Selecting List Elements Import libraries >>> import numpy >>> import numpy as np Selective import >>> from math import pi >>> help(str) PythonForDataScience Cheat Sheet Python Basics Learn More Python for Data Science Interactively at www.datacamp.com Variable Assignment Strings >>> x=5 >>> x 5 >>> x+2 Sum of two variables 7 >>> x-2 Subtraction of two variables 3 >>> x*2 Multiplication of two variables 10 >>> x**2 Exponentiation of a variable 25 >>> x%2 Remainder of a variable 1 >>> x/float(2) Division of a variable 2.5 Variables and Data Types str() '5', '3.45', 'True' int() 5, 3, 1 float() 5.0, 1.0 bool() True, True, True Variables to strings Variables to integers Variables to floats Variables to booleans Lists >>> a = 'is' >>> b = 'nice' >>> my_list = ['my', 'list', a, b] >>> my_list2 = [[4,5,6,7], [3,4,5,6]] Subset >>> my_list[1] >>> my_list[-3] Slice >>> my_list[1:3] >>> my_list[1:] >>> my_list[:3] >>> my_list[:] Subset Lists of Lists >>> my_list2[1][0] >>> my_list2[1][:2] Also see NumPy Arrays >>> my_list.index(a) >>> my_list.count(a) >>> my_list.append('!') >>> my_list.remove('!') >>> del(my_list[0:1]) >>> my_list.reverse() >>> my_list.extend('!') >>> my_list.pop(-1) >>> my_list.insert(0,'!') >>> my_list.sort() Get the index of an item Count an item Append an item at a time Remove an item Remove an item Reverse the list Append an item Remove an item Insert an item Sort the list Index starts at 0 Select item at index 1 Select 3rd last item Select items at index 1 and 2 Select items after index 0 Select items before index 3 Copy my_list my_list[list][itemOfList] Libraries >>> my_string.upper() >>> my_string.lower() >>> my_string.count('w') >>> my_string.replace('e', 'i') >>> my_string.strip() >>> my_string = 'thisStringIsAwesome' >>> my_string 'thisStringIsAwesome' Numpy Arrays >>> my_list = [1, 2, 3, 4] >>> my_array = np.array(my_list) >>> my_2darray = np.array([[1,2,3],[4,5,6]]) >>> my_array.shape >>> np.append(other_array) >>> np.insert(my_array, 1, 5) >>> np.delete(my_array,[1]) >>> np.mean(my_array) >>> np.median(my_array) >>> my_array.corrcoef() >>> np.std(my_array) Asking For Help >>> my_string[3] >>> my_string[4:9] Subset >>> my_array[1] 2 Slice >>> my_array[0:2] array([1, 2]) Subset 2D Numpy arrays >>> my_2darray[:,0] array([1, 4]) >>> my_list + my_list ['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice'] >>> my_list * 2 ['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice'] >>> my_list2 > 4 True >>> my_array > 3 array([False, False, False, True], dtype=bool) >>> my_array * 2 array([2, 4, 6, 8]) >>> my_array + np.array([5, 6, 7, 8]) array([6, 8, 10, 12]) >>> my_string * 2 'thisStringIsAwesomethisStringIsAwesome' >>> my_string + 'Innit' 'thisStringIsAwesomeInnit' >>> 'm' in my_string True DataCamp Learn Python for Data Science Interactively Scientific computing Data analysis 2D plotting Machine learning Also see Lists Get the dimensions of the array Append items to an array Insert items in an array Delete items in an array Mean of the array Median of the array Correlation coefficient Standard deviation String to uppercase String to lowercase Count String elements Replace String elements Strip whitespaces Select item at index 1 Select items at index 0 and 1 my_2darray[rows, columns] Install Python Calculations With Variables Leading open data science platform powered by Python Free IDE that is included with Anaconda Create and share documents with live code, visualizations, text, ... Types and Type Conversion String Operations List Operations List Methods Index starts at 0 String Methods String Operations Selecting Numpy Array Elements Index starts at 0 Numpy Array Operations Numpy Array Functions DataCamp Learn Python for Data Science Interactively Saving/Loading Notebooks Working with Different Programming Languages Asking For Help Widgets Python For Data Science Cheat Sheet Jupyter Notebook Learn More Python for Data Science Interactively at www.DataCamp.com Kernels provide computation and communication with front-end interfaces like the notebooks. There are three main kernels: Installing Jupyter Notebook will automatically install the IPython kernel. Create new notebook Open an existing notebookMake a copy of the current notebook Rename notebook Writing Code And Text Save current notebook and record checkpoint Revert notebook to a previous checkpoint Preview of the printed notebook Download notebook as - IPython notebook - Python - HTML - Markdown - reST - LaTeX - PDF Close notebook & stop running any scripts IRkernel IJulia Cut currently selected cells to clipboard Copy cells from clipboard to current cursor position Paste cells from clipboard above current cell Paste cells from clipboard below current cellPaste cells from clipboard on top of current cel Delete current cells Revert “Delete Cells” invocation Split up a cell from current cursor position Merge current cell with the one above Merge current cell with the one below Move current cell up Move current cell down Adjust metadata underlying the current notebook Find and replace in selected cells Insert image in selected cells Restart kernel Restart kernel & run all cells Restart kernel & run all cells Interrupt kernel Interrupt kernel & clear all output Connect back to a remote notebook Run other installed kernels Code and text are encapsulated by 3 basic cell types: markdown cells, code cells, and raw NBConvert cells. Edit Cells Insert Cells View Cells Notebook widgets provide the ability to visualize and control changes in your data, often as a control like a slider, textbox, etc. You can use them to build interactive GUIs for your notebooks or to synchronize stateful and stateless information between Python and JavaScript. Toggle display of Jupyter logo and filename Toggle display of toolbar Toggle line numbers in cells Toggle display of cell action icons: - None - Edit metadata - Raw cell format - Slideshow - Attachments - Tags Add new cell above the current one Add new cell below the current one Executing Cells Run selected cell(s) Run current cells down and create a new one below Run current cells down and create a new one above Run all cells Save notebook with interactive widgets Download serialized state of all widget models in use Embed current widgets Walk through a UI tour List of built-in keyboard shortcutsEdit the built-in keyboard shortcuts Notebook help topics Description of markdown available in notebook About Jupyter Notebook Information on unofficial Jupyter Notebook extensions Python help topics IPython help topics NumPy help topics SciPy help topics Pandas help topics SymPy help topics Matplotlib help topics Run all cells above the current cell Run all cells below the current cell Change the cell type of current cell toggle, toggle scrolling and clear current outputstoggle, toggle scrolling and clear all output 1. Save and checkpoint 2. Insert cell below 3. Cut cell 4. Copy cell(s) 5. Paste cell(s) below 6. Move cell up 7. Move cell down 8. Run current cell 9. Interrupt kernel 10. Restart kernel 11. Display characteristics 12. Open command palette 13. Current kernel 14. Kernel status 15. Log out from notebook server Command Mode: Edit Mode: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Copy attachments of current cell Remove cell attachments Paste attachments of current cell 2 PythonForDataScience Cheat Sheet NumPy Basics Learn Python for Data Science Interactively at www.DataCamp.com NumPy DataCamp Learn Python for Data Science Interactively The NumPy library is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. >>> import numpy as np Use the following import convention: Creating Arrays >>> np.zeros((3,4)) Create an array of zeros >>> np.ones((2,3,4),dtype=np.int16) Create an array of ones >>> d = np.arange(10,25,5) Create an array of evenly spaced values (step value) >>> np.linspace(0,2,9) Create an array of evenly spaced values (number of samples) >>> e = np.full((2,2),7) Create a constant array >>> f = np.eye(2) Create a 2X2 identity matrix >>> np.random.random((2,2)) Create an array with random values >>> np.empty((3,2)) Create an empty array Array Mathematics >>> g = a - b Subtraction array([[-0.5, 0. , 0. ], [-3. , -3. , -3. ]]) >>> np.subtract(a,b) Subtraction >>> b + a Addition array([[ 2.5, 4. , 6. ], [ 5. , 7. , 9. ]]) >>> np.add(b,a) Addition >>> a / b Division array([[ 0.66666667, 1. , 1. ], [ 0.25 , 0.4 , 0.5 ]]) >>> np.divide(a,b) Division >>> a * b Multiplication array([[ 1.5, 4. , 9. ], [ 4. , 10. , 18. ]]) >>> np.multiply(a,b) Multiplication >>> np.exp(b) Exponentiation >>> np.sqrt(b) Square root >>> np.sin(a) Print sines of an array >>> np.cos(b) Element-wise cosine >>> np.log(a) Element-wise natural logarithm >>> e.dot(f) Dot product array([[ 7., 7.], [ 7., 7.]]) Subsetting, Slicing, Indexing >>> a.sum() Array-wise sum >>> a.min() Array-wise minimum value >>> b.max(axis=0) Maximum value of an array row >>> b.cumsum(axis=1) Cumulative sum of the elements >>> a.mean() Mean >>> b.median() Median >>> a.corrcoef() Correlation coefficient >>> np.std(b) Standard deviation Comparison >>> a == b Element-wise comparison array([[False, True, True], [False, False, False]], dtype=bool) >>> a < 2 Element-wise comparison array([True, False, False], dtype=bool) >>> np.array_equal(a, b) Array-wise comparison 1 2 3 1D array 2D array 3D array 1.5 2 3 4 5 6 Array Manipulation NumPy Arrays axis 0 axis 1 axis 0 axis 1 axis 2 Arithmetic Operations Transposing Array >>> i = np.transpose(b) Permute array dimensions >>> i.T Permute array dimensions Changing Array Shape >>> b.ravel() Flatten the array >>> g.reshape(3,-2) Reshape, but don’t change data Adding/Removing Elements >>> h.resize((2,6)) Return a new array with shape (2,6) >>> np.append(h,g) Append items to an array >>> np.insert(a, 1, 5) Insert items in an array >>> np.delete(a,[1]) Delete items from an array Combining Arrays >>> np.concatenate((a,d),axis=0) Concatenate arrays array([ 1, 2, 3, 10, 15, 20]) >>> np.vstack((a,b)) Stack arrays vertically (row-wise) array([[ 1. , 2. , 3. ], [ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]]) >>> np.r_[e,f] Stack arrays vertically (row-wise) >>> np.hstack((e,f)) Stack arrays horizontally (column-wise) array([[ 7., 7., 1., 0.], [ 7., 7., 0., 1.]]) >>> np.column_stack((a,d)) Create stacked column-wise arrays array([[ 1, 10], [ 2, 15], [ 3, 20]]) >>> np.c_[a,d] Create stacked column-wise arrays Splitting Arrays >>> np.hsplit(a,3) Split the array horizontally at the 3rd [array([1]),array([2]),array([3])] index >>> np.vsplit(c,2) Split the array vertically at the 2nd index [array([[[ 1.5, 2. , 1. ], [ 4. , 5. , 6. ]]]), array([[[ 3., 2., 3.], [ 4., 5., 6.]]])] Also see Lists Subsetting >>> a[2] Select the element at the 2nd index 3 >>> b[1,2] Select the element at row 0 column 2 6.0 (equivalent to b[1][2]) Slicing >>> a[0:2] Select items at index 0 and 1 array([1, 2]) >>> b[0:2,1] Select items at rows 0 and 1 in column 1 array([ 2., 5.]) >>> b[:1] Select all items at row 0 array([[1.5, 2., 3.]]) (equivalent to b[0:1, :]) >>> c[1,...] Same as [1,:,:] array([[[ 3., 2., 1.], [ 4., 5., 6.]]]) >>> a[ : :-1] Reversed array a array([3, 2, 1]) Boolean Indexing >>> a[a<2] Select elements from a less than 2 array([1]) Fancy Indexing >>> b[[1, 0, 1, 0],[0, 1, 2, 0]] Select elements (1,0),(0,1),(1,2)and (0,0) array([ 4. , 2. , 6. , 1.5]) >>> b[[1, 0, 1, 0]][:,[0,1,2,0]] Select a subset of the matrix’s rows array([[ 4. ,5. , 6. , 4. ], and columns [ 1.5, 2. , 3. , 1.5], [ 4. , 5. , 6. , 4. ], [ 1.5, 2. , 3. , 1.5]]) >>> a = np.array([1,2,3]) >>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float) >>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]], dtype = float) Initial Placeholders Aggregate Functions >>> np.loadtxt("myfile.txt") >>> np.genfromtxt("my_file.csv", delimiter=',') >>> np.savetxt("myarray.txt", a, delimiter=" ") I/O 1 2 3 1.5 2 3 4 5 6 Copying Arrays >>> h = a.view() Create a view of the array with the same data >>> np.copy(a) Create a copy of the array >>> h = a.copy() Create a deep copy of the array Saving & Loading Text Files Saving & Loading On Disk >>> np.save('my_array', a) >>> np.savez('array.npz', a, b) >>> np.load('my_array.npy') >>> a.shape Array dimensions >>> len(a) Length of array >>> b.ndim Number of array dimensions >>> e.size Number of array elements >>> b.dtype Data type of array elements >>> b.dtype.name Name of data type >>> b.astype(int) Convert an array to a different type Inspecting Your Array >>> np.info(np.ndarray.dtype) Asking For Help Sorting Arrays >>> a.sort() Sort an array >>> c.sort(axis=0) Sort the elements of an array's axis Data Types >>> np.int64 Signed 64-bit integer types >>> np.float32 Standard double-precision floating point >>> np.complex Complex numbers represented by 128 floats >>> np.bool Boolean type storing TRUE and FALSE values >>> np.object Python object type >>> np.string_ Fixed-length string type >>> np.unicode_ Fixed-length unicode type 1 2 3 1.5 2 3 4 5 6 1.5 2 3 4 5 6 1 2 3 PythonForDataScience Cheat Sheet SciPy - Linear Algebra Learn More Python for Data Science Interactively at www.datacamp.com SciPy DataCamp Learn Python for Data Science Interactively Interacting With NumPy Also see NumPy The SciPy library is one of the core packages for scientific computing that provides mathematical algorithms and convenience functions built on the NumPy extension of Python. Index Tricks >>> np.mgrid[0:5,0:5] Create a dense meshgrid >>> np.ogrid[0:2,0:2] Create an open meshgrid >>> np.r_[[3,[0]*5,-1:1:10j] Stack arrays vertically (row-wise) >>> np.c_[b,c] Create stacked column-wise arrays Shape Manipulation Polynomials Vectorizing Functions Type Handling >>> np.angle(b,deg=True) Return the angle of the complex argument >>> g = np.linspace(0,np.pi,num=5) Create an array of evenly spaced values (number of samples) >>> g [3:] += np.pi >>> np.unwrap(g) Unwrap >>> np.logspace(0,10,3) Create an array of evenly spaced values (log scale) >>> np.select([c<4],[c*2]) Return values from a list of arrays depending on conditions >>> misc.factorial(a) Factorial >>> misc.comb(10,3,exact=True) Combine N things taken at k time >>> misc.central_diff_weights(3) Weights for Np-point central derivative >>> misc.derivative(myfunc,1.0) Find the n-th derivative of a function at a point Other Useful Functions >>> np.real(c) Return the real part of the array elements >>> np.imag(c) Return the imaginary part of the array elements >>> np.real_if_close(c,tol=1000) Return a real array if complex parts close to 0 >>> np.cast['f'](np.pi) Cast object to a data type >>> def myfunc(a): if a < 0: return a*2 else: return a/2 >>> np.vectorize(myfunc) Vectorize functions >>> from numpy import poly1d >>> p = poly1d([3,4,5]) Create a polynomial object >>> np.transpose(b) Permute array dimensions >>> b.flatten() Flatten the array >>> np.hstack((b,c)) Stack arrays horizontally (column-wise) >>> np.vstack((a,b)) Stack arrays vertically (row-wise) >>> np.hsplit(c,2) Split the array horizontally at the 2nd index >>> np.vpslit(d,2) Split the array vertically at the 2nd index >>> import numpy as np >>> a = np.array([1,2,3]) >>> b = np.array([(1+5j,2j,3j), (4j,5j,6j)]) >>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]]) >>> help(scipy.linalg.diagsvd) >>> np.info(np.matrix) Linear Algebra You’ll use the linalg and sparse modules. Note that scipy.linalg contains and expands on numpy.linalg. >>> from scipy import linalg, sparse Creating Matrices >>> A = np.matrix(np.random.random((2,2))) >>> B = np.asmatrix(b) >>> C = np.mat(np.random.random((10,5))) >>> D = np.mat([[3,4], [5,6]]) Also see NumPy Basic Matrix Routines Inverse >>> A.I Inverse >>> linalg.inv(A) Inverse >>> A.T Tranpose matrix >>> A.H Conjugate transposition >>> np.trace(A) Trace Norm >>> linalg.norm(A) Frobenius norm >>> linalg.norm(A,1) L1 norm (max column sum) >>> linalg.norm(A,np.inf) L inf norm (max row sum) Rank >>> np.linalg.matrix_rank(C) Matrix rank Determinant >>> linalg.det(A) Determinant Solving linear problems >>> linalg.solve(A,b) Solver for dense matrices >>> E = np.mat(a).T Solver for dense matrices >>> linalg.lstsq(D,E) Least-squares solution to linear matrix equation Generalized inverse >>> linalg.pinv(C) Compute the pseudo-inverse of a matrix (least-squares solver) >>> linalg.pinv2(C) Compute the pseudo-inverse of a matrix (SVD) Addition >>> np.add(A,D) Addition Subtraction >>> np.subtract(A,D) Subtraction Division >>> np.divide(A,D) Division Multiplication >>> np.multiply(D,A) Multiplication >>> np.dot(A,D) Dot product >>> np.vdot(A,D) Vector dot product >>> np.inner(A,D) Inner product >>> np.outer(A,D) Outer product >>> np.tensordot(A,D) Tensor dot product >>> np.kron(A,D) Kronecker product Exponential Functions >>> linalg.expm(A) Matrix exponential >>> linalg.expm2(A) Matrix exponential (Taylor Series) >>> linalg.expm3(D) Matrix exponential(eigenvalue decomposition) Logarithm Function >>> linalg.logm(A) Matrix logarithm Trigonometric Tunctions >>> linalg.sinm(D) Matrix sine >>> linalg.cosm(D) Matrix cosine >>> linalg.tanm(A) Matrix tangent Hyperbolic Trigonometric Functions >>> linalg.sinhm(D) Hypberbolic matrix sine >>> linalg.coshm(D) Hyperbolic matrix cosine >>> linalg.tanhm(A) Hyperbolic matrix tangent Matrix Sign Function >>> np.sigm(A) Matrix sign function Matrix Square Root >>> linalg.sqrtm(A) Matrix square root Arbitrary Functions >>> linalg.funm(A, lambda x: x*x) Evaluate matrix function Matrix Functions Asking For Help Decompositions Eigenvalues and Eigenvectors >>> la, v = linalg.eig(A) Solve ordinary or generalized eigenvalue problem for square matrix >>> l1, l2 = la Unpack eigenvalues >>> v[:,0] First eigenvector >>> v[:,1] Second eigenvector >>> linalg.eigvals(A) Unpack eigenvalues Singular Value Decomposition >>> U,s,Vh = linalg.svd(B) Singular Value Decomposition (SVD) >>> M,N = B.shape >>> Sig = linalg.diagsvd(s,M,N) Construct sigma matrix in SVD LU Decomposition >>> P,L,U = linalg.lu(C) LU Decomposition >>> F = np.eye(3, k=1) Create a 2X2 identity matrix >>> G = np.mat(np.identity(2)) Create a 2x2 identity matrix >>> C[C > 0.5] = 0 >>> H = sparse.csr_matrix(C) Compressed Sparse Row matrix >>> I = sparse.csc_matrix(D) Compressed Sparse Column matrix >>> J = sparse.dok_matrix(A) Dictionary Of Keys matrix >>> E.todense() Sparse matrix to full matrix >>> sparse.isspmatrix_csc(A) Identify sparse matrix Creating Sparse Matrices Inverse >>> sparse.linalg.inv(I) Inverse Norm >>> sparse.linalg.norm(I) Norm Solving linear problems >>> sparse.linalg.spsolve(H,I) Solver for sparse matrices Sparse Matrix Routines Sparse Matrix Functions >>> sparse.linalg.expm(I) Sparse matrix exponential Sparse Matrix Decompositions >>> la, v = sparse.linalg.eigs(F,1) Eigenvalues and eigenvectors >>> sparse.linalg.svds(H, 2) SVD PythonForDataScience Cheat Sheet Pandas Basics Learn Python for Data Science Interactively at www.DataCamp.com Pandas DataCamp Learn Python for Data Science Interactively Series DataFrame 4 7 -5 3 d c b aA one-dimensional labeled array capable of holding any data type Index Index Columns A two-dimensional labeled data structure with columns of potentially different types The Pandas library is built on NumPy and provides easy-to-use data structures and data analysis tools for the Python programming language. >>> import pandas as pd Use the following import convention: Pandas Data Structures >>> s = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd']) >>> data = {'Country': ['Belgium', 'India', 'Brazil'], 'Capital': ['Brussels', 'New Delhi', 'Brasília'], 'Population': [11190846, 1303171035, 207847528]} >>> df = pd.DataFrame(data, columns=['Country', 'Capital', 'Population']) Selection >>> s['b'] Get one element -5 >>> df[1:] Get subset of a DataFrame Country Capital Population 1 India New Delhi 1303171035 2 Brazil Brasília 207847528 By Position >>> df.iloc([0],[0]) Select single value by row & 'Belgium' column >>> df.iat([0],[0]) 'Belgium' By Label >>> df.loc([0], ['Country']) Select single value by row & 'Belgium' column labels >>> df.at([0], ['Country']) 'Belgium' By Label/Position >>> df.ix[2] Select single row of Country Brazil subset of rows Capital Brasília Population 207847528 >>> df.ix[:,'Capital'] Select a single column of 0 Brussels subset of columns 1 New Delhi 2 Brasília >>> df.ix[1,'Capital'] Select rows and columns 'New Delhi' Boolean Indexing >>> s[~(s > 1)] Series s where value is not >1 >>> s[(s < -1) | (s > 2)] s where value is <-1 or >2 >>> df[df['Population']>1200000000] Use filter to adjust DataFrame Setting >>> s['a'] = 6 Set index a of Series s to 6 Applying Functions >>> f = lambda x: x*2 >>> df.apply(f) Apply function >>> df.applymap(f) Apply function element-wise Retrieving Series/DataFrame Information >>> df.shape (rows,columns) >>> df.index Describe index >>> df.columns Describe DataFrame columns >>> df.info() Info on DataFrame >>> df.count() Number of non-NA values Getting Also see NumPy Arrays Selecting, Boolean Indexing & Setting Basic Information Summary >>> df.sum() Sum of values >>> df.cumsum() Cummulative sum of values >>> df.min()/df.max() Minimum/maximum values >>> df.idxmin()/df.idxmax() Minimum/Maximum index value >>> df.describe() Summary statistics >>> df.mean() Mean of values >>> df.median() Median of values Dropping >>> s.drop(['a', 'c']) Drop values from rows (axis=0) >>> df.drop('Country', axis=1) Drop values from columns(axis=1) Data Alignment >>> s.add(s3, fill_value=0) a 10.0 b -5.0 c 5.0 d 7.0 >>> s.sub(s3, fill_value=2) >>> s.div(s3, fill_value=4) >>> s.mul(s3, fill_value=3) >>> s3 = pd.Series([7, -2, 3], index=['a', 'c', 'd']) >>> s + s3 a 10.0 b NaN c 5.0 d 7.0 Arithmetic Operations with Fill Methods Internal Data Alignment NA values are introduced in the indices that don’t overlap: You can also do the internal data alignment yourself with the help of the fill methods: Sort & Rank >>> df.sort_index() Sort by labels along an axis >>> df.sort_values(by='Country') Sort by the values along an axis >>> df.rank() Assign ranks to entries Belgium Brussels India New Delhi Brazil Brasília 0 1 2 Country Capital 11190846 1303171035 207847528 Population I/O Read and Write to CSV >>> pd.read_csv('file.csv', header=None, nrows=5) >>> df.to_csv('myDataFrame.csv') Read and Write to Excel >>> pd.read_excel('file.xlsx') >>> pd.to_excel('dir/myDataFrame.xlsx', sheet_name='Sheet1') Read multiple sheets from the same file >>> xlsx = pd.ExcelFile('file.xls') >>> df = pd.read_excel(xlsx, 'Sheet1') >>> help(pd.Series.loc) Asking For Help Read and Write to SQL Query or Database Table >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite:///:memory:') >>> pd.read_sql("SELECT * FROM my_table;", engine) >>> pd.read_sql_table('my_table', engine) >>> pd.read_sql_query("SELECT * FROM my_table;", engine) >>> pd.to_sql('myDf', engine) read_sql()is a convenience wrapper around read_sql_table() and read_sql_query() PythonForDataScience Cheat Sheet Scikit-Learn Learn Python for data science Interactively at www.DataCamp.com Scikit-learn DataCamp Learn Python for Data Science Interactively Loading The Data Also see NumPy & Pandas Scikit-learn is an open source Python library that implements a range of machine learning, preprocessing, cross-validation and visualization algorithms using a unified interface. >>> import numpy as np >>> X = np.random.random((10,5)) >>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F']) >>> X[X < 0.7] = 0 Your data needs to be numeric and stored as NumPy arrays or SciPy sparse matrices. Other types that are convertible to numeric arrays, such as Pandas DataFrame, are also acceptable. Create Your Model Model Fitting Prediction Tune Your Model Evaluate Your Model’s Performance Grid Search Randomized Parameter Optimization Linear Regression >>> from sklearn.linear_model import LinearRegression >>> lr = LinearRegression(normalize=True) Support Vector Machines (SVM) >>> from sklearn.svm import SVC >>> svc = SVC(kernel='linear') Naive Bayes >>> from sklearn.naive_bayes import GaussianNB >>> gnb = GaussianNB() KNN >>> from sklearn import neighbors >>> knn = neighbors.KNeighborsClassifier(n_neighbors=5) Supervised learning >>> lr.fit(X, y) >>> knn.fit(X_train, y_train) >>> svc.fit(X_train, y_train) Unsupervised Learning >>> k_means.fit(X_train) >>> pca_model = pca.fit_transform(X_train) Accuracy Score >>> knn.score(X_test, y_test) >>> from sklearn.metrics import accuracy_score >>> accuracy_score(y_test, y_pred) Classification Report >>> from sklearn.metrics import classification_report >>> print(classification_report(y_test, y_pred)) Confusion Matrix >>> from sklearn.metrics import confusion_matrix >>> print(confusion_matrix(y_test, y_pred)) Cross-Validation >>> from sklearn.cross_validation import cross_val_score >>> print(cross_val_score(knn, X_train, y_train, cv=4)) >>> print(cross_val_score(lr, X, y, cv=2)) Classification Metrics >>> from sklearn.grid_search import GridSearchCV >>> params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]} >>> grid = GridSearchCV(estimator=knn, param_grid=params) >>> grid.fit(X_train, y_train) >>> print(grid.best_score_) >>> print(grid.best_estimator_.n_neighbors) >>> from sklearn.grid_search import RandomizedSearchCV >>> params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]} >>> rsearch = RandomizedSearchCV(estimator=knn, param_distributions=params, cv=4, n_iter=8, random_state=5) >>> rsearch.fit(X_train, y_train) >>> print(rsearch.best_score_) A Basic Example >>> from sklearn import neighbors, datasets, preprocessing >>> from sklearn.model_selection import train_test_split >>> from sklearn.metrics import accuracy_score >>> iris = datasets.load_iris() >>> X, y = iris.data[:, :2], iris.target >>> X_train,X_test,y_train,y_test= train_test_split(X,y,random_state=33) >>> scaler = preprocessing.StandardScaler().fit(X_train) >>> X_train = scaler.transform(X_train) >>> X_test = scaler.transform(X_test) >>> knn = neighbors.KNeighborsClassifier(n_neighbors=5) >>> knn.fit(X_train, y_train) >>> y_pred = knn.predict(X_test) >>> accuracy_score(y_test, y_pred) Supervised Learning Estimators Unsupervised Learning Estimators Principal Component Analysis (PCA) >>> from sklearn.decomposition import PCA >>> pca = PCA(n_components=0.95) K Means >>> from sklearn.cluster import KMeans >>> k_means = KMeans(n_clusters=3, random_state=0) Fit the model to the data Fit the model to the data Fit to data, then transform it Preprocessing The Data Standardization Normalization >>> from sklearn.preprocessing import Normalizer >>> scaler = Normalizer().fit(X_train) >>> normalized_X = scaler.transform(X_train) >>> normalized_X_test = scaler.transform(X_test) Training And Test Data >>> from sklearn.model_selection import train_test_split >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) >>> from sklearn.preprocessing import StandardScaler >>> scaler = StandardScaler().fit(X_train) >>> standardized_X = scaler.transform(X_train) >>> standardized_X_test = scaler.transform(X_test) Binarization >>> from sklearn.preprocessing import Binarizer >>> binarizer = Binarizer(threshold=0.0).fit(X) >>> binary_X = binarizer.transform(X) Encoding Categorical Features Supervised Estimators >>> y_pred = svc.predict(np.random.random((2,5))) >>> y_pred = lr.predict(X_test) >>> y_pred = knn.predict_proba(X_test) Unsupervised Estimators >>> y_pred = k_means.predict(X_test) >>> from sklearn.preprocessing import LabelEncoder >>> enc = LabelEncoder() >>> y = enc.fit_transform(y) Imputing Missing Values Predict labels Predict labels Estimate probability of a label Predict labels in clustering algos >>> from sklearn.preprocessing import Imputer >>> imp = Imputer(missing_values=0, strategy='mean', axis=0) >>> imp.fit_transform(X_train) Generating Polynomial Features >>> from sklearn.preprocessing import PolynomialFeatures >>> poly = PolynomialFeatures(5) >>> poly.fit_transform(X) Regression Metrics Mean Absolute Error >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2] >>> mean_absolute_error(y_true, y_pred) Mean Squared Error >>> from sklearn.metrics import mean_squared_error >>> mean_squared_error(y_test, y_pred) R² Score >>> from sklearn.metrics import r2_score >>> r2_score(y_true, y_pred) Clustering Metrics Adjusted Rand Index >>> from sklearn.metrics import adjusted_rand_score >>> adjusted_rand_score(y_true, y_pred) Homogeneity >>> from sklearn.metrics import homogeneity_score >>> homogeneity_score(y_true, y_pred) V-measure >>> from sklearn.metrics import v_measure_score >>> metrics.v_measure_score(y_true, y_pred) Estimator score method Metric scoring functions Precision, recall, f1-score and support PythonForDataScience Cheat Sheet Matplotlib Learn Python Interactively at www.DataCamp.com Matplotlib DataCamp Learn Python for Data Science Interactively Prepare The Data Also see Lists & NumPy Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. 1 >>> import numpy as np >>> x = np.linspace(0, 10, 100) >>> y = np.cos(x) >>> z = np.sin(x) Show Plot >>> plt.show() Matplotlib 2.0.0 - Updated on: 02/2017 Save Plot Save figures >>> plt.savefig('foo.png') Save transparent figures >>> plt.savefig('foo.png', transparent=True) 6 5 >>> fig = plt.figure() >>> fig2 = plt.figure(figsize=plt.figaspect(2.0)) Create Plot2 Plot Anatomy & Workflow All plotting is done with respect to an Axes. In most cases, a subplot will fit your needs. A subplot is an axes on a grid system. >>> fig.add_axes() >>> ax1 = fig.add_subplot(221) # row-col-num >>> ax3 = fig.add_subplot(212) >>> fig3, axes = plt.subplots(nrows=2,ncols=2) >>> fig4, axes2 = plt.subplots(ncols=3) Customize Plot Colors, Color Bars & Color Maps Markers Linestyles Mathtext Text & Annotations Limits, Legends & Layouts The basic steps to creating plots with matplotlib are: 1Prepare data 2Create plot 3Plot 4 Customize plot 5Save plot 6Show plot >>> import matplotlib.pyplot as plt >>> x = [1,2,3,4] >>> y = [10,20,25,30] >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, color='lightblue', linewidth=3) >>> ax.scatter([2,4,6], [5,15,25], color='darkgreen', marker='^') >>> ax.set_xlim(1, 6.5) >>> plt.savefig('foo.png') >>> plt.show() Step 3, 4 Step 2 Step 1 Step 3 Step 6 Plot Anatomy Workflow 4 Limits & Autoscaling >>> ax.margins(x=0.0,y=0.1) Add padding to a plot >>> ax.axis('equal') Set the aspect ratio of the plot to 1 >>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5]) Set limits for x-and y-axis >>> ax.set_xlim(0,10.5) Set limits for x-axis Legends >>> ax.set(title='An Example Axes', Set a title and x-and y-axis labels ylabel='Y-Axis', xlabel='X-Axis') >>> ax.legend(loc='best') No overlapping plot elements Ticks >>> ax.xaxis.set(ticks=range(1,5), Manually set x-ticks ticklabels=[3,100,-12,"foo"]) >>> ax.tick_params(axis='y', Make y-ticks longer and go in and out direction='inout', length=10) Subplot Spacing >>> fig3.subplots_adjust(wspace=0.5, Adjust the spacing between subplots hspace=0.3, left=0.125, right=0.9, top=0.9, bottom=0.1) >>> fig.tight_layout() Fit subplot(s) in to the figure area Axis Spines >>> ax1.spines['top'].set_visible(False) Make the top axis line for a plot invisible >>> ax1.spines['bottom'].set_position(('outward',10))Move the bottom axis line outward Figure Axes >>> data = 2 * np.random.random((10, 10)) >>> data2 = 3 * np.random.random((10, 10)) >>> Y, X = np.mgrid[-3:3:100j, -3:3:100j] >>> U = -1 - X**2 + Y >>> V = 1 + X - Y**2 >>> from matplotlib.cbook import get_sample_data >>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy')) >>> fig, ax = plt.subplots() >>> lines = ax.plot(x,y) Draw points with lines or markers connecting them >>> ax.scatter(x,y) Draw unconnected points, scaled or colored >>> axes[0,0].bar([1,2,3],[3,4,5]) Plot vertical rectangles (constant width) >>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) Plot horiontal rectangles (constant height) >>> axes[1,1].axhline(0.45) Draw a horizontal line across axes >>> axes[0,1].axvline(0.65) Draw a vertical line across axes >>> ax.fill(x,y,color='blue') Draw filled polygons >>> ax.fill_between(x,y,color='yellow') Fill between y-values and 0 Plotting Routines3 1D Data >>> fig, ax = plt.subplots() >>> im = ax.imshow(img, Colormapped or RGB arrays cmap='gist_earth', interpolation='nearest', vmin=-2, vmax=2) 2D Data or Images Vector Fields >>> axes[0,1].arrow(0,0,0.5,0.5) Add an arrow to the axes >>> axes[1,1].quiver(y,z) Plot a 2D field of arrows >>> axes[0,1].streamplot(X,Y,U,V) Plot a 2D field of arrows Data Distributions >>> ax1.hist(y) Plot a histogram >>> ax3.boxplot(y) Make a box and whisker plot >>> ax3.violinplot(z) Make a violin plot >>> axes2[0].pcolor(data2) Pseudocolor plot of 2D array >>> axes2[0].pcolormesh(data) Pseudocolor plot of 2D array >>> CS = plt.contour(Y,X,U) Plot contours >>> axes2[2].contourf(data1) Plot filled contours >>> axes2[2]= ax.clabel(CS) Label a contour plot Figure Axes/Subplot Y-axis X-axis 1D Data 2D Data or Images >>> plt.plot(x, x, x, x**2, x, x**3) >>> ax.plot(x, y, alpha = 0.4) >>> ax.plot(x, y, c='k') >>> fig.colorbar(im, orientation='horizontal') >>> im = ax.imshow(img, cmap='seismic') >>> fig, ax = plt.subplots() >>> ax.scatter(x,y,marker=".") >>> ax.plot(x,y,marker="o") >>> plt.title(r'$sigma_i=15$', fontsize=20) >>> ax.text(1, -2.1, 'Example Graph', style='italic') >>> ax.annotate("Sine", xy=(8, 0), xycoords='data', xytext=(10.5, 0), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"),) >>> plt.plot(x,y,linewidth=4.0) >>> plt.plot(x,y,ls='solid') >>> plt.plot(x,y,ls='--') >>> plt.plot(x,y,'--',x**2,y**2,'-.') >>> plt.setp(lines,color='r',linewidth=4.0) >>> import matplotlib.pyplot as plt Close & Clear >>> plt.cla() Clear an axis >>> plt.clf() Clear the entire figure >>> plt.close() Close a window PythonForDataScience Cheat Sheet Seaborn Learn Data Science Interactively at www.DataCamp.com Statistical Data Visualization With Seaborn DataCamp Learn Python for Data Science Interactively Figure Aesthetics Data The Python visualization library Seaborn is based on matplotlib and provides a high-level interface for drawing attractive statistical graphics. Make use of the following aliases to import the libraries: The basic steps to creating plots with Seaborn are: 1. Prepare some data 2. Control figure aesthetics 3. Plot with Seaborn 4. Further customize your plot >>> import pandas as pd >>> import numpy as np >>> uniform_data = np.random.rand(10, 12) >>> data = pd.DataFrame({'x':np.arange(1,101), 'y':np.random.normal(0,4,100)}) >>> import matplotlib.pyplot as plt >>> import seaborn as sns Plotting With Seaborn >>> import matplotlib.pyplot as plt >>> import seaborn as sns >>> tips = sns.load_dataset("tips") >>> sns.set_style("whitegrid") >>> g = sns.lmplot(x="tip", y="total_bill", data=tips, aspect=2) >>> g = (g.set_axis_labels("Tip","Total bill(USD)"). set(xlim=(0,10),ylim=(0,100))) >>> plt.title("title") >>> plt.show(g) Step 4 Step 2 Step 1 Step 5 Step 3 1 >>> titanic = sns.load_dataset("titanic") >>> iris = sns.load_dataset("iris") Seaborn also offers built-in data sets: 2 3 Further Customizations4 Show or Save Plot >>> sns.set() (Re)set the seaborn default >>> sns.set_style("whitegrid") Set the matplotlib parameters >>> sns.set_style("ticks", Set the matplotlib parameters {"xtick.major.size":8, "ytick.major.size":8}) >>> sns.axes_style("whitegrid") Return a dict of params or use with with to temporarily set the style Axis Grids >>> f, ax = plt.subplots(figsize=(5,6)) Create a figure and one subplot >>> plt.title("A Title") Add plot title >>> plt.ylabel("Survived") Adjust the label of the y-axis >>> plt.xlabel("Sex") Adjust the label of the x-axis >>> plt.ylim(0,100) Adjust the limits of the y-axis >>> plt.xlim(0,10) Adjust the limits of the x-axis >>> plt.setp(ax,yticks=[0,5]) Adjust a plot property >>> plt.tight_layout() Adjust subplot params >>> plt.show() Show the plot >>> plt.savefig("foo.png") Save the plot as a figure >>> plt.savefig("foo.png", Save transparent figure transparent=True) >>> sns.regplot(x="sepal_width", Plot data and a linear regression y="sepal_length", model fit data=iris, ax=ax) >>> g.despine(left=True) Remove left spine >>> g.set_ylabels("Survived") Set the labels of the y-axis >>> g.set_xticklabels(rotation=45) Set the tick labels for x >>> g.set_axis_labels("Survived", Set the axis labels "Sex") >>> h.set(xlim=(0,5), Set the limit and ticks of the ylim=(0,5), x-and y-axis xticks=[0,2.5,5], yticks=[0,2.5,5]) Close & Clear >>> plt.cla() Clear an axis >>> plt.clf() Clear an entire figure >>> plt.close() Close a window 5 Also see Lists, NumPy & Pandas Also see Matplotlib Also see Matplotlib Also see Matplotlib Also see Matplotlib Context Functions >>> sns.set_context("talk") Set context to "talk" >>> sns.set_context("notebook", Set context to "notebook", font_scale=1.5, Scale font elements and rc={"lines.linewidth":2.5}) override param mapping Seaborn styles >>> sns.set_palette("husl",3) Define the color palette >>> sns.color_palette("husl") Use with with to temporarily set palette >>> flatui = ["#9b59b6","#3498db","#95a5a6","#e74c3c","#34495e","#2ecc71"] >>> sns.set_palette(flatui) Set your own color palette Color Palette Plot Axisgrid Objects >>> g = sns.FacetGrid(titanic, Subplot grid for plotting conditional col="survived", relationships row="sex") >>> g = g.map(plt.hist,"age") >>> sns.factorplot(x="pclass", Draw a categorical plot onto a y="survived", Facetgrid hue="sex", data=titanic) >>> sns.lmplot(x="sepal_width", Plot data and regression model fits y="sepal_length", across a FacetGrid hue="species", data=iris) Regression PlotsCategorical Plots Scatterplot >>> sns.stripplot(x="species", Scatterplot with one y="petal_length", categorical variable data=iris) >>> sns.swarmplot(x="species", Categorical scatterplot with y="petal_length", non-overlapping points data=iris) Bar Chart >>> sns.barplot(x="sex", Show point estimates and y="survived", confidence intervals with hue="class", scatterplot glyphs data=titanic) Count Plot >>> sns.countplot(x="deck", Show count of observations data=titanic, palette="Greens_d") Point Plot >>> sns.pointplot(x="class", Show point estimates and y="survived", confidence intervals as hue="sex", rectangular bars data=titanic, palette={"male":"g", "female":"m"}, markers=["^","o"], linestyles=["-","--"]) Boxplot >>> sns.boxplot(x="alive", Boxplot y="age", hue="adult_male", data=titanic) >>> sns.boxplot(data=iris,orient="h") Boxplot with wide-form data Violinplot >>> sns.violinplot(x="age", Violin plot y="sex", hue="survived", data=titanic) >>> plot = sns.distplot(data.y, Plot univariate distribution kde=False, color="b") Distribution Plots >>> h = sns.PairGrid(iris) Subplot grid for plotting pairwise >>> h = h.map(plt.scatter) relationships >>> sns.pairplot(iris) Plot pairwise bivariate distributions >>> i = sns.JointGrid(x="x", Grid for bivariate plot with marginal y="y", univariate plots data=data) >>> i = i.plot(sns.regplot, sns.distplot) >>> sns.jointplot("sepal_length", Plot bivariate distribution "sepal_width", data=iris, kind='kde') Matrix Plots >>> sns.heatmap(uniform_data,vmin=0,vmax=1) Heatmap PythonForDataScience Cheat Sheet Bokeh Learn Bokeh Interactively at www.DataCamp.com, taught by Bryan Van de Ven, core contributor Plotting With Bokeh DataCamp Learn Python for Data Science Interactively >>> from bokeh.plotting import figure >>> p1 = figure(plot_width=300, tools='pan,box_zoom') >>> p2 = figure(plot_width=300, plot_height=300, x_range=(0, 8), y_range=(0, 8)) >>> p3 = figure() >>> from bokeh.io import output_notebook, show >>> output_notebook() Plotting Components >>> from bokeh.embed import components >>> script, div = components(p) Selection and Non-Selection Glyphs >>> p = figure(tools='box_select') >>> p.circle('mpg', 'cyl', source=cds_df, selection_color='red', nonselection_alpha=0.1) Hover Glyphs >>> from bokeh.models import HoverTool >>> hover = HoverTool(tooltips=None, mode='vline') >>> p3.add_tools(hover) Colormapping >>> from bokeh.models import CategoricalColorMapper >>> color_mapper = CategoricalColorMapper( factors=['US', 'Asia', 'Europe'], palette=['blue', 'red', 'green']) >>> p3.circle('mpg', 'cyl', source=cds_df, color=dict(field='origin', transform=color_mapper), legend='Origin') >>> from bokeh.io import output_file, show >>> output_file('my_bar_chart.html', mode='cdn') >>> from bokeh.models import ColumnDataSource >>> cds_df = ColumnDataSource(df) Data Also see Lists, NumPy & Pandas Under the hood, your data is converted to Column Data Sources. You can also do this manually: Customized Glyphs The Python interactive visualization library Bokeh enables high-performance visual presentation of large datasets in modern web browsers. Bokeh’s mid-level general purpose bokeh.plotting interface is centered around two main components: data and glyphs. The basic steps to creating plots with the bokeh.plotting interface are: 1. Prepare some data: Python lists, NumPy arrays, Pandas DataFrames and other sequences of values 2. Create a new plot 3. Add renderers for your data, with visual customizations 4. Specify where to generate the output 5. Show or save the results + = data glyphs plot >>> from bokeh.plotting import figure >>> from bokeh.io import output_file, show >>> x = [1, 2, 3, 4, 5] >>> y = [6, 7, 2, 4, 5] >>> p = figure(title="simple line example", x_axis_label='x', y_axis_label='y') >>> p.line(x, y, legend="Temp.", line_width=2) >>> output_file("lines.html") >>> show(p) Step 4 Step 2 Step 1 Step 5 Step 3 Renderers & Visual Customizations 2 Scatter Markers >>> p1.circle(np.array([1,2,3]), np.array([3,2,1]), fill_color='white') >>> p2.square(np.array([1.5,3.5,5.5]), [1,4,3], color='blue', size=1) Line Glyphs >>> p1.line([1,2,3,4], [3,4,5,6], line_width=2) >>> p2.multi_line(pd.DataFrame([[1,2,3],[5,6,7]]), pd.DataFrame([[3,4,5],[3,2,1]]), color="blue") 3 Glyphs Output & Export4 1 >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame(np.array([[33.9,4,65, 'US'], [32.4,4,66, 'Asia'], [21.4,4,109, 'Europe']]), columns=['mpg','cyl', 'hp', 'origin'], index=['Toyota', 'Fiat', 'Volvo']) Also see Data HTML US Asia Europe Grid Layout >>> from bokeh.layouts import gridplot >>> row1 = [p1,p2] >>> row2 = [p3] >>> layout = gridplot([[p1,p2],[p3]]) Tabbed Layout >>> from bokeh.models.widgets import Panel, Tabs >>> tab1 = Panel(child=p1, title="tab1") >>> tab2 = Panel(child=p2, title="tab2") >>> layout = Tabs(tabs=[tab1, tab2]) Linked Plots Inside Plot Area >>> p.legend.location = 'bottom_left' Outside Plot Area >>> from bokeh.models import Legend >>> r1 = p2.asterisk(np.array([1,2,3]), np.array([3,2,1]) >>> r2 = p2.line([1,2,3,4], [3,4,5,6]) >>> legend = Legend(items=[("One" ,[p1, r1]),("Two",[r2])], location=(0, -30)) >>> p.add_layout(legend, 'right') Legend Location Linked Axes >>> p2.x_range = p1.x_range >>> p2.y_range = p1.y_range Linked Brushing >>> p4 = figure(plot_width = 100, tools='box_select,lasso_select') >>> p4.circle('mpg', 'cyl', source=cds_df) >>> p5 = figure(plot_width = 200, tools='box_select,lasso_select') >>> p5.circle('mpg', 'hp', source=cds_df) >>> layout = row(p4,p5) >>> show(p1) >>> show(layout) >>> save(p1) >>> save(layout) Show or Save Your Plots5 >>> p.legend.orientation = "horizontal" >>> p.legend.orientation = "vertical" >>> p.legend.border_line_color = "navy" >>> p.legend.background_fill_color = "white" Legend Orientation Legend Background & Border Rows & Columns Layout Rows >>> from bokeh.layouts import row >>> layout = row(p1,p2,p3) Columns >>> from bokeh.layouts import columns >>> layout = column(p1,p2,p3) Nesting Rows & Columns >>>layout = row(column(p1,p2), p3) PNG >>> from bokeh.io import export_png >>> export_png(p, filename="plot.png") SVG >>> from bokeh.io import export_svgs >>> p.output_backend = "svg" >>> export_svgs(p, filename="plot.svg") Notebook Standalone HTML >>> from bokeh.embed import file_html >>> from bokeh.resources import CDN >>> html = file_html(p, CDN, "my_plot")