumatology 8:674-683. DiGirolamo, D.J., T.L. Clemens, and S. Kousteni. 2012. The skeleton as an endocrine organ. Nature Reviews Rheumatology 8:674-683. Parathormonu podobný peptid - hormon (PTHrP) a hyperkalcémie u nádorových onemocnění • “ectopic” production by cancers of peptide hormones (ACTH, PTH?) • PTH? – hyperkalcémie, hypofostatémie (kostní metastázy, nádory ledvin, plic, některé neuroendokrinní nádory) • Díky radioimunologickým metodám – PTHrP (↓ PTH versus ↑ PTHrP) • Fyziologická funkce PTHrP? • auto-/para-/endokrinie • ovlivnění enchondrální kostní formace – blokuje vyzrávání chondrocytů • růst a diferenciace mléčné žlázy, kůže a pankreatických ostrůvků • relaxace hladkého svalstva • transepiteliální transport kalcia v placentě Martin, T.J. 2016. PARATHYROID HORMONERELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831-871. Martin, T.J. 2016. PARATHYROID HORMONE-RELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831-871. Martin, T.J. 2016. PARATHYROID HORMONERELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831-871. Intrakrinní funkce – regulace buněčné proliferace a apoptózy? Martin, T.J. 2016. PARATHYROID HORMONERELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831-871. Martin, T.J. 2016. PARATHYROID HORMONE-RELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831-871. Martin, T.J. 2016. PARATHYROID HORMONE- RELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831- 871. Martin, T.J. 2016. PARATHYROID HORMONE- RELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831- 871. Martin, T.J. 2016. PARATHYROID HORMONERELATED PROTEIN, ITS REGULATION OF CARTILAGE AND BONE DEVELOPMENT, AND ROLE IN TREATING BONE DISEASES. Physiological Reviews 96:831-871. cAMP response element binding (CREB) protein Kalcitonin Russell, F.A., R. King, S.J. Smillie, X. Kodji, and S.D. Brain. 2014. CALCITONIN GENE-RELATED PEPTIDE: PHYSIOLOGY AND PATHOPHYSIOLOGY. Physiological Reviews 94:1099- 1142. Deduced model for the roles of CT and α-CGRP in bone formation. Based on the work of several investigators it is likely that CT inhibits bone resorption through a direct effect on osteoclasts, and that α-CGRP activates bone formation through a direct effect on osteoblasts (solid lines). The negative influence of CT on bone formation however, may be indirectly mediated by the hypothalamus or by osteoclasts (dashed lines). Huebner, A.K., J. Keller, P. Catala-Lehnen, S. Perkovic, T. Streichert, R.B. Emeson, M. Amling, and T. Schinke. 2008. The role of calcitonin and alpha-calcitonin gene-related peptide in bone formation. Archives of Biochemistry and Biophysics 473:210-217. Russell, F.A., R. King, S.J. Smillie, X. Kodji, and S.D. Brain. 2014. CALCITONIN GENE-RELATED PEPTIDE: PHYSIOLOGY AND PATHOPHYSIOLOGY. Physiological Reviews 94:1099-1142. Estrogeny/ androgeny Manolagas, S.C., C.A. O'Brien, and M. Almeida. 2013. The role of estrogen and androgen receptors in bone health and disease. Nat. Rev. Endocrinol. 9:699-712. Glukokortikoidy Weinstein, R.S. 2011. Glucocorticoid-Induced Bone Disease. New England Journal of Medicine 365:62-70. - GnRH ! (androgeny/estrogeny) - IGF-1 - Snížená resorpce vápníku Osteokalcin Vitamin K is required for the formation of γ-carboxyglutamic acid Booth, S. L. et al. (2012) The role of osteocalcin in human glucose metabolism: marker or mediator? Nat. Rev. Endocrinol. doi:10.1038/nrendo.2012.201 Osteokalcin a jeho význam v kostním metabolismu Chapurlat, R.D., and C.B. Confavreux. 2016. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology 55:1714-1725. IGF-1 a kostní metabolismus Leptin a jeho vztah ke kostnímu metabolismu Leptin – klinické aspekty ve vztahu ke kostnímu metabolismu Karsenty, G., and F. Oury. 2012. Biology Without Walls: The Novel Endocrinology of Bone. In Annual Review of Physiology, Vol 74. D. Julius, and D.E. Clapham, editors. 87-105. Karsenty, G., and F. Oury. 2012. Biology Without Walls: The Novel Endocrinology of Bone. In Annual Review of Physiology, Vol 74. D. Julius, and D.E. Clapham, editors. 87-105. Karsenty, G., and F. Oury. 2012. Biology Without Walls: The Novel Endocrinology of Bone. In Annual Review of Physiology, Vol 74. D. Julius, and D.E. Clapham, editors. 87- 105. Karsenty, G., and F. Oury. 2012. Biology Without Walls: The Novel Endocrinology of Bone. In Annual Review of Physiology, Vol 74. D. Julius, and D.E. Clapham, editors. 87- 105. Oxytocin a kostní metabolismus Colaianni, G., L. Sun, M. Zaidi, and A. Zallone. 2014. Oxytocin and bone. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 307:R970-R977. Russell, J.T. 2011. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology. British Journal of Pharmacology 163:1605-1625. In vivo calcium imaging Russell, J.T. 2011. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology. British Journal of Pharmacology 163:1605-1625. Markery kostního metabolismu Chapurlat, R.D., and C.B. Confavreux. 2016. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology 55:1714-1725. „Nové“ markery kostního metabolismu Chapurlat, R.D., and C.B. Confavreux. 2016. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology 55:1714-1725. Huang, C.L., and O.W. Moe. 2011. Klotho: a novel regulator of calcium and phosphorus homeostasis. Pflugers Archiv-European Journal of Physiology 462:185-193. Klotho:  b-glukuronidáza - Stárnutí - Kostní metabolismus - Abusus alkoholu - Ateroskleróza RIA ELISA HPLC Metody vyšetření při poruchách kostního metabolismu Paraproteiny - M proteiny - Imunoglobulin nebo jeho část vznikající z klonu lymfoidněplasmatických buněk bez zřetelné protilátkové funkce - IgG, IgA, IgM, lehké/těžké řetězce - Hematologické malignity, krevní choroby A, Polyclonal pattern from a densitometer tracing of agarose gel: broad-based peak of γ mobility. B, Polyclonal pattern from electrophoresis of agarose gel (anode on the left). The band at the right is broad and extends throughout the γ area. A, Monoclonal pattern of serum protein as traced by a densitometer after electrophoresis on agarose gel: tall, narrowbased peak of γ mobility. B, Monoclonal pattern from electrophoresis of serum on agarose gel (anode on the left): dense, localized band representing monoclonal protein of γ mobility.