

MUSCLE TISSUE

Petr Vaňhara, PhD

Dept. Histology & Embryology Faculty of Medicine MU

pvanhara@med.muni.cz

Based on morphology and function:

Continual, avascular layers of cells with different functions, oriented to open space, with specific junctions and minimum of ECM and intercellular space.

Derivates of all three germ layers

Muscle

Cytoskeleton → contraction Mesoderm – skeletal muscle, myocard, mesenchyme – smooth muscles

Rarely ectoderm (eg. m. sphincter a m. dilatator pupillae)

Nerve

Connective

Neurons and neuroglia Reception and transmission of electric signals Ectoderm, rarely mesoderm (microglia)

Dominant extracellular matrix Connective tissue, cartilage, bone... Mesenchyme

GENERAL CHARACTERISTIC OF MUSCLE TISSUE

Hallmarks

- Unique cell architecture
- Excitability and contraction
- Mesodermal origin

Striated skeletal

Striated cardiac

Smooth

MUSCLE TISSUE

HISTOLOGY OF SKELETAL MUSCLE TISSUE

- Composition: muscle cells + connective tissue, blood vessels
- Unique cell architecture long multinuclear cells muscle fibers (rhabdomyocytes)
- Long axis of cells is oriented parallel with direction of contraction
- Specific terminology:
 - cell membrane = sarcolemma
 - cytoplasm = sarcoplasm
 - sER = sarcoplasmic reticulum
 - Muscle fiber microscopic unit of skeletal muscle
 - Myofibril LM unit myofilaments unit of muscle fibers
 - Myofilaments filaments of actin and myosin (EM)

STRUCTURE OF SKELETAL MUSCLE

CONNECTIVE TISSUE OF SKELETAL MUSCLE

- Containment
- Limit of expansion of the muscle
- Transmission of muscular forces
- Endomysium around each muscle cell (fiber)
- Perimysium around and among the primary bundles of muscle cells
- Epimysium dense irregular collagen c.t., continuous with tendons and fascia
- Fascia dense regular collagen c.t.

CONNECTIVE TISSUE OF SKELETAL MUSCLE

CONNECTIVE TISSUE OF SKELETAL MUSCLE

51-51-51**ORGANIZATION OF SKELETAL MUSCLE TISSUE**

WHY IS SKELETAL MUSCLE TISSUE STRIATED?

- morphological and functional unit: muscle fiber (rhabdomyocyte) elongated, cylindrical-shaped, multinucleated cell (syncytium)
- nuclei are located at the periphery (under sarcolemma)
- myofibrils show cross striation
- diameter of muscle fiber: 25-100 μm
- length: millimeters centimeters (up to 15)

CLASSIFICATION OF SKELETAL MUSCLE

- Myosin heavy chain (MHC) type I and II
- distinct metabolic, contractile, and motor-unit properties
- ATPase activity
- Twitch type
- Fast vs. slow
- Fiber color
- Red vs. white
- Myoglobin content
- Glycogen content
- Energy metabolism
- Endurance

Properties	Type I fibers	Type IIA fibers	Type IIX fibers
Motor Unit Type	Slow Oxidative (SO)	Fast Oxidative/Glycolytic (FOG)	Fast Glycolytic (FG)
Twitch Speed	Slow	Fast	Fast
Twitch Force	Small	Medium	Large
Resistance to fatigue	High	High	Low
Glycogen Content	Low	High	High
Capillary Supply	Rich	Rich	Poor
Myoglobin	High	High	Low
Red Color	Dark	Dark	Pale
Mitochondrial density	High	High	Low
Capillary density	High	Intermediate	Low
Oxidative Enzyme Capacity	High	Intermediate-high	Low
Z-Line Width	Intermediate	Wide	Narrow
Alkaline ATPase Activity	Low	High	High
Acidic ATPase Activity	High	Medium-high	Low

Muscle fiber = myofiber = syncitium = rhabdomyocyte

Muscle fiber – morphological and functional unit of skeletal muscle [Ø 25 – 100 μ m]

Myofibrils – compartment of fiber sarcoplasm [Ø $0.5 - 1.5 \mu m$]

Sarcomere – the smallest contractile unit [2.5 μ m], serial arrangement in myofibrils

Myofilaments – actin and myosin, are organized into sarcomeres [Ø 8 and 15 nm]

ULTRASTRUCTURE OF RHABDOMYOCYTE

Sarcolemma + t-tubules,

Sarcoplasm:

Nuclei, Mitochondria, Golgi apparatus, Glycogen (β granules)

Sarcoplasmic reticulum (smooth ER) – reservoir of Ca²⁺

Myofibrils (parallel to the length of the muscle fiber)

MYOFIBRILS

- elongated structures [Ø 0.5 – 1.5 $\mu]$ in sarcoplasm of muscle fiber oriented in parallel to the length of the fiber,

Thick filament

filament

- Actin + myosin myofilaments
- Sarcomere
- Z-line
- M-line and H-zone
- I-band, A-band

MYOFIBRILS

SARCOMERE

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

SARCOMERE

SARCOPLASMIC RETICULUM

- communicating intracellular cavities around myofibrils, separated from cytosol
- terminal cisternae ("junction") and longitudinal tubules ("L" system).
- reservoir of Ca^{II+} ions
- T-tubules ("T" system) are invaginations of sarcoplasm and bring action potential to terminal cisternae change permeability of membrane for Ca^{II+} ions

SARCOPLASMIC RETICULUM

ULTRASTRUCTURE OF RHABDOMYOCYTE

THIN MYOFILAMENTS

• Fibrilar actin (F-actin), (\emptyset 7 nm, \leftrightarrow 1 μ m)

- Tropomyosin thin double helix in groove of actin double helix, spans 7 monomers of G-actin
- Troponin complex of 3 globular proteins
 - TnT (Troponin T) binds tropomyosin
 - TnC (Troponin C) binds calcium
 - TnI (Troponin I) inhibits interaction between thick and thin filaments

THICK MYOFILAMENTS

- Myosin II
- Large polypeptide, golf stick shape, (\emptyset 15 nm, \leftrightarrow 1,5 μ m)
- Bundles of myosin molecules form thick myofilament

- Nebulin
- 600-900kDa
- F-actinu stabilization
- Titin
- >MDa
- Myosin II stabilization

Light

chains

(L1+L2)

Actin

site

ATPase

binding

MYOFILAMENTS ASSEMBLE TO CONTRACTIVE STRUCTURES

MYOFILAMENTS ASSEMBLE TO CONTRACTIVE STRUCTURES

- Propagation of action potential (depolarization) via T-tubule (= invagination of sarcolemma)
- Change of terminal cisternae permeability releasing of Ca⁺ ions increases their concentration in sarcoplasm
- Myosin binds actin sarcomera then shortens by sliding movement contraction
- Relaxation: repolarization, decreasing of Ca²⁺ ions concentration, inactivation of binding sites of actin for myosin

The Cross Bridge Cycle. (only one myosin head is shown for clarity)

MECHANISM OF CONTRACTION

- 1. Impulse along motor neuron axon
- 2. Depolarization of presynaptic membrane (Na⁺ influx)
- 3. Synaptic vesicles fuse with presynaptic membrane
- 4. Acetylcholine exocyted to synaptic cleft
- 5. Acetylcholine diffuses over synaptic cleft
- 6. Acetylcholine binds to receptors in postsynaptic membrane
- 7. Depolarization of postsynaptic membrane and sarcolemma (Na⁺ influx)
- 8. T-tubules depolarization
- 9. Depolarization of terminal cisternae of sER
- 10. Depolarization of complete sER
- 11. Release of Ca^{II+} from sER to sarcoplasm
- 12. Call+ binds TnC
- 13. Troponin complex changes configuration
- 14. Tropomyosin removed from actin-myosin binding sites
- 15. Globular parts of myosin bind to actin
- 16. ATPase in globular parts of myosin activated
- 17. Energy generated from $ATP \rightarrow ADP + Pi$
- 18. Movement of globular parts of myosin
- 19. Actin myofilament drag to the center of sarcomere
- 20. Sarcomeres contract (H-zone, I-band shorten)
- 21. Myofibrils contracted
- 22. Muscle fiber contracted

http://highered.mheducation.com/sites/0072495855/student_view0/chapter10/animati on__breakdown_of_atp_and_cross-bridge_movement_during_muscle_contraction.html

Courtesy Dr. Pacherník, Faculty of Science MU

PROPRIORECEPTORS

Golgiho tendon organs

- myotendineous junction
- senzory endings synapsed with inhibitory neurons
- tension, stretch

Muscle spindles

- change in muscle elongation (stretch)
- modified perimysium
- thin muscle (intrafusal) fibers
- sensory endings
- reflexes, coordination of muscle groups

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

- **1** Myelinated axons
- 2 Neuromuscular junction
- 3 Capillaries
- 4 Muscle fiber nucleus

MYASTHENIA GRAVIS

NEUROMUSCULAR JUNCTION

Botulotoxin

Clostridium botulinum

- Structural components linking myofibrils to sarcolemma
- Circumferential alignment
- dystrophin-associated glycoprotein (DAG) complex
 - links internal cytoskelet to ECM
 - Integrity of muscle fiber

Nature Reviews | Molecular Cell Biology

Nature Reviews | Genetics

DUCHENNE MUSCULAR DYSTROPHY

- Lane 1: Becker dystrophy; Dystrophin has reduced abundance but normal size.
- Lane 2: Becker dystrophy; Dystrophin has reduced size and abundance.
- Lane 3: Normal; Dystrophin has normal size and amount.
- Lane 4: Duchenne dystrophy; Almost no protein is present.

CARDIAC MUSCLE TISSUE

Z disk

HISTOLOGY OF CARDIAC MUSCLE TISSUE

- made up of long branched fiber (cells) cardiomyocytes,
- cardiomyocytes are <u>cylindrical cells</u>, branched on one or both ends (Y, X shaped cells),
- sarcoplasm: single nucleus in the center of cell, striated myofibrils, numerous mitochondria,
- cells are attached to one another by end-to-end junctions intercalated discs.

HISTOLOGY OF CARDIAC MUSCLE TISSUE

HISTOLOGY OF CARDIAC MUSCLE TISSUE

ULTRASTRUCTURE OF CARDIOMYCYTE

CARDIAC MUSCLE COMPARED TO SKELETAL

- no triads, but diads: 1 t-tubule + 1 cisterna
- t-tubules around sarcomeres at Z lines rather than at zone of overlap
- sarcoplasmic reticulum via its tubules contact sarcolemma as well as the t-tubules
- cardiac muscle cells are totally dependent on aerobic metabolism to obtain the energy
- large numbers of mitochondria in sarcoplasm and abundant reserves of myoglobin (to store oxygen)
- abundant glycogen and lipid inclusions

INTERCALATED DISC

- fasciae adherentes (adhesion of cells)
- nexus (quick intercellular communication transport of ions, electric impulses, information)
- "scalariform" shape of cell ends

INTERCALATED DISC

MYOFIBRILS IN CARDIOMYOCYTE

- Actin + myosin myofilaments
- Sarcomere
- Z-line
- M-line and H-zone
- I-band, A-band
- T-tubule + 1 cisterna = diad (around Z-line)

MYOFIBRILS IN CARDIOMYOCYTE

ULTRASTRUCTURE OF CARDIOMYOCYTES

SPECIALIZED CARDIOMYOCYTES

PURKINJE FIBERS

- are located in the inner layer of heart ventricle wall
- are specialized cells fibers that conduct electrical stimuli or impulses that enables the heart to contract in a coordinated fashion
- numerous sodium ion channels and mitochondria, fewer myofibrils

SPECIALIZED CARDIOMYOCYTES

ATRIAL CARDIOMYOCYTES

- Natriuretic peptide A (ANP)
- atrial cardiomyocytes
- vasodilatation, diuresis

MUSCLE TISSUE

SMOOTH MUSCLE TISSUE

SMOOTH MUSCLE TISSUE

• Cells – leiomyocytes - form layers - eg. in walls of hollow organs

- spindle shaped cells (leiomyocytes) with myofilaments not arranged into myofibrils (no striation), 1 nucleus in the centre of the cell
- myofilaments form bands throughout the cell
- actin filaments attach to the sarcolemma by focal adhesions or to the dense bodies substituting Z-lines in sarcoplasm
- sarcoplasmic reticulum forms only tubules, Ca^{II+} ions are transported to the cell via pinocytic vesicles
- zonulae occludentes and nexuses connect cells
- calmodulin

CAVEOLS

- caveolae are equivalent to t-tubules
- transmembrane ion channels

CONTRACTION OF LEIOMYCYTES

Relaxed smooth muscle cell

Contracted smooth muscle cell

INNERVATION OF LEIOMYCYTES

Single-unit Smooth Muscle

CONTRACTION OF LEIOMYCYTES

SUMMARY

Hallmark	Skeletal muscle	Cardiac muscle	Smooth muscle
Cells	Thick, long, cylindrical, non-branched	Branched, cylindrical	Small, spindle-shaped
Nuclei	Abundant, peripherally	1-2, centrally	1, centrally
Filaments ratio (thin:thick)	6:1	6:1	12:1
sER and myofibrils	Regular sER around myofibrils	Less regular sER, myofibrils less apparent	Less regular sER, myofibrils not developed
T tubules	Between A-I band, triads	Z lines, diads	Not developed
Motor end plate	Present	Not present	Not present
Motor regulation	Voluntary control	No voluntary control	No voluntary control
Other	Large multinucleated cells in bundles, c.t.	Intercalated discs, working and specialized cardiomyocytes	Caveoli, overlapping cells in layers

EMBRYONIC DEVELOPMENT OF MUSCLE SYSTEM

EMBRYONIC DEVELOPMENT OF MUSCLE SYSTEM

EMBRYONIC DEVELOPMENT OF MUSCLE TISSUE

LIMB MUSCLES

TRUNK MUSCLES

TRUNK MUSCLES

PRUNE BELLY SYNDROME

- Absence of abdominal muscles
- Failure of hypaxial specification
- VACTERL and aneuploidy association

- •V Vertebral anomalies
- •A Anorectal malformations
- •C Cardiovascular anomalies
- •T Tracheoesophageal fistula
- •E Esophageal atresia
- •R Renal (Kidney) and/or radial anomalies
- L Limb defects

EMBRYONIC DEVELOPMENT OF SKELETAL MUSCLE TISSUE

REGENERATION

Myoblasts

Myoblasts fuse to form a skeletal muscle fiber

Muscle fiber

REGENERATION

DIFFERENTIATION IN VITRO

Reprogram into ES like-cells

TISSUE ENGINEERING

https://www.nature.com/articles/nbt.2269

https://www.nature.com/news/artificialjellyfish-built-from-rat-cells-1.11046

Lecture 9

Nerve tissue

- Nerve tissue
- Neuron
- Synapse
- Neuroglia
- Nerve
- Saltatory signal propagation
- Development of nerve tissue
- Nerve regeneration

Nerve tissue – general 1

Controls and integrates all body activities within limits that maintain life

Key functions

- sensing changes with sensory receptors
- interpreting and remembering those changes
- reacting to those changes with effectors

Somatic X Autonomous (vegetative)

Copyright C Pearson Education, Inc., publishing as Benjamin Cummings.

Anatomical organization of nervous system 1

Central nervous system - CNS

Definition:

Unpaired, bilaterally symmetrical structures extending along the longitudinal axis of the midsagittal plane of the body.

Structures arising directly from the neural tube.

Includes:

- Brain
- Spinal cord

Peripheral nervous system - PNS

Definition:

Made up of transmission pathways carrying information between the CNS and external/internal environments.

Afferent (sensory) pathways: Carry information to the CNS.

Efferent (motor) pathways: Carry information from the CNS.

Includes:

- Cranial nerves (12 pairs)
- Spinal nerves (31 pairs)
- Peripheral nerves
- Ganglia

Anatomical organization of nervous system 2

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Nerve tissue – General – Neuron 1

Nervous tissue is made up of just 2 types of cells:

- <u>Neurons</u>
- Neuroglia glial cells (supporting cells)
- Neurons are the basic functional units of nervous tissue.
- They are highly specialized to transmit nerve impulses.

- 1. Perikaryon (neurocyte)
- 2. Processes:

(one-way signal conduction)

- axon

(always only one; centrifugal conduction) - dendrit(es)

(centripetal conduction)

Neuron 2

Position: CNS – grey matter PNS – ganglia

Neuron 3 - Perikaryon

Shape:

pyramidal, shpherical, ovoid, peer-shaped

Size:

5 to 150 μm

Organelles:

- Nuclues large + pale + prominent nucleoli
- Nissl substance rough ER
- Neurofibrils (neurofilaments + neurotubules + actin)
- Lipofuscin pigment clumps

Neuron 4 - Perikaryon

Nissl substance in TEM

Cell and Tissue Ultrastructure – A Functional Perspective; 1993; Cross and Mercer, Freeman and Co.; Page 127

Neuron 5 - Perikaryon

Silver nitrate

Neuron 6 - Perikaryon

Neuron 7 – Neurites / Processes

Neuron 7 – Neurites / Processes

Dendrites

- Conducts impulses towards the cell body
- Typically short, highly branched & unmyelinated
- Surfaces specialized for contact with other neurons
- Contains neurofibrils & Nissl bodies
- Receptive surface for synaptic junctions
- Contain MAP-2 (distinction from axon)
- Tens of thousands of synapses on large dendrites
- · Dendritic spines located on surface of some dendrites
- Spines diminish with age and poor nutrition

Axon (nerve fiber)

- 1 axon projects from cell body at axon hillock
- Axon hillock pyramid shaped region of the soma that is devoid of RER
- Some axons are up to 100 cm
- <u>Initial segment = Spike trigger zone</u> (a portion of axon from its origin to the beginning of myelin sheath)
- At spike trigger zone trigger zone summation of excitatory and inhibitory impulses occurred
- Collateral branches, Terminal arbor
- Myelinated or Unmyelinated
- · Conduct impulses away from cell body
- Swollen tips called <u>synaptic knob (terminal button)</u> contain synaptic vesicles filled with neurotransmitters
- Cell membrane = axolemma
- Cytoplasm = axoplasm

White matter: areas of myelinated axons Gray matter: areas of unmyelinated axons, cell bodies, and dendrites

Neuron 8 – Neurites / Processes

N

Axon hilloc -

Neuron in TEM

Neuron 9 – Axonal transport

Why?

many proteins made in soma must be transported to axon and axon terminal to repair axolemma, serve as gated ion channel proteins, as enzymes or neurotransmitters

How?

axonal transport – two-way passage of proteins, organelles, and other material along an axon

- anterograde transport movement down the axon away from soma (dynein)
- retrograde transport movement up the axon
 towaged the range ort: 1-5 mm/day
- (kinesin)
 - Fast transport: 200-400 mm/day

Nerve tissue – Neuropil 1

All the material filling space among the bodies of neurons and glial cells + ECM

pyramidal cells - impregnation

motoneurons - HE

motoneurons - combined method

Nerve tissue – Neuropil 2

Neuropil in TEM

Neuron – Classification 1

According to the number of the processes

Neuron – Classification 2

According to the function

Motor (efferent) neurons:

 conduct impulses to muscles, neurons, glands

Sensory (afferent) neurons:

receive sensation

Interneurons:

local circuit neurons

Synapse 1

Definition

Synapses are highly specialized intercellular junctions, which link the neurons of each nervous pathway

- · Axon terminal forms bouton terminal
- Presynaptic membrane contains mitochondria, and an abundance of synaptic vesicles with neurotransmitter
- Presynaptic dense projections are associated with synaptic vesicles form active sites of synapse
- Synaptic vesicles (smaller + larger storage)
- Postsynaptic membrane contains receptors and some dense materials
- Synaptic cleft 20-30 nm width, occupied by fine filaments
- · Glial cells increase synaptic efficacy
- Asymmetric synapses are excitatory (a thick postsynaptic membrane and a 30 nm synaptic cleft)
- Symmetric synapses are inhibitory (thin postsynaptic membrane and a 20 nm synaptic cleft)
- Need special staining to see by light microscopy

Synapse 2

Excitatory synapses

- postsynaptic Na+ channels open
- influx of Na+
- depolarizition of membrane of postsynaptic neuron

Х

Inhibitory synapses

- postsynaptic CI- (or other anion) channels open
- influx of anions
- hyperpolarizition of membrane of postsynaptic neuron

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Neurotransmitters

- Acetylcholine
- Amioacids gluatamate, glycin, GABA (gamma-amminobutyric acid)
- Monoamines serotonin, catecholamines, dopamine, adrenaline, ...
- Neuropeptides enkefalin, somatostatin, neurotensin,
- Others adenosine, nitric oxide

Synapse in TEM

Classification according to the constitution

One neuron may have 1 000 to 10 000 synapses !!!

General features

- non-neuronal cells of several types
- support and protect the neurons
- bind neurons together and form framework for nervous tissue
- in fetus, guide migrating neurons to their destination
- if mature neuron is not in synaptic contact with another neuron it is covere
- prevents neurons from touching each other
- gives precision to conduction pathways
- only nucle Number of neurons: about 100 billions to 1 trillion
- there are Number of glial cells: 50x more then neurons

Neuroglia - Astrocytes

- most abundant glial cell in CNS
- covers entire brain surface and most non-synaptic regions of the neurons in the gray matter of the CNS
- diverse functions:
- ✓ form a supportive framework of nervous tissue
- have extensions (perivascular feet) that contact blood capillaries that stimulate them to form a tight seal called the blood-brain barrier
- convert blood glucose to lactate and supply this to the neurons for nourishment
- nerve growth factors secreted by astrocytes promote neuron growth and synapse formation
- communicate electrically with neurons and may influence synaptic signaling
- regulate chemical composition of tissue fluid by absorbing excess neurotransmitters and ions
- astrocytosis or sclerosis when neuron is damaged, astrocytes form hardened scar tissue and fill space formerly occupied by the neuron
- ✓ contains GFAP

Neuroglia - Astrocytes

fibrous astrocyte (predominant in white matter)
Neuroglia - Oligodendrocytes

- ✓ smaller than astrocytes; darker, round nucleus, abundant RER, well developed golgi apparatus
- ✓ form myelin sheaths in CNS
- \checkmark one cell serves more then one axon
- cannot migrate around axons (unlike Schwann cells) must push newer layers of myelin under the older ones so myelination spirals inward toward nerve fiber
- ✓ nerve fibers in CNS have no Schwann sheath (neurilemma) or endoneurium
- each arm-like process wraps around a nerve fiber forming an insulating layer that speeds up signal conduction
- ✓ damaged in multiple sclerosis

Neuroglia - Microglia

- ✓ smallest neuroglial cell
- ✓ small, dark, elongated nuclei
- ✓ possess phagocytotic properties
- ✓ when activated antigen presenting cell
- ✓ originate in bone marrow (mesodermal origin)

Neuroglia – Ependymal cells

- ✓ line ventricles of CNS and central canal of spinal cord
- ✓ cuboidal or low columnar shape
- ✓ no basal lamina
- ✓ secrete cerebrospinal fluid (CSF)
- ✓ some are ciliated, facilitate movement of CSF
- ✓ participate in formation of Choroid plexus

Neuroglia – Central - Summary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- cells that encircle all axons in PNS
- provide structural and metabolic support to axons
- provide guidance for axonal growth

Small diameter axons

Enveloping by only cytoplasm

only Schwann sheath - gray nerve fiber

Large diameter axons Wrapping by myelin sheaths

Schwann + myelin sheath- double contoured nerve fiber

Small diameter axons

Non-myelinated fibers

(typical for autonomous nerve system)

One Schwann cell can ensheath multiple axons

only Schwann sheath - gray nerve fiber

Neuroglia in PNS – Schwann cells 4 Large diameter axons Myelinated fibers **Myelination** • begins 14th week of development proceeds rapidly during infancy completed in adolescence nucleus myelin cytoplasm axon mesaxon mesaxon major dense line mesaxon

Myelin sheath

Double contoured nerve fiber

= Neurilemma

Myelin sheath is segmented = Many Schwann cells are needed to cover one nerve fibre

Schmidt-Lanterman clefts

- Schwann cell cytoplasm trapped within the lamellae of myelin

Schmidt-Lanterman clefts

Neuroglia – Functional effect of myelination

Signal propagation

Non-myelinated axons - slow (0.5 - 2 m/s)

Myelinated axons – fast (15 – 20 m/s)

Peripheral nerve – Organization 1

Consists of 100's to 100,000's of myelinated and unmyelinated axons (nerve fibers).

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Connective tissue layers composing nerves:

Endoneurium - surrounds

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Peripheral nerve – Organization 2

Peripheral nerve – Organization 3

perineurium

Gastrulation Formation of the three germ layers

Schoenwolf et al: Larsen's Human Embryology, 4th Edition. Copyright © 2008 by Churchill Livingstone, an imprint of Elsevier, Inc. All rights reserved

- Ectoderm: outside, surrounds other layers later in development, generates skin and nervous tissue.
- <u>Mesoderm</u>: middle layer, generates most of the **muscle, blood** and **connective tissues** of the body and placenta.
- Endoderm: eventually most interior of embryo, generates the epithelial lining and associated glands of the gut, lung, and urogenital tracts.

Neural Induction

In addition to patterning the forming mesoderm, the **primitive node also sets up the neural plate**

Neurulation Folding and closure of the neural plate

- neural folds close
- · neural crest delaminates and migrates away
- closure happens first in middle of the tube and then zips rostrally and caudally
- anterior neuropore closes around day 25
- posterior neuropore closes around day 28

The **early neural tube** is a pseudostratified epithelium

- The "apical" portion abuts the central canal
- The "basal" portion abuts the surrounding tissue (e.g. somites, notochord, etc.).
- Cell division occurs in the apical portion.

Neural crest

the "4th germ layer"

Neural crest derivatives

Nerve tissue regeneration - CNS

Stem / progenitor cells resiging in some areas of adult brain

Life-long plasticity of CNS

- Sprouting new dendrites
- Synthesis of new proteins
- Changes of synaptic contacts

Nerve tissue regeneration - PNS

Axons and dendrites may be repaired if:

- Neuron cell body remains intact
- Schwann cels remains active and form tube
- · Coartianua dona net forme tao remidle

а

51

b 2 weeks

6.1

injury

Breakdown of axon Breakdown of myelin sheath c 3 weeks

Schwann cells divide Axon begins to grow (1.5 mm/day) Navigaion by Schwann cells Collaterals will die d 3 months

 $\Delta \Delta$

Thank you for your attention !

Questions and comments at: ahampl@med.muni.cz

THANK YOU FOR ATTENTION

pvanhara@med.muni.cz http://www.med.muni.cz/histology

