

ALS – non shockable rhythms

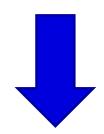
4H's / 4T's

Marek Lukeš

Learning outcomes

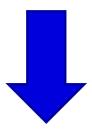
 Student will learn about non-shockable rhythms associated with cardiac arrest and their potentially reversible causes

Advanced Life Support (ALS)


= advanced interventions that follow basic life support (BLS)

ECG rhythms in cardiac arrest

Shockable

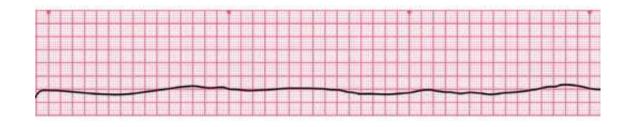

- ventricular fibrillation (VF)
- pulseless ventricular tachycardia (pVT)

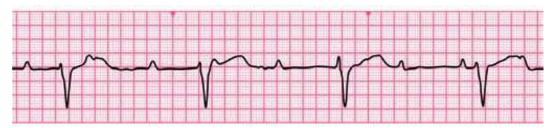
defibrillation as soon as possible

Non - Shockable

- asystole
- pulseless electrical activity (PEA)

defibrillation not indicated


Non-Shockable rhythms


Asystole

- total cessation of electrical activity
- no myocardial contraction
- no blood flow

Pulseless electrical activity

- presence of electrical activity that would normally be associated with palpable pulse
- myocardial contraction too weak to produce a detectable blood pressure

Non-Shockable rhythms recognized

- •CPR 30:2 immediately & re-check the rhythm every 2 minutes
- palpate the pulse in the presence of an organized rhythm and/or signs of life:
 - no pulse palpable
 - → pulse palpable

- → continue CPR
- post resuscitation care
- always continue quality CPR in case of any doubt!

Non-Shockable rhythms recognized

- establish intravenous (IV) access as soon as possible
- peripheral venous cannulation is quick, safe and easy to perform in most cases
- consider the itraosseous (IO) route if IV is difficult or impossible
- give adrenaline 1mg once IV/IO access is obtained
- repeat adrenaline 1mg IV/IO every 3-5min. whilst CPR continues
- adrenaline is the one and only agent of choice

Adrenaline – mechanism of action

• α-1 stimulation

vasoconstriction

↑ coronary perfusion pressure = ↑ myocardial blood flow

个 chance of ROSC

Pulseless electrical activity

- PEA is often caused by reversible conditions
- PEA may be effectively reversed upon appropriate treatment
- two groups of reversible causes (based upon initial letter):

Reversible causes of cardiac arrest

4 H's

- hypoxia
- hypovolemia
- hypo-/hyperkalemia
- hypo-/hyperthermia

4 T's

- thrombosis (coronary, pulmonary)
- tension pneumothorax
- tamponade
- toxins

Hypoxia / asphyxia

common conditions associated with cardiac arrest

top priorities

- → placement of an advanced airway
- → effective ventilation
- → highest possible inspired oxygen

Hypovolemia

causes of hypovolemia

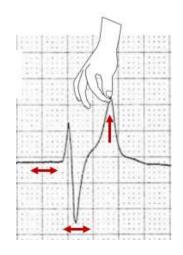
- → severe hemorrhage
- → anaphylaxis
- → sepsis / septic schock

top priorities

- → fluid replacement (crystalloids, blood products)
- → urgent intervention to stop the bleeding

Hypo-/hyperkalemia

- + other electrolyte and metabolic disorders
- easy detection by Point-of-Care testing
 - → electrolytes (K, Na, Ca, Cl)
 - → metabolites (Glu, Lac, Crea, Urea)
 - → blood gases(pH, pO2, pCO2)

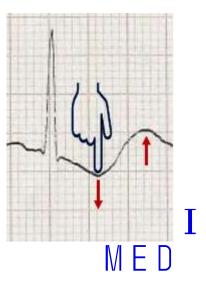

Dyskalemia

Hyperkalemia

- mild 5.5 5.9 mmol/L
- moderate 6.0 6.4 mmol/L
- severe ≥ 6.5 mmol/L

ECG changes

- flat / absent P waves
- broad QRS
- tall / peaked T waves



Hypokalemia

- mild < 3.5 mmol/L
- severe < 2.5 mmol/L

ECG changes

- U waves
- T waves flattening
- ST segment changes

Dyskalemia

Hyperkalemia treatment

- shift potassium into cells
- → insulin-glucose i.v., bicarbonate i.v. salbutamol inh.
- remove potassium from the body
- → loop diuretics, potassium binder, cation exchgange rasin, dialysis
- cardiac protection
- → calcium chloride/gluconate i.v.

Hypokalemia treatment

- restore potassium levels
- check for exacerbating factors
 (hypomagnesemia, digoxin toxicity,...)

Hypotermia

- risk factors for imminent cardiac arrest
 - → core temperature < 30°C</p>
 - → ventricular arrythmia
 - → systolic blood pressure < 90mmHg</p>
- adrenaline should be withhold if the core temperature is < 30°C
- rewarming in hypotermic cardiac arrest should be performed with extra-corporeal membrane oxygenation (ECMO)

Thrombosis

Pulmonary embolism

- dignosis
- → bedside echocardiography
- therapy
- → anticoagulation therapy
- → thrombolytic therapy
- → surgical embolectomy as alternative to thrombolysis

Coronary thrombosis

- diagnosis
- → clinical signs (chest pain prior to arrest)
- → ECG (STEMI, NON-STEMI)
- therapy
- → coronary angiography + percutaneous coronary intervention after / before ROSC

Cardiac tamponade

- diagnosis is very difficult in the absence of point-of-care echocardiography
- treatment is based on immediate decompression of the pericardium:
 - → ultrasound guided pericardiocentesis
 - → resuscitative thoracotomy

Tension pneumothorax

 diagnosis is based on clinical examination or point-ofcare ultrasound

- chest decompression is effective treatment:
 - → needle thoracocentesis
 - → chest tube insertion
 - → open thoracostomy

Intoxication

- priority is to secure the personal safety
- toxic agents can (in)directly cause electrolyte abnormalities, hypoxia and hypo- or hyperthermia
- specific treatment modalities:
 - → antidotes
 - → decontamination
 - → enhanced elimination

Take home message

- The ALS algorithm distinguishes between shockable and nonshockable rhythms
- For adult patients in cardiac arrest with a non-shockable rhythm adrenaline should be given as soon as possible
- During cardiac arrest must be considered potentially reversible causes for which exist specific treatment

