

Acute kidney injury Renal replacement therapy

Martin Vavřina

Learning goals

- Student learns how to recognize and define acute kidney injury/failure.
- Student gains basic knowledge about the methods for renal functions replacement.

Lecture summary

- Definition and diagnostics of AKI
- Pathogenesis of AKI
- Treatment of AKI
- Methods of renal replacement therapy in AKI
- Vascular access
- Anticoagulation in CRRT

Definition and diagnostics of AKI

- abrupt/prompt deterioration of the glomerular filtration rate (GFR)
- several reasons (pre-renal, renal, post-renal)
- AKI (acute kidney injury)
- occurrence in 50-60% adult patients in critical care
- 5-10% in children
- confirmed independent factor of mortality 50-60%
- approx. 70% of patients with AKI requires renal replacement therapy (RRT)

Definition and diagnostics of AKI

ischemic injury

- sepsis (most common reason for AKI onset)
- pancreatitis
- trauma
- part of multiorgan dysfunction sydrome (MODS)

toxic injury

exogenous
 drugs (gentamicin, amphotericin, cisplatin, etc.)
 toxins (heavy metals, plants, mushrooms, contrast media, etc.)

– endogenous

hem pigments (rhabdomyolysis) uric acid (tumor lysis syndrome)

Definition and diagnostics of AKI

- Clinical problems in AKI:
- Oliguria (<400 ml urine/day in adults, <0,5 ml/kg/h in children)
 - fluid overload and hypertension
 - complications with nutrition and drugs administration
- Reduced renal clearance
 - electrolyte imbalances (hyperkalemia)
 - metabolic acidosis with high anion gap (HAGMA)
 - azotemia (BUN and creatinine elevation)

- pathophysiology of AKI:
 - pre-renal
 - renal
 - post-renal

- Pre-renal reasons for AKI:
 - hypovolemia from bleeding (surgical intervention, trauma, GIT bleeding), gastrointestinal loses (diarrhea, vomiting), renal loses (diuretics, diabetes insipidus) or skin loses (burns)
 - decrease in effective perfusion pressure and/or effective circulating volume in heart failure, shock or liver cirrhosis
 - combined pathology, e.g. sepsis (hypovolemia + changes on cellular level + drug toxicity, e.g. antibiotics)

- Renal reasons for AKI:
 - vascular thrombosis, HUS, vasculitis, malignant hypertension
 - infection sepsis, glomerulonephritis
 - tubular and interstitial pathology acute tubular necrosis, rhabdomyolysis, hemoglobinuria, sepsis, pancreatitis

- Post-renal reasons for AKI:
 - bilateral obstruction of urine passage
 - relative rare in children (posterior urethral valve)
 - other reasons may include tumor, compression from outside or trauma

Treatment of AKI

– basis common principles of AKI treatment:

- restore/retain electrolyte homeostasis (Na, K, Ca, P) and fluid balance
 diuretics (furosemide) only to solve fluid overload and hyperkalemia, not the treatment of AKI itself
- proper nutritional support
- prevention of life-threatening complications
- elimination of endogenous and exogenous toxins as fast as possible
- treatment of underlying illness
- dose reduction of administered drugs (e.g. antibiotics)

Methods of renal replacement therapy in AKI

- intracorporeal peritoneal dialysis (sometimes in children)
- extracorporeal intermittent hemodialysis (iHD), continual elimination methods (CRRT, continual renal replacement therapy)

Methods of renal replacement therapy in AKI

- peritoneal dialysis: sometimes used in children when CRRT not available, less effective in changing the ions concentration and body water volume, well tolerated in circulatory instability, simplest, serious risk of infection
- iHD: fastest changes in the ions concentration and body water removal compared to other methods, oldest, widely used, most effective, very complicated in critical care patients, mainly because of circulatory instability
- CRRT: several modalities (CVVD, CVVHD, CVVHDF), slow and continuous speed of ions and water removal, well tolerated in circulatory compromised patients

Vascular access

Vascular access

Source:

http://www.emdocs.net/unlocking-common-ed-proceduresnever-let-go-a-review-of-central-venous-access-placement/ https://www.ausmed.com.au/cpd/articles/-central-venouscatheters

Design of RRT

Source:

https://derangedphysiology.com/main/required-reading/renal-failure-and-dialysis/Chapter%203.1.6/cvvhf-circuit-diagram

Design of RRT

CVVH: Continuous venous-venous hemofiltration CVVHD: Continuous veno-venous hemodialysis CVVHDF: Continuous veno-venous hemodiafiltration Post-RF: post-dilutional replacement fluid Pre-RF: pre-dilutional replacement fluid

Post-RF Dialysate Effluent + Dialysate Pre-RF

Source:

https://www.renalfellow.org/2019/05/31/dosing-continuous-renal-replacement-therapies-crrt-what-is-enough/

Anticoagulation in CRRT

 blood of the patient comes in contact with the circuit tubing material – exogenous material, activation of coagulation

– possibilities:

- no anticoagulation
- heparin
- citrate

Source:

https://www.freseniusmedicalcare.cz/cs/odborna-verejnost/akutni-terapie/filtry-pro-crrt-a-plazmaferezu/https://www.intechopen.com/chapters/48020

Anticoagulation in CRRT

– Heparin

- Advantages: used for the long time, extensive experience, well established protocols, intuitive usage, reliable function
- Disadvantages: systemic anticoagulation, needs frequent blood level monitoring, risk of bleeding, heparin-induced thrombocytopenia (HIT)

https://www.pfizerhospitalus.com/products/heparin-sodium-injection https://www.intechopen.com/chapters/68788

Anticoagulation in CRRT

Citrate

- Advantages: very clever method when set correctly, method of the choice today, no systemic anticoagulation
- Disadvantages: risk of citrate accumulation when body metabolic capacity is exceeded, risk of hypernatremia (natrium citrate)

Source: https://www.kireports.org/article/S2468-0249(17)30295-4/fulltext

Take home message

- acute renal injury/failure is relative common problem in critical care with high mortality
- accompanies most common ICU pathologies (e.g. sepsis)
- need to find out the reason of renal pathology (pre-renal, renal, post-renal)
- renal replacement therapy represents effective method of the treatment of AKI

