MUNI MED THERMOREGULATION Spring 2020, Marie Noväkovä Endothermic (warm-blooded) vs. ectothermic (cold-blooded) species Arctic (20° - 40°C) vs. tropic (22° - 27°C water, 32° - 35°C) animals THERMOREGULATION All processes keeping body temperature within (relatively) narrow range HEAT INTAKE HEAT PRODUCTION HEAT LOSS HEAT OUTPUT • Core temperature - homoeothermic regulation • Peripheral temperature - Poikilothermie regulation THERMOREGULATORY BEHAVIOUR Social thermoregulation MUNI MED Temperature (C) Symptoms 28 muscle failure 30 loss of body temperature control 33 loss of consciousness 37 normal 42 central nervous system breakdown 44 death Hypothermia Hyperthermia UNI ED HEAT „CONVECnON" • Inner heat convection (among inner organs and skin) • Outer heat convection - heat output MUNI MED HEAT INTAKE/LOSS HEAT OUTPUT • Radiation (irradiation, without touch, IR) • Convection (temperature gradient, touch) (+ Conduction - wind) up to 36°C HEAT PRODUCTION Evaporation perspiratio sensibilis (sweat glands) p. insensibilis (diffusion - skin and mucosae) 1 litre of evaporated sweat - 2428 kJ • Depends on energetic exchange (10% of BM - 1°C) • Difference between rest and exercise (increases muscle rate - up to 90%) • Shivering and nonshivering thermogenesis (voluntary and non-voluntary thermogenesis) • Brown adipose tissue (b3 adrenoreceptors, NA, lipolysis, expression of lipoproteinlipase and thermogenin, uncoupling of oxidative chain) UNI ED THERMOREGULATION CONTROL Afferentation: TRP channels - 2 types (TRPM8-cold, TRPVl-hot) • Central thermoreceptors • Peripheral thermoreceptors (skin - cold) Mechanisms: • Vegetative • Somatic • Endocrine (CA, thyroxin, TSH) • Modification of behaviour Thermoregulatory centres - CENTRAL THERMOSTAT: Posterior hypothalamus - reaction to cold Anterior hypothalamus - reaction to heat (Upper part of middle brain - ?) THERMOREGULATORY MECHANISMS COLD ACTIVATED Decrease of heat output Skin vasoconstriction + Twisting + Horripilation + Increase of heat production Muscle shivering + Hunger + Increase of intentional movements + Increase of CA secretion + HEAT ACTIVATED Increase of heat output Skin vasodilatation + Sweating + Increase of ventilation + Loss of appetite, apathy, inactiveness Decrease of heat production MUNI MED 1. Circadian variation of body temperature 2. Cyclic variation in women (basal temperature) 3. Seasonal variation 0 18 Time(hours) OVULATION 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ' i 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -» i. 'V t ? 2 2 i 1 1 1 1 1 1 1 1 1 1 1 1 1 • 1 1 1 ' t 1 1 1 1 1 1 1 1 1 1 96 96 v 96 96: 98 96 96 c<- 98 r<:: 98 96 96 v, 96 % 96 96 98 9E 98 96 96 98 ?8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 c J B 8 8 8 8 8 8 8 8 n 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 3 } 7 1 7 7 7 7 7 ■ ji 7 7 ■ f 7 7 ji ■ 7 7 7 ? 7 7 7 7 t 6 B 6 6 6 E 6 6 6 r 6 E - ö 6 B 6 6 6 6 a 6 B 6 6 6 6 5 ■8- 5 5 5 5 5 S< 5 5 5 6 is 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 • i 4 4 4 4 4 4 4 4^ Ü 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 -2 3 3 .3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 ■> T i 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 ' V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 97 97 97 97 97 97 97 97 97 97 97 97 97 hi 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 9 • ■ 9 • ■ • 9 ■ ■ ;■ ' Q • • • 9 • 9 • 9 9 9 • 1 > 3 1 i N 1/ n M 19 ,6 1? 1B 1, 20 21 22 23 24 2S|26|27|28 37.0 r ü ♦ e a? Ü. E i o D % 0 Summer Winter _L 8 12 Hours 16 20 24 I ED MUNI MED PHYSIOLOGY OF EXERCISE Spring 2019, prof. MUDr. Marie Noväkovä, Ph.D. What is it work??? MUSCLE TYPES • Skeletal • Heart • Smooth EXERCISE: 1. Dynamic (positive/negative) 2. Static CHANGES DURING EXERCISE: 1. Cardiovascular 2. Respiratory 3. Metabolic HOMEOSTASIS THERMOREGULATION Ergotropic system - sympathetic nervous system ANTICIPATION OF EXERCISE „Fight or flight" - EVOLUTIONARY ASPECT UNI ED CARDIOVASCULAR REACTIONS DURING EXERCISE 1. Heart reactions 2. Circulation reactions 1. Increase of cardiac output (heart reserve !) 2. Increase in coronary blood flow 3. Hyperaemia in lung circulation 4. Hyperaemia in muscles (difference between contraction and relaxation!!!) 5. Higher supply of 02 and metabolites, higher removal of C02 and catabolites METABOLIC AUTOREGULATION OF BLOOD FLOW Decreased pH, decreased p02, increased pC02, increased K+, increased body temperature nm ED CARDIAC RESERVE = maximal CO / resting CO 4-7 CORONARY RESERVE = maximal CF / resting CF 3.5 CHRONOTROPIC RESERVE = maximal HR / resting HR 3-5 VOLUME RESERVE = maximal SV / resting SV 1.5 CO - cardiac output (l/min), CF - coronary flow (l/min/100gr), HR - heart rate (min-1), SV - stroke volume (ml) MUNI ED CARDIAC RESERVE in healthy and diseased heart CO (l/min) ATHLETHS HEART WORKLOAD (W/kg) MUNI MED PARAMETER REST EXERCISE INCREASE (x) Cardiac output (1/min) 5-6 25 (35) 4-5 (7) Cardiac reserve Heart rate (t/min) 70 210 (250-190) depends on age 3-5 Chronotropic reserve Stroke volume (ml) 75 115 1.5 Volume reserve Systolic BP (mmHg) 120 t ? - Diastolic BP (mmHg) 70 t ? - Pulse BP (mmHg) 50 70-100 1.5-2 Mean BP (mmHg) - - minor increase Muscle perfusion (ml/min/100g) 2-4 60-120 30 (10%MVmax) RESPIRATORY REACTIONS DURING EXERCISE Demands on respiratory system: 1. Higher gases exchange - higher diffusion 2. Higher ventilation 3. Higher perfusion (hyperaemia in lung circulation) MUNI MED PARAMETER REST EXERCISE INCREASE (x) Minute ventilation (1/min) 6-12 90-120 15-20 Respiratory frequency (d/min) 12-16 40-60 4-5 Tidal volume (ml) 0,5-0,75 2 3-4 Blood flow (1/min) 5,5 20-35 4-6 02 intake (ml/min) -V02 250-300 3000 10-12 Total C02 (ml/min) 200 8000 40 p02 (Torr) 40 25 02 extraction (%) + + ++ MUNI MED Ventilation (I / min) recovery Psychic Proprioception hyperpnoe| tachypnoe Time tachypnoe (oxygen debt) „Humourar stimulation t H+a (K+, temperature, C02, 02) R = 1.5-2.0 R = 0.5 UNI ED OVERVIEW OF MUSCLE METABOLISM ATP for muscle contraction is continuously produced by aerobic metabolism of glucose and fatty acids. During short bursts of activity, when ATP demand exceeds the rate of aerobic ATP production, aerobic glycolysis produces ATP, lactate, and 1-T, Intestine Glucose -absorbed Muscle tissue Amino acids Lactate Adipose Glycerol + fatty acids tissue | Lipids stored in adipose tissue Gas exchange at the lungs: q2 co2 Glycogen Exercise Glycolysis (anaerobic) Pyruvate I Acetyl CoA 1 Oxidative phosphorylation and citric acid cycle (aerobic) A DP 1 Glucose comes © Fatty acids can be Q Lactate from anaerobic Q Both aerobic and anaerobic from liver glycogen used only in aerobic metabolism can be converted metabolism provide ATP for or dietary intake. metabolism. to glucose by the liver. muscle contraction. D.U.Silverthorn: Human Physiology (An Integrated Approach) UNI ED AEROBIC VERSUS ANAEROBIC METABOLISM AnaGrobic metabolism produces ATP 2.5 times faster than aerobic metabolism, but aerobic metabolism can support Gxercise for hours. ATP 3 produced (moles/min) 2 4? 1 Hours Endurance time for maximal muscle activity - 1 min KEY ATP production Muscle endurance Phosphocreatine can sustain only 10 soconds of maximal GxercisG. Anaerobic metabolism produces ATP 2.5 times faster than aerobic metabolism but can support only 1 minute of maximal exercise. Aerobic metabolism supports exercise for hours. D.U.Silverthorn: Human Physiology (An Integrated Approach) MUNI MED ENERGY SUBSTRATE USE DURING EXERCISE At low-intensity exercise, muscles get more energy from fats than from glucose (CHO). During high-intensity exercise (levels greater than 70% of maximum), glucose becomes the main energy source. a> 100% Ü 'S) -Q =S a 0- 80% 60% 40% 20% 0% Fat CHO Rest 20 40 60 80 Exercise intensity {% maximum) 100 Data from G. A. Brooks and J. Mercier, J App Physiol 76: 2253-2261, 1994 D.U.Silverthorn: Human Physiology (An Integrated Approach) UNI ED OXYGEN CONSUMPTION AND EXERCISE Oxygen supply to exercising cells lags behind energy use, D.u.Silverthorn: Human Physiology (An integrated Approach) creating an oxygen deficit. Excess postexercise oxygen consumption compensates for the oxygen deficit. c 0 -i—> Cl £ 01 0.50 o 0.25 i O Cellular energy use exceeds oxygen uptake (oxygen deficit) Excess postexercise oxygen consumption i \ Resting level c ►f 02 consumptio 1 n 2 ▲ Exercise begins 4 6 8 Time (min) 10 ▲ Exercise ends 12 UNI ED BLOOD GASES AND EXERCISE Arterial blood gases and pH remain steady with submaximal exercise. X E E a> i— in 2 a 1Ü '■c a en id o 100 -75 - 50 25 -0 ■ Ventilation-j / I Arterial PÜ2 Arterial ^^^^ Venous i i 140 E-120 £ 100 .1 03 80 60 40 20 0 > 03 c O E « ,o 7.4 7.2 - Arterial pH 1 1 1 h 0 20 40 60 30 100 02 consumption {% of maximum) D.U.Silverthorn: Human Physiology (An Integrated Approach) UNI ED 'Cortisol Gluconeogenesis from lactate Glucagon Anerob metaboli Glucose Glycogenosis Free Fatty Acid Mobilization Protein Synthesis ♦ Hypothalamus Growth Hormone Releasing Hormone Growth Hormone MUNI ED FITNESS • Spiroergometry • Types of ergometers • Index W170 • Training • Fatigue (aerobic, anaerobic threshold) • Adaptation to exercise