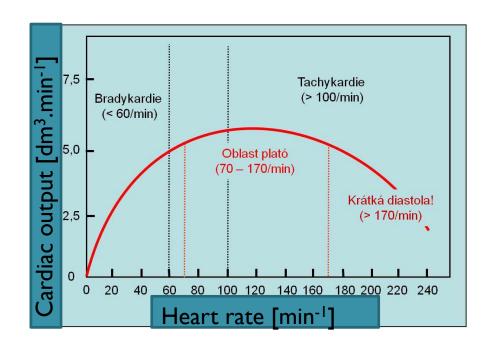

Pathophysiology of circulatory shock

Shock - definition

- Severe tissue hypoperfusion resulting in low supply of oxygen to the organs
- Systemic hypotension (of various causes) is present
- $P = Q \times R$
- $Q \sim CO = SV \times f$
- CO depends on
 - a) cardiac function
 - b) venous return (→preload)
- R systemic resistance (mostly arterioles) afterload

Cardiac function and venous function

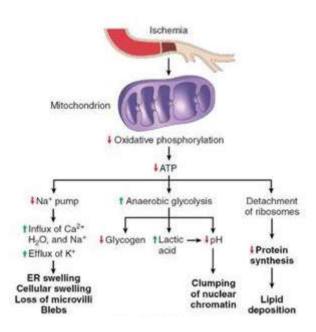


Phases of shock

- Compensation of initiating cause
- Decompensation
- Refractory shock

Compensatory mechanisms and their limits

- Activation of sympathetic nervous system (tens of seconds)
- Activation of RAAS (cca 1 hour)
- Vasoconstriction (if possible) but it leads into lower blood supply
- Vasodilatation in some tissues (esp. myocardium)
- Positively inotropic effect of SNS (if possible) but at cost of higher metabolic requirements of the heart
- Increased heart rate but CO decreases in high HR (>150 bpm)
- Keeping circulating volume by lower diuresis
 but at cost of acute renal failure
- Shift to anaerobic metabolism but at cost of ↓ ATP a ↑ lactate (acidosis)
- Shift of saturation curve of hemoglobin to right (†2,3-DPG)
- Hyperglycemia but there is decreased utilization of Glc in the periphery

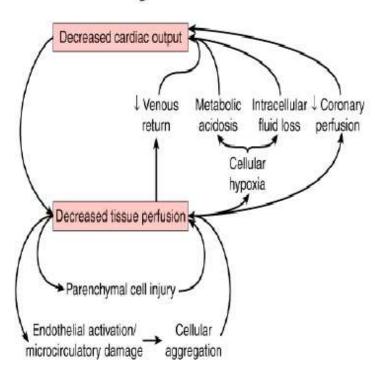


Decompensated shock

- ↓ BP
- ↓ diuresis
- Brain hypoperfusion involvment of mental functions
- Acrocyanosis
- Tachypnoe

Shock at cellular level

- Mitochondrial dysfunction (result of hypoxia) – lower production of ATP
- ↑ ROS production by dysfunctional mitochondria
- Failure of ion pumps (e.g. Na/K ATP-ase
 →↑intracelular Ca²⁺)
- Activation of Ca²⁺ -dependent proteases
- Lysosomal abnormalities release of lysosomal proteases
- ↓ intracelular pH, ↑ lactate
 - promote hyperpolarization of muscle cells by opening K^+ channels $\to \downarrow Ca^{2+}$ entry $\to \downarrow$ smooth muscle cell and cardiomyocyte contraction

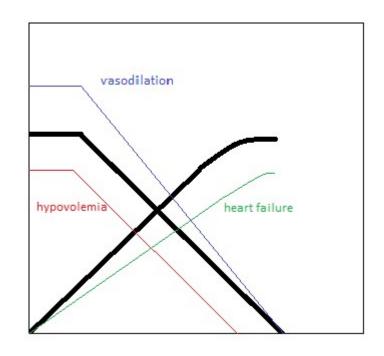

Refractory shock

- Vicious circles
 - I) Vasodilatation ↔ hypoperfusion
- Endothelial cells contain two isoforms of nitric oxid synthase constitutive (eNOS) and inducible (iNOS)
- In lasting hypoxia of endothelial cells there is increased iNOS activity (primarily physiological mechanism)
- ↑NO increases vasodilation and hypoperfusion
- 2) Myocardial hypoxia ↔ lower contractility
- Lower myocardial perfusion leads into \(CO, \) which further reduces coronary flow
- Myocardium does not benefit from the shift of Hb saturation curve efficiency of O_2 extraction is already at its maximum
- 3) Brain hypoperfusion $\leftrightarrow \downarrow$ SNS activity
- Lower perfusion of vasomotor centre leads first into SNS hyperactivity,
 which is then followed by its supression
- That leads into ↓brain perfusion

Other vicious circles in refractory shock

Vicious cycle of shock

* SIRS * DIC


Source: Brunicardi FC, Andersen DK, Billiar TR, Dunn DL, Hunter JG, Matthevs JB, Pollock RE: Schwartz's Principles of Surgery, 9th Edition: http://www.accessmedicine.com

Copyright @ The McGrav-Hill Companies, Inc. All rights reserved.

Forms of shock

- a) Hypovolemic ("cold and dry") shock low circulating volume, low preload
- b) Distributive ("warm") shock low resistance, low afterload, CO might be increased
- c) Cardiogennic ("wet") shock low CO in bad cardiac function, fluid congestion
- d) Obstructive shock low preload of one ventricle in normovolemia and subsequent lowering of CO + congestion – pathophysiology similar to cardiogennic shock

Cardiac and venous function in shock

Q [dm³.min⁻¹]

P [mmHg] in right atrium

Type of shock	CO	SVR	PWP	CVP
Hypovolemic	1	1	1	Ţ
Cardiogenic	↓	1	1	1
Distributive	1	11	↓	Ţ

- Hypovolemic shock: compensation by the vasoconstriction and cardiac mechanisms
- Distributive shock: compensation by cardiac mechanisms (vasoconstriction is usually impossible)
- Cardiogennic (and obstructive) shock: compensation by vasoconstriction

Hypovolemic shock - causes

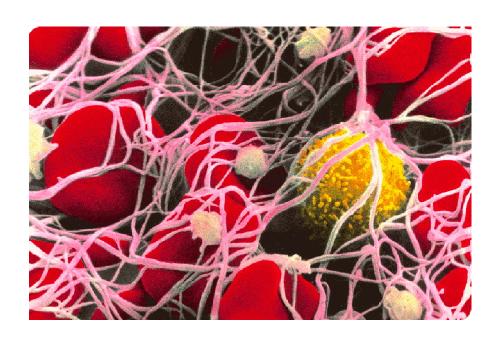
- Acute bleeding
- Burns, trauma
- Rapid development of ascites
- Acute pancreatitis
- Severe dehydratation
 - Vomiting, diarrhoea
 - Excessive diuresis (e.g. in diabetes insipidus)

Distributive shock - causes

- Anafylactic shock
- Anafylactoid shock
 - Mediators of mast cells, but without IgE
 - E.g. snake venoms, radiocontrasts
- Septic shock
 - Role of bacterial lipopolysaccharides
 - Bacterial toxins
 - IL-1,TNF- α stimulate synthesis of PGE₂ and NO
- Neurogennic shock
 - Vasodilatation as a result of vasomotoric centre (or its efferent pahways) impairment

Cardiogennic shock - causes

- Myocardial infarction
- Arrhythmias
- Valvular disease (e.g. rupture of papillary muscles)
- Decompensation of heart failure in dilated/restrictive cardiomyopathy, amyloidosis
- Overload by catecholamines ("tako-tsubo cardiomyopathy" apical akinesia + basal hyperkinesia)

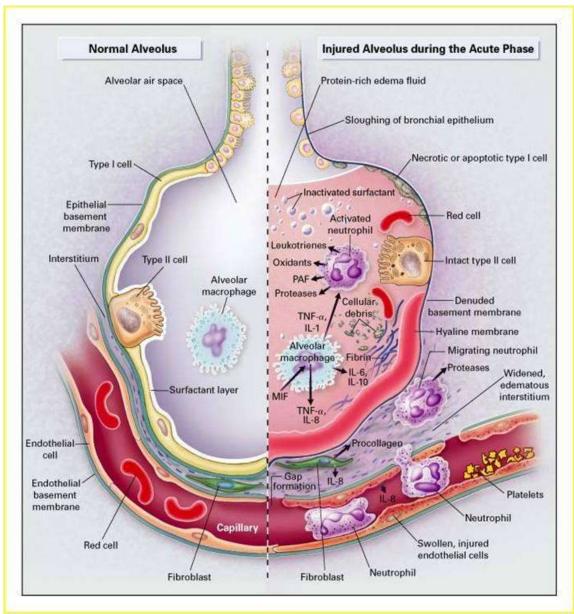

- Rupture of ventricular septum
- Obstructive shock e.g. cardiac tamponade, massive pulmonary embolism, aortic dissection

Organ complications in shock

- Lungs
 - ARDS
- Liver
 - necrosis of hepatocytes
- GIT
 - stress ulcer
 - Damage of intestinal mucosa by ischemic necrosis sepsis
- Kidneys
 - Acute renal failure in vasoconstriction of a. afferens
 - Acute tubular necrosis during ischemia

Disseminated intravascular coagulopathy (DIC)

- Systemic exposure to thrombin
- Consequence of the vessel wall damage
- Moreover, slower blood flow contributes to the extent of coagulation reactions
- Two phases:
 - Formation of microtrombi (with local ischemia)
 - 2) Bleeding as a result of consummation of coagulation factors
- DIC is especially frequent in septic shock



Systemic Inflammatory Response Syndrome(SIRS)

- Systemic activation of immune mechanisms
- Causes:
 - infections (sepsis)
 - Shock caused by non-infectious causes (diffuse tissue damage in hypoxia)
 - Non-compatible blood transfusions
 - Radiation syndrome (esp. GIT form)

Adult Respiratory Distress Syndrome (ARDS – ,,shock lung")

- Result of lung inflammation in SIRS, pulmonary infections, aspiration of gastric juice, drowning
- Exsudative phase (hours):
 cytokine release, leukocyte
 infiltration, pulmonary edema,
 destruction of type I
 pneumocytes
- Proliferative phase: fibrosis, ↑
 dead space, proliferation of
 type II pneumocytes
- Reparative phase: \(\)
 inflammation, \(\) edema,
 continuing fibrosis, in most
 cases permanent restrictive
 diseases

Multiorgan dysfunction syndrome (MODS)

- Failure of more organs at once (lungs, liver, GIT, kidneys, brain, heart)
- It can develop after initial insult (days or weeks)
- Hypermetabolism, catabolic stress
- Can both preced or result from SIRS
- (primary vs. secondary MODS)

General principles of treatment

- Treatment of underlying cause
- Positively inotropic drugs, vasopressors (e.g. catecholamines – but: they can worsen the situation in obstructive shock)
- Colloid solutions, crystaloid solutions (but: there is a risk of edema in cardiogennic shock)
- O₂
- i.v. corticoids (anafylaxis, SIRS?)
- ATB (septic shock)
- Mechanic circulation support (cardiogennic shock)
- Anti-shock position