Integrated pathophysiology of fluid, osmolality, electrolyte and pH homeostasis (ABB) – part 1

Summary of basic facts - water balance in human body

Volume – osmolality relationship and its changes Regulation of ABB

Overview of disease impairing V-O matching Pathophysiology of clinically important disorders affecting V-O as well as ABB

BODY FLUIDS AND THEIR COMPOSITION

Body fluid compartments

Membrane defines the compartments - transport

Electrolyte balance ICT/ECT – why like that?

- activity of Na/K ATPase
- selective permeability of K⁺
- proteins kept inside
 - majority of body protein is intracellular
- Cl⁻ follows the Na⁺
- phosphate has a gradient (consumed) inside since necessary for
 - production of ATP
 - phosphorylation by kinases
 - making Glu-6-P
 - clinical example: refeeding syndrome (e.g. in anorexia nervosa patients)
- hydrogencarbonate establishes the alkaline reserve
 - because the metabolism (happening inside the cell) produces lots of acids (that will eventually leave cell), plasma retains "alkaline reserve" to buffer

The law of electroneutrality

- in any electrolyte solution the sum of positive charges equals to the sum of negative ones
- Right: mEq/L = mmol/L for monovalent ions (e.g. Na and K) but mEq/L must be divided by 2 to convert mmol/L for divalent ions (e.g. Ca and Mg)
 - figures for ECF refer specifically to blood plasma; interstitial fluid very similar except it has lower protein and higher chloride concentration.

Osmosis, osmolality & osmotic pressure

Solution

- osmosis a type of passive membrane transport
 - movement of water from its high concentration (= low concentration of solutes) to low concentration (= high concentration of solutes)
- osmolality it is about <u>number</u> of molecules (not size or mass)
 - 1mol Glu \rightarrow 1 osmol
 - 1mol $Cl_2 \rightarrow 2$ osmoles ($Cl^- + Cl^-$)
- osmotic pressure
- measured vs. calculated osmolality
 - measured by osmometer •
 - calculated $2xNa^+ + Glu/20 + BUN/3 = 290$ • mOsm/L
 - only Na and glucose represent effective osmolality
 - BUN freely diffuses across the membrane
 - normal interstitium = plasma = ICF
 - the difference between m and c = **osmolar gap**
 - normally ≤ 10 •
 - if >10 then other molecules present (methanol, ethanol, ethylene glycol (all 3 causing HAGMA), sorbitol, mannitol, drugs, ...)

solution

Osmolality vs. tonicity (made simple)

- osmolality = the total number of osmoles in given volume of water
- tonicity = only considers <u>effective osmoles</u> (cannot cross the plasma membrane) in a volume of water
 - describes osmotic pressure gradient
 - describes osmolality of the solution <u>relative to plasma</u>
 - isotonic 290 [275 295]
 - hypotonic <275
 - hypertonic >295

hypertonicity stimulates the thirst and ADH release

ADH/arginine-vasopressin

Volume – osmolality diagram

Why is this important? for infusion of solutions (crystalloids) to patients

- 60% of TBW
 - 40% ICF
 - 20% ECF
 - 5% plasma
 - 15% ISF
- effect of adding different solutions to ECF

How to approach volume-osmolality balance problems?

	Osmolarity				
	Decrease	No change	Increase		
Increase	Drinking large amount of water	Ingestion of isotonic saline	Ingestion of hypertonic saline		
No change	Replacement of sweat loss with plain water	Normal volume and osmolarity	Eating salt without drinking water		
Decrease	Incomplete compensation for dehydration	Hemorrhage	Dehydration (e.g., sweat loss or diarrhea)		

Volume

– does the situation affects?

- (1) ECF volume change?
- (2) ECF osmolality change?
 - no
 - yes (3) ICF volume and osmolality
 - water will move by osmosis and the two compartments will gradually equilibrate

BODY FLUIDS AND THEIR COMPOSITION

Acids vs. Bases

definition: Bronsted-Lowry (1923)

normal A:B ratio ~ 1:20

Henderson-Hasselbach equation: pH = $6.1 + \log([HCO_3^-] / 0.03 pCO_2)$

 strength is defined in terms of the tendency to donate (or accept) the hydrogen ion to (from) the solvent (i.e. water in biological systems)

рΗ

- amount of H⁺ in the blood is routinely expressed as a pH rather than absolute concentration in mmol/l because this is ~ million-times lower than for common electrolytes (e.g. Na⁺, K⁺, Ca⁺⁺, ...)
 - pH is thus an indirect measure of [H⁺]
 - pH 7 = 1×10^{-7} (= 0.0000001) mmol/l
 - CAVE! Hydrogen ions (i.e. protons) do not exist free in solution but are linked to adjacent water molecules by hydrogen bonds (H₃O⁺)
 - \uparrow [H⁺] by a factor of 2 causes a \downarrow pH of 0.3
- neutral vs. normal plasma pH
 - pH 7.4 (7.36-7.44) \rightarrow normal
 - pH 7.0 \rightarrow neutral but fatal!!!

 $pH = -log [H^+]$

Why is pH so important ?

- [H⁺] ~ nmol/l, [K⁺, Na⁺, Cl⁻, HCO₃⁻] ~ mmol/l; however, [H⁺] is crucial:
 - pH affects function of proteins
 - hydrogen bonds = 3-D structure = function
 - All the known low molecular weight and water soluble biosynthetic intermediates possess groups that are almost completely ionised at neutral pH'
 - pH-dependent ionisation (i.e. charge) serves to an efficient intracellular trapping of ionised compounds within the cell and its organelles
- Exceptions:
 - macromolecules (proteins)
 - mostly charged anyway or size-trapping or hydrophobic
 - lipids
 - those needed intarcellularly are protein-bound
 - waste products
 - excretion is desirable

The most important pH for the body is the intracellular pH

- Intracellular pH is maintained at about the pH of neutrality (~6.8 at 37°C) because this is the pH at which metabolite intermediates are all charged and trapped inside the cell $pN \rightarrow [H^+] = [OH^-] pN = 7.0 at 25°C \text{ for pure } H_2O pN = 6.8 at 37°C \text{ in cell}$
- Extracellular pH is higher by 0.5 to 0.6 pH units and this represents about a 4-fold gradient favouring the exit of hydrogen ion from the cell
 - to maintain it at a stable value because of the powerful effects of intracellular [H+] on metabolism
 - maintaining a stable intracellular pH by:
 - 'Intracellular buffering' (chemical, metabolic, organelles)
 - Adjustment of arterial pCO₂
 - Loss of fixed acids from the cell into the extracellular fluid

pH is constantly "impaired" by metabolism

- production of metabolic acids
 - "volatile" acids (CO_2 resp. H_2CO_3)
 - intermediate metabolism of substrates (oxidation)
 - $\bullet \quad CO_2 + H_2O \rightarrow H_2CO_3$
 - "fixed" acids
 - strong anorganic acids
 - metabolism of proteins resp. AA
 - sulphuric (Met, Cys)
 - hydrochlorous (Arg, Lys)
 - metabolism of nucl. acids
 - phosphoric (DNA)
 - lactate
 - anaerobic glycolysis
 - keton bodies
 - metabolism of fatty acids \rightarrow ketogenesis \rightarrow acetoacetate and hydroxybutyrate
- regulation of pH
 - intracell. a extracell. buffers
 - lungs respiration (CO₂)
 - kidneys
 - reabsorption of HCO₃⁻
 - excretion of H⁺

Chemical buffers and other types of H⁺ buffering

- (1) proteins (amphoteric)
 - H⁺ and CO₂ diffuse across plasma membrane and are buffered
 - ECF albumin
 - haemoglobin is strictly speaking ICF, but..!!
 - ICF cellular proteome
- (2) inorganic buffers
 - ECF carbonic acid / bicarbonate
 - H₂CO₃ / HCO₃⁻
 - ICF phosphoric acid / hydrogen phosphate
 H₃PO₄ / H₂PO₄⁻ + HPO₄²⁻
- (3) transcellular exchange H⁺/K⁺
 - changes of ABB influence potassium balance and vice versa !!!
 - hormonal effects!!

Henderson-Hasselbalch equation: pH = $6.1 + \log([HCO_3^-] / 0.03 \text{ pCO}_2)$

Organs involved in the regulation of ABB

- Equilibrium with plasma
- High buffer capacity
 - Haemoglobin main buffer for CO₂
- Excretion of CO₂ by alveolar ventilation: minimally 12,000 mmol/day
- Respiratory centre react in minutes, maximum of compensation in 12 24 hod, then decline of sensitivity
- Reabsorption of filtered bicarbonate: 4,000 to 5,000 mmol/day
- Excretion of the fixed acids (acid anion and associated H⁺)
 - about 100 mmol/day
- CO₂ production from complete oxidation of substrates
 - 20% of the body's daily production
- Metabolism of organic acid anions
 - such as lactate, ketones and amino acids
- Metabolism of ammonium
 - conversion of NH₄⁺ to urea in the liver consumes HCO₃⁻
 - production of glutamate = urine buffering
- Production of plasma proteins
 - esp. albumin contributing to the anion gap
- Bone inorganic matrix consists of hydroxyapatite crystals (Ca₁₀(PO₄)₆(OH)₂]
 - bone can take up H⁺ in exchange for Ca²⁺, Na⁺ and K⁺ (ionic exchange)
 - release of HCO_3^{-1} , CO_3^{-1} or HPO_4^{-2}

Regulation by resp. system - CO₂

- differences in the stimulation of respiration by pCO_2 ([H⁺] resp. in the CSF) and/or $pO_2 < 60$ mmHg
- changes of alveolar ventilation
- disorders:
 - acidemia
 - \rightarrow respiratory centre of the brain
 - $\rightarrow \uparrow$ alveolar ventilation
 - $\rightarrow \downarrow CO_2$
 - alkalemia
 - \rightarrow respiratory centre of the brain
 - $\rightarrow \downarrow$ alveolar ventilation
 - $\rightarrow \uparrow CO_2$

Respiratory centre

- long-lasting respiratory acidosis (\uparrow PaCO₂) decreases sensitivity of resp. centre to PaCO₂ and PaO₂ becomes the main regulator
- administration of oxygen therapeutically can sometimes lead to worsening of resp. acidosis or even to respiratory arrest !!!

Renal system – fixed H⁺ & HCO₃⁻

- Proximal tubular mechanisms:
 - reabsorption of HCO₃⁻ filtered at the glomerulus
 - carboanhydrase
 - NHE-3 exchanger (reabsorption of HCO₃⁻ is coupled with reabsorption of Na⁺)
 - production of NH₄⁺
 - from glutamine in prox. tubule with parallel formation of HCO_3^-
 - glutamine is a way of body to dispose of nitrogen (in liver)
 - most of NH₄⁺ recycles in the renal medulla

- Distal tubular mechanisms:
 - net excretion of H⁺
 - normally 70mmol/day
 - max. 700mmol/day
 - together with proximal tubule excretion of H⁺ could increase up to 1000x!!! (↓pH of urine down to 4.5)
 - reaction with HPO₄²⁻ formation of "titratable acidity" (TA)
 - addition of NH₄⁺ to luminal fluid
 - reabsorption of remaining HCO₃⁻

Regulation of ABB in different parts of nephron

Na⁺/K⁺ ATP-ase

- electrogenic (ratio 3 Na⁺:2 K⁺)
- energy for secondary-active transports with Na⁺

Assessment of A-B balance

	Arterial blood (interval)		Venous blood
рН	7.40	7.38 - 7.42	7.33 - 7.43
H+ (nmol/l)	40	36 - 44	
pCO ₂ (mmHg/kPa)	40 / 5.3	35 - 45 / 5.1 - 5.5	41 - 51
HCO ₃ - (mmol/l)	25	22 - 26	24 - 28
BE	±2		
AG (mEq/l)	12	10 - 14	
Hb saturation (%)	95	80 – 95	70 – 75
pO ₂ (mmHg)	95	80 – 95	35 – 49

Disorders of A-B balance

- Acidosis vs. alkalosis: abnormal condition lowering or raising arterial pH
 - before activation of compensatory changes in response to the primary aetiological factor
- Simple vs. mixed A-B disorders: single vs. multiple aetiological factors
- Disorders are defined according to their effect on pH of ECF

Acidaemia: arterial pH<7.36 (i.e. [H+]>44 nM) Alkalaemia: arterial pH>7.44 (i.e. [H+]<36 nM)

- Primary cause \rightarrow buffers \rightarrow compensation \rightarrow correction

Causes

- Respiratory
 - abnormal processes which tend to alter pH because of a primary change in pCO₂ levels
 - acidosis
 - alkalosis
 - buffering
 - predominantly intracellular proteins
 - compensation
 - hyperventilation
 - typically limited, hypoventlation is often a cause of disorder
 - renal
 - delayed (days)

- Metabolic
 - abnormal processes which tend to alter pH because of a primary change in [HCO₃⁻]
 - acidosis
 - alkalosis
 - buffering
 - predominantly bicarbonate system
 - compensation
 - hyperventilation
 - rapid (min hrs)
 - renal
 - delayed (days)

Respiratory acidosis (RAC)

- primary disorder is a \downarrow pH due to \uparrow PaCO₂ (>40 mmHg), i.e. hypercapnia
- time course:
 - acute (↓pH)
 - chronic (\downarrow pH or normalisation of pH)
 - renal compensation retention of HCO_3^- , 3-4 days
- causes of RAC:
 - decreased alveolar ventilation (most cases)
 - the defect leading to this can occur at any level in the respiratory control mechanism
 - the degree of hypoxemia corresponds with degree of alveolar hypoventilation
 - enrichment of %O₂ in inhaled air corrects solely "pure hypoventilation" !!!
 - presence of excess CO_2 in the inspired gas
 - re-breathing of CO_2 -containing expired gas
 - addition of CO₂ to inspired gas
 - insufflation of \overline{CO}_2 into body cavity (e.g. for laparoscopic surgery)
 - increased production of CO_2 by the body
 - malignant hyperthermia, sepsis

A rise in arterial pCO₂ is such a potent stimulus to ventilation that RAC will rapidly correct unless some abnormal factor is maintaining the hypoventilation

 $paCO_2 = VCO_2 / VA$

RA - inadequate alveolar ventilation

- Central respiratory depression & other CNS problems
 - drug depression of respiratory centre (e.g. by opiates, sedatives, anaesthetics)
 - CNS trauma, infarct, haemorrhage or tumour
 - hypoventilation of obesity (e.g. Pickwick syndrome)
 - cervical cord trauma or lesions (at or above C4 level)
 - high central neural blockade
 - poliomyelitis
 - tetanus
 - cardiac arrest with cerebral hypoxia
- Nerve or muscle disorders
 - Guillain-Barre syndrome
 - Myasthenia gravis
 - muscle relaxant drugs
 - toxins e.g. organophosphates, snake venom
 - various myopathies

- Lung or chest wall defects
 - acute on COPD
 - chest trauma -contusion, haemothorax
 - pneumothorax
 - diaphragmatic paralysis
 - pulmonary oedema
 - adult respiratory distress syndrome
 - restrictive lung disease
 - aspiration
- Airway disorders
 - upper airway obstruction
 - laryngospasm
 - bronchospasm / asthma
- External factors
 - Inadequate mechanical ventilation

Pathologic effects of hypercapnia

- CO₂ rapidly diffuses across membranes
 - depression of intracellular metabolism
- Extreme hypercapnia
 - cerebral anaesthetic effects (pCO₂>100mmHg)
- Effect of hypoxemia

An arterial **pCO₂>90 mmHg** is not compatible with life in patients breathing room air: **pAO₂** = [0.21x(760-47)]-90/0.8 = **37 mmHg**

RAC – compensation and correction

- Acute RAC buffering only!
 - about 99% of this buffering occurs intracellularly
 - proteins (haemoglobin and phosphates) are the most important intravascular buffers for CO₂ but their concentration is low relative to the amount of carbon dioxide requiring buffering
 - the bicarbonate system is not responsible for any buffering of a respiratory acid-base disorder
 - the system cannot buffer itself
 - efficiency of compensatory hyperventilation is usually limited
- Chronic RAC renal compensation
 - bicarbonate retention
 - takes 3 or 4 days to reach its maximum
 - $\uparrow paCO_2 \rightarrow \uparrow pCO_2$ in proximal tubular cells $\rightarrow \uparrow H+$ secretion into the lumen:
 - \uparrow HCO₃ production which crosses the basolateral membrane and enters the circulation (so plasma [HCO₃] increases)
 - \uparrow Na⁺ reabsorption in exchange for H⁺
 - \uparrow NH₄ production and secretion to 'buffer' the H⁺ in the tubular lumen, parallel regeneration of HCO₃⁻
- RAC treatment
 - the pCO₂ rapidly returns to normal with restoration of adequate alveolar ventilation
 - Treatment needs to be directed to correction of the primary cause if this is possible
 - rapid fall in pCO₂ (especially if the RA has been present for some time) can result in:
 - severe hypotension
 - "post hypercapnic alkalosis"

Respiratory alkalosis (RAL)

- causes: respiratory alkalosis is ALWAYS due to increased **alveolar** ventilation (hyperventilation)
 - low arterial pCO₂ will be sensed by the central chemoreceptors and the hyperventilation will be inhibited unless the patient's ventilation is controlled
 - (1) central causes (direct action via respiratory centre)
 - head injury
 - stroke
 - anxiety-hyperventilation syndrome (psychogenic)
 - other 'supra-tentorial' causes (pain, fear, stress, voluntary)
 - various drugs (e.g. analeptics, propanidid, salicylate intoxication)
 - various endogenous compounds
 - toxins in patients with chronic liver disease
 - progesterone during pregnancy
 - cytokines during sepsis
 - (2) hypoxaemia (act via peripheral chemoreceptors)
 - respiratory stimulation via peripheral chemoreceptors
 - (3) pulmonary causes (act via intrapulmonary receptors)
 - decreases pulmonary compliance
 - pulmonary embolism
 - pneumonia
 - asthma
 - pulmonary oedema (all types)
 - (4) iatrogenic
 - excessive controlled ventilation

decrease in pCO₂ that occurs as a compensation for metabolic acidosis is not a respiratory alkalosis as it is not a primary process = hypocapnia is not synonymous with respiratory alkalosis !!!

Metabolic acidosis (MAC)

- Primary disorder is a $\downarrow pH$ due to $\downarrow HCO_3^-$
- Pathophysiology:
 - fixed [H⁺] = high anion gap (AG)
 - loss or \downarrow reabsorption of $HCO_3^- = normal AG$

 $AG = [Na^+] + [K^+] - [Cl^-] - [HCO_3^-]$

Aetiology of MAC

- High AG
 - ketoacidosis
 - diabetic
 - alcoholism
 - starvation
 - lactic acidosis
 - type A hypoxia/hypo-perfusion
 - type B therapy (diabetes biguanids)
 - renal failure
 - acute
 - chronic = uremia
 - intoxication
 - ethylenglycol
 - methanol
 - salycilates

- Normal AG (hyperchloremic)
 - renal
 - renal tubular acidosis
 - GIT
 - diarrhoea
 - enterostomy
 - drainage of pancreatic juice or bile
 - intestinal fistula

Pathologic effects of MAC

- Respiratory
 - hyperventilation
 - shift of haemoglobin dissociation curve to the right
- Cardiovascular
- Others
 - increased bone resorption (chronic acidosis only)
 - shift of K⁺ out of cells causing hyperkalemia

Some effects of MAC are opposite

- Cardiovascular system
 - pH>7.2 effect of SNS stimulation dominates (catecholamines)
 - pH<7.2
 - direct inhibitory effect of [H+] on contractility
 - vasodilatory effect of [H⁺]
- Hb dissociation curve
- Plasma [K⁺] reflects
 - K⁺/H⁺ exchange
 - glomerular filtration rate
 - e.g. renal failure
 - osmotic diuresis
 - e.g. ketoacidosis

Common types of MAC - ketoacidosis

- Contributing disorders
 - increased lipolysis in adipose tissue mobilisation of NEFA
 - increased production of keton bodies from acetyl CoA (lipolysis of TG) in liver (βhydroxybutyrate, acetoacetate, acetone)
 - their mutual ratio depends on ration NADH/NAD+
- Ketoacidosis is a consequence of
 - ↓ insulin/glucagon
 - ↑ catecholamines, ↑ glucocorticoids
- (1) Diabetic
 - hyperglycaemia + precipitating factors (stress, infection)
 - lipolysis (insulin, catecholamines) NEFA dysregulation of NEFA metabolism in liver (insulin, glucagon) ¹NEFA oxidation -¹acetyl CoA ketogenesis
 - clin. manifestation results from hyperglycaemia and ketoacidosis
- (2) Alcoholic
 - typically chron. alcoholic several days after last binge, starving
 - metabolism of ethanol to acetaldehyde and acetate consumes NAD+
 - inhibition of gluconeogenesis favouring ketogenesis
- (3) Starvation

Common types of MAC - lactic acidosis

- Under normal circumstances entire lactate recycles
 - lactate pyruvate complete oxidation
 - gluconeogenesis (60% liver, 30% kidney)
 - renal threshold (5 M/L) guarantees a complete reabsorption under the normal circumstances
- Lactic acidosis
 - increased production
 - physical exercise, convulsions
 - hepatic metabolism effective enough to prevent prolonged acidosis
 - impaired metabolism of lactate
 - type A = hypoxic
 - shock (hypovolemic, distributive, cardiogennic), hypotension, anemia, heart failure, liver failure, malignancy, ... most often in combination !!!
 - type B = inhibition of complete metabolism of lactate
 - drugs biguanids (inhibition of ox. phosphorylation in mitochondria)

Metabolic alkalosis (MAL)

- **^pH** due to **^HCO₃**-
- Pathophysiology (according to the event. parallel change of circulating volume):
 - (A) hypovolemic MAL compensatory retention of Na kidney (aldosteron) leads to an increased excretion of H⁺
 - loss of acidic ECF -prolonged vomiting or gastric juice drainage
 - overuse of diuretic (apart from acetazolamide and K-sparing diuretics)
 - congenit. hypochloremia
 - some diarrhoeas (secretory type Cl losses)
 - diabetes insipidus
 - Barter's syndrome
 - (B) normo-/hypervolemic MAL
 - posthypercapnic
 - increased alkali intake (antacids NaHCO₃, CaCO₃)
 - primary hyperaldosteronism
 - secondarr hyperaldosteronism (e.g. renovascular hypertension)
 - Cushing syndrome
 - liver failure (tertiary hyperaldosteronism)
 - combined with RAL due to stimulation of resp. centea by liver toxic metabolites
- compensation
 - buffers
 - retention of pCO_2 by \downarrow stimulation of resp. centre
 - however limited \sim pCO₂= 55mmHg hypoxia becomes regulatory parameter
 - renal compensation limited as well because kidney either pathogenetically contributes to MAL (B) or counteracts hypovolémia (A) – circulus vitiosus

