Kidneys in regulation of homeostasis

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

A3. Compartmentalization of body fluidsA4. Differences between intra- and extracellular fluids

B84. Regulation of body fluid volumeB85. Regulation of constant osmotic pressure

B65. Formation and secretion of posterior pituitary hormones
B70. Adrenal cortex. Functions, malfunctions.
B74. Natriuretic peptides

B73. Bone formation and resorption. Regulation of calcaemia.A33. Homeostasis (acid-base balance)

Homeostasis

= maintainance of stable conditions in the internal body environment

Maintainance of Constant Volume and Composition of Body Fluids Maintainance of Acid-Base Balance

Constant Volume and Composition of Body Fluids - Regulation by Kidneys -

Body fluids occupy ~60% of the body weight.

Guyton & Hall. Textbook of Medical Physiology

Despopoulos, Color Atlas of Physiology © 2003

Body fluids occupy ~60% of the body weight.

Transcellular fluid (1-2 l) special type of ECF. (peritoneal, pericardial, synovial, cerebrospinal and intraocular fluid)

Guyton & Hall. Textbook of Medical Physiology

Balance between Input and Output of Fluid

Daily Intake and Output of Water (ml/day)

	Normal	Prolonged, Heavy Exercise
Intake		
Fluids ingested	2100	?
From metabolism	200	200
Total intake	2300	?
Output		
Insensible—skin	350	350
Insensible—lungs	350	650
Sweat	100	5000
Feces	100	100
Urine	1400	500
Total output	2300	6600

Guyton & Hall. Textbook of Medical Physiology

Body Fluids – Composition ECF vs. ICF

Guyton & Hall. Textbook of Medical Physiology

Body Fluids – Composition

plasma vs. ISF

	Plasma (m0sm/L H ₂ 0)	Interstitial (m0sm/L H ₂ 0)
Na ⁺	142	139
K ⁺	4.2	4.0
Ca ⁺⁺	1.3	1.2
Mg ⁺	0.8	0.7
Cl	108	108
HCO ₃ ⁻	24	28.3
$HPO_4^-, H_2PO_4^-$	2	2
SO_4^-	0.5	0.5
Phosphocreatine		
Carnosine		
Amino acids	2	2
Creatine	0.2	0.2
Lactate	1.2	1.2
Adenosine triphosphate		
Hexose monophosphate		
Glucose	5.6	5.6
Protein	1.2	0.2
Urea	4	4
Others	4.8	3.9

Guyton & Hall. Textbook of Medical Physiology

Body Fluids – Composition

osmolality 285 mosm/kg H₂O

↑ NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)

↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Guyton & Hall. Textbook of Medical Physiology.

Body Fluids – Composition

osmolality

285 mosm/kg H₂O

- ↑ NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)
 - ↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Precise regulation of osmolality of ESF is necessary!

- osmoreceptors
- kidneys (target organ for the action of hormones below)
- antidiuretic hormone
- aldosteron
- natriuretic peptides

Antidiuretic Hormone (vasopressin)

- effects:

- → water reabsorption in kidneys (collecting duct, aquaporin 2)
- → control of blood pressure (water reabsorption, vasoconstriction)
- →↑ glycogenolysis, mediator in the brain, ↑ secretion of ACTH in adenohypophysis

Antidiuretic Hormone (vasopressin)

- regulation of secretion:

- \uparrow \uparrow osmolality
 - \downarrow volume of ECF
 - pain, emotions, stress (surgical), physical exertion; standing
 - nausea, vomitting
 - angiotensine II
 - morphin, nicotine, barbiturates, ...
 - \downarrow osmolality, \uparrow volume of ECF
 - alcohol; antagonists of opioids

Guyton & Hall. Textbook of Medical Physiology.

Antidiuretic Hormone (vasopressin)

- pathology:
 - ↑ SIADH
 - ↓ diabetes insipidus

- the most important steroid with the mineralocorticoid effect
- mechanism of action:
 - binding to the mineralocorticoid receptor \rightarrow binding of the hormone-receptor complex to DNA \rightarrow mRNA \rightarrow synthesis of proteins:
 - namely Na⁺/K⁺-ATPase
 - 1 number of amiloride-inhibited Na⁺-channels in the membrane of target cells

Start of the effect even 10 – 30 min after release of the hormone!

Guyton & Hall. Textbook of Medical Physiology

- the most important steroid with the mineralocorticoid effect
- mechanism of action:
 - binding to the mineralocorticoid receptor \rightarrow binding of the hormone-receptor complex to DNA \rightarrow mRNA \rightarrow synthesis of proteins:
 - namely Na⁺/K⁺-ATPase
 - 1 number of amiloride-inhibited Na⁺-channels in the membrane of target cells
 - Activity of H⁺-pump in collecting ducts of the renal cortex
 - Activity of Na+/H+-antiport in both distal and proximal parts of nephrons

Start of the effect even 10 – 30 min after release of the hormone!

- the most important steroid with the mineralocorticoid effect
- effects:
 - → \uparrow Na⁺ reabsorption from urine, sweat, saliva, gastric juice → \uparrow K⁺ urine excretion, \uparrow acidity of urine (exchange for Na⁺) → \uparrow K⁺ content and \downarrow Na⁺ content in muscle and brain cells
- regulation of its secretion:
 - ACTH from the adenohypophysis (transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
 - renin-angiotensine-aldosteron system

Renin-Angiotensine-Aldosteron System

Glomerulus Lacis cells Macula densa Efferent arteriole Lacis cells Afferent arteriole

Ganong's Review of Medical Physiology

- the most important steroid with the mineralocorticoid effect
- regulation of its secretion:
 - ACTH from the adenohypophysis (a transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
 - renin-angiotensine-aldosteron system
 - atrial natriuretic peptide (inhibition of renin secretion, ↓ reactivity of *zona glomerulosa* to angiotensine II)
 - other hormones of adenohypophysis (besides ACTH; maintenance of reactivity of *zona glomerulosa*)

Aldosteron - Pathology

Primary hyperaldosteronism (Conn's syndrome)

- tumors of adrenal cortex which secretes aldosteron
- \rightarrow heavy K⁺ depletion
- \rightarrow hypertension
- → ECF expansion (without edemas, without marked hypernatremia – redundant salts released by the so called escape phenomena)
- \rightarrow at a prolonged K⁺ depletion:
 - \rightarrow renal damage \rightarrow polyuria (the hypocalemic nephropathy)
 - →muscle weekness
 - →metabolic alkalosis → \downarrow plasmatic concentration of Ca²⁺ → latent or fully developed tetany
 - →glucose intolerance

Aldosteron - Pathology

Primary hyperaldosteronism (Conn's syndrome)

tumors of adrenal cortex which secretes aldosteron

Secondary hyperaldosteronism

 patients with the congestive heart failure, nephrosis, liver cirhosis, renal artery constriction, hypertension, with the salt-losing form of adrenogenital syndrome

Hyporeninemic hypoaldosteronism

Pseudohypoaldosteronism

Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- receptors (ANPR-A the highest affinity to ANP, ANPR-B CNP, ANPR-C all NP)
- short half-life
- secreted by atrial cardiomyocytes, found also in the brain

Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- effects (through \uparrow cGMP): $\rightarrow \downarrow$ BP (also through the brain stem)
 - → natriuresis (1. ↑ GFR increased area for the filtration through relaxation of mesangial cells, 2. ↑ Na⁺ excretion – decrease tubular Na⁺ reabsorption)
 - → ↓ reactivity of vascular smooth muscles for vasocontrictive substances
 - → inhibition of renin secretion, ↓ reactivity of zona glomerulosa for stimuli ↑ aldosteron secretion
 - \rightarrow inhibition of ADH secretion $\rightarrow \uparrow$ water excretion
- regulation of its secretion:
 - 1 ^ ECF volume (atrial cells' stretch at higher atrial filling)
 - \downarrow CVP at orthostasis

Water Homeostasis

water intoxication

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Salt Homeostasis

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Calcium in the Body

Ganong's Review of Medical Physiology

hypocalcemia hypercalcemia

Hormonal Regulation of Calcemia

Parathormone Vitamin D Calcitonin

Hormonal Regulation of Calcemia

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Acid-Base Balance - Regulation by Kidneys -

acidsubstance releasing H+ (e.g. $H_2CO_3 \rightarrow H^+ + HCO_3^-$)basesubstance binding H+ (e.g. $HCO_3^- + H^+ \rightarrow H_2CO_3$; proteins)

[H+]

influences activity of almost all enzymatic systems

- very low compared to the concentration of other ions;
 [H⁺] = 40 nEq/l but for example [Na⁺] = 142 mEq/l
- thus, its changes has to be much smaller (3-5 nEg/l)
 ⇒ precise regulation of [H⁺] is necessary!

Since [H⁺] is a very small number, its negative logarhithm is used:

 $pH = -log [H^+] = -log 0.000 000 040 = 7.4$

The value of pH is thus inversely proportional to $[H^+]$. Change of pH by 1 ~ change of $[H^+]$ 10-times bigger!

Physiological value of pH:

- arterial blood pH = 7.4
- venous blood pH = 7.35 (CO₂ from tissues)
- ICF pH = 6.0 7.4 (according to the cell type)
- urine pH = 4.5 8.0

The value of pH 6.8 - 8.0 can be survived for several hours!

Acid-base balance is regulated by:

1) Buffers

- fast regulation (seconds)
- pH changes attenuated by binding and release of H⁺:

buffer + $H^+ \iff H$ - buffer

 \uparrow [H⁺] direction to the right favoured till free buffer is available

 \downarrow [H⁺] direction to the left favoured, H⁺ released

2) Lungs

- fast regulation (minutes even hours)
- elimination of CO_2 from the body $(H_2CO_3 \rightarrow H_2O + CO_2)$

3) Kidneys

- slower regulation (hours even days) but the most powerful
- elimination of acids and bases from the body

Regulation of Acid-Base Balance by Buffers

1) Bicarbonate buffer

- the most important buffer system
- weak acid H_2CO_3 and its salt NaHCO₃ + Na⁺ CO₂ + H₂O \iff H₂CO₃ \iff H⁺ + HCO₃⁻
- the most powerful (despite not expected to be so powerful, pK = 6.1)

2) Phosphate buffer

- an important buffer system of the renal tubular fluid and of the intracellular fluid (high concentration + pH nearer to pK = 6.8)
- $H_2PO_4^-$, HPO_4^{2-}
- 3) Protein buffer
 - an important buffer of an important buffer system of (conc. + pK)

60 - 70% of the buffer capacity of body fluids sites in the cells and is dependent on proteins!

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Lungs

by the hyper- or hypoventilation

pH = 6.1 + log
$$\frac{\text{HCO}_3^{-1}}{0.03 \times \text{P}_{\text{CO2}}}$$

 $\uparrow [H^+] \rightarrow \uparrow \text{Alveolar ventilation}$ $\ominus \uparrow \qquad \qquad \downarrow \\ PCO_2$

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

- by excretion of acid or alkalic urine
- a high amount of HCO₃⁻ still filtered in the glomerulus GFR 180 l/day, [HCO₃⁻]_{plasma} 24 mEq/l → 4320 mEq HCO₃⁻ filtered per day - almost all ordinarily reabsorbed
- a high amount of H⁺ still secreted in renal tubules about 80 mEq of non-volatile acids are formed in the course of metabolic processes per day - have to be excreted by kidneys
- filtered HCO₃⁻ / secreted H⁺

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃⁻

Regulation of Acid-Base Balance by Kidneys

1) Secretion of H⁺

2) Reabsorption of HCO₃⁻

 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

Na⁺/H⁺-antiport

>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

Reabsorption of HCO₃⁻ across the basolateral membrane facilitated by:

- Na⁺-HCO₃⁻ co-transport (the proximal tubule)
- Cl⁻-HCO₃⁻ exchanger

(the end of proximal tubule and the following parts of tubulus except for the thin loop of Henle)

Regulation of Acid-Base Balance by Kidneys

1) Secretion of H⁺

2) Reabsorption of HCO₃⁻

 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

 in the final part of distal tubule and in the collecting duct

Na⁺/H⁺-antiport

>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

primary active transport of H⁺ (intercalated cells) acidification of urine

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃⁻
- 3) Production of HCO₃⁻ *de novo*
 - Phosphate buffer $(HPO_4^{2-}, H_2PO_4^{-})$

Ammonium buffer (NH₃, NH₄⁺)

 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises NH₄⁺ originates from glutamine - the proximal tubule, thick ascending loop of Henle and distal tubule

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃-
- 3) Produkce nového HCO₃-
 - Phosphate buffer $(HPO_4^{2-}, H_2PO_4^{-})$

 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises

the collecting duct (permeable for NH_3 but far less for NH_4^+ - excreted by urine) 50% of H⁺ secretion and HCO_3^- formed *de novo*!

Ammonium buffer (NH₃, NH₄⁺)

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

Regulation of H⁺ secretion

↑ - ↑ pCO₂ in ECF (respiratory acidosis; direct stimulation due to ↑ formation of H⁺ in tubular cells)

- **pH in ECF** (respiratory or metabolic acidosis)
- **f secretion of aldosteron** (stimulates active H⁺ secretion in intercalated cells of collecting ducts, also through Na⁺/H⁺ antiport; Conn's syndrome - alkalosis)

tendency to alkalosis

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys Acidosis - correction by kidneys

$$\downarrow \text{ pH} = 6.1 + \log \frac{\text{HCO}_3^-}{0.03 \times \text{P}_{\text{CO2}}} \downarrow$$

- metabolic acidosis: due to ↓ HCO₃ renal correction : ↓ HCO₃- in ECF → ↓ filtered HCO₃- → complete reabsorption of HCO₃- + its formation *de novo* (HCO₃- not excreted) + ↑ H⁺ excretion → pH normalization
- respiratory acidosis: due to $\uparrow P_{CO2}$ (hypoventilation) renal correction: $\uparrow P_{CO2}$ in ECF $\rightarrow \uparrow P_{CO2}$ in tubular cells \rightarrow \uparrow formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \uparrow H^+$ secretion + $\uparrow HCO_3^-$ reabsorption \rightarrow pH normalization

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys Alkalosis - correction by kidneys

↑ pH = 6.1 + log
$$\frac{\text{HCO}_3^{-1}}{0.03 \times P_{\text{CO2}}}$$
 ↑

- metabolic alkalosis: due to ↑ HCO₃⁻
 renal correction: ↑ HCO₃⁻ in ECF → ↑ filtered HCO₃⁻ → incomplete HCO₃⁻ reabsorption (lack of H+) → ↑ HCO₃⁻
 excretion by urine → pH normalization
- respiratory alkalosis : due to $\downarrow P_{CO2}$ (hyperventilation) renal correction: $\downarrow P_{CO2}$ in ECF $\rightarrow \downarrow P_{CO2}$ in tubular cells $\rightarrow \downarrow$ formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \downarrow H^+$ secretion + $\downarrow HCO_3^-$ reabsorption \rightarrow pH normalization

Acid-Base Balance and its Regulation Diagnostics

Acid-Base Balance and its Regulation Diagnostics

