

Acid-base balance disorders – practical interpretation

Eva Klabusayová

Learning outcomes

Student will learn to detect the presence of acid-base balance disorder.

Student will learn how to evaluate the compensation of acid-base balance disorder.

Student will learn how to detect unmeasured anions of organic acids and to suggest differential diagnosis of the cause of metabolic acidosis.

Content of the lecture

- Basic terms and definitions
- Classification of acid-base balance disorders and it's evaluation
- Evaluation of compensation of acid-base balance disorders, Boston rules
- Calculation of anion gap
- Differential diagnosis of metabolic acidosis
- Practical examples

<u>Acid-base balance</u> – the set of processes leading to the formation and disappearance of acids and bases in the internal environment

- Constant concentration of hydrogen cations H⁺ (40 nmol/l)
- -(norm 7,35 7,45)
- Acid a substance that is capable of releasing H⁺ → pH reduction
- Base a substance that is capable of accepting H⁺ → pH increasement

- Acidemia increase in H⁺ concentration pH drop below 7,35
 Acidosis processes in the internal environment that lead to the formation of acids or to the disappearance of bases and thus to a decrease in pH
- Alkalemia decrease in H⁺ concentration pH increase above 7,45
- Alkalosis processes that lead to the disappearance of acids or to the formation of bases and thus to a rise in pH

Buffer - a solution containing a conjugated pair of a weak acid and its salt, maintaining a stable pH

$$HA \rightarrow A^- + H^+$$

Henderson-Haaselbalch equation:

The change in pH is determined by the partial pressure of CO₂ (PaCO₂) and the concentration of bicarbonate (HCO₃-).

Classification of ABB disorders

Respiratory

- Caused by changes in PaCO₂ (norm PaCO₂ 4,6-6 kPa)
- Acidosis insufficient CO₂ elimination, pCO₂ in extracellular fluid rises
- Alkalosis alveolar ventilation higher than needed to maintain normal PaCO₂, pCO₂ decreases

<u>-Metabolic</u>

Caused by changes in HCO₃ (norm 24 2 mmol/l), changes in the concentration of buffer bases (BB)

Excess of bases – Buffer Base (BB)

- Sum of base concentrations of all buffering systems
- Bicarbonate bases, non-bicarbonate bases (phosphates, albumin)

Base Excess (BE)

- The difference between the current BB value and the normal BB value
- The amount of acid or base that must be added to the plasma to achieve a normal pH of 7,4 under a constant of PaCO₂ 5 kPa
- -Norm -2 +2
- △Metabolic acidosis: decrease in BE < -2 or decrease in HCO₃-concentration
- Metabolic alkalosis: increase in BE > 2 or increase in HCO₃-concentration

Compensation of acid-base balance disorders

- If the PaCO₂/HCO₃- ratio is kept constant, the pH will be normal
- Primary ABB disturbance → reaction by opposing change to normalize pH → compensation = secondary ABB disturbance
- Respiratory system— PaCO₂ regulation
- Metabolic regulation kidneys, liver
- ! Normal pH does not mean that an ABB disorder is not present
- ! ABB disturbance is present if there is an abnormal pH or PaCO₂

Degree of ABB disturbance compensation – Boston rules

Primary disorder	HCO ₃ - concentration (mmol/l)	PaCO ₂ (kPa)
Metabolic acidosis	< 22	HCO ₃ -/5 + 1
Metabolic alkalosis	> 26	HCO ₃ -/10 + 2,6
Acute respiratory acidosis	(PaCO2 - 5,3) x + 24 increased by per kPa	> 6
Chronic respiratory acidosis	$(PaCO2 - 5,3) \times 3 + 24$ increased by 3 per kPa	> 6
Acute respiratory alkalosis	24 – 1,5 x (5,3 – PaCO ₂) decreased by 1,5 per kPa	< 4,7
Chronic respiratory alkalosis	24 – 4 x (5,3 – PaCO ₂) decreased by 4 per kPa	< 4,7

Anion Gap (AG)

- Detection of the presence of acid anions undetectable by conventional laboratory methods
- Law of conservation of electroneutrality the sums of all positive and negative charges in the system are equal

$$^{\circ}$$
AG = (Na⁺ + K⁺) – (Cl⁻ + HCO₃⁻)

norm 12 4 mmol/l

Corrected anion gap – AGc

Takes into account the current concentration of albumin and phosphate

 $AGc = [(Na^+ + K^+) - (Cl^- + HCO_3^-)] - (0,2 x)$ albumin (g/l) + 1,5[phosphate (mmol/l)]) – lactate

 \triangle Norm AGc = 0

Metabolic acidosis

With a high AG - HAGMA

- Methanol
- U Uremia
- D Diabetic/alcoholic ketoacidosis
- P Propylene glycol
- | Iron, isoniazid
- L Lactate
- Ethylene glycol/ethanol
- S) Salicylates

With a normal AG - hyperchloremic

- 1 GIT secretion
- 2 Renal tubular acidosis
- 3 | latrogenic

Pactical approach: 1. Identify the primary ABB disorder

- Is pH or PaCO₂ abnormal?
- If both pH and PaCO₂ are abnormal, compare the direction of change
- If the change is in the same direction, the primary ABB disorder is metabolic
- If the change is in the opposite direction, the primary ABB disorder is respiratory
- If pH or PaCO₂ is normal, it is a combined disorder

1. Identify the primary ABB disorder

- Example 1: patient with pH 7,23 and PaCO₂ 3,0 kPa
- pH PaCO₂ primary metabolic acidosis
- Example 2: patient with pH 7,23 and PaCO₂ 7,2 kPa
- □pH PaCO₂ → primary respiratory acidosis
- Example 3: patient with pH 7,37 and PaCO₂ 7,5 kPa
- Normal pHPaCO₂ combined respiratory acidosis with metabolic alkalosis

Practical approach: 2. evaluate the compensatory response

- Boston rules
- Metabolic acidosis: calculate the expected PaCO₂ (HCO₃-/5 + 1)
- Metabolic alkalosis: calculate the expected PaCO₂ (HCO₃-/10 + 2,6)
- Respiratory acidosis: calculate the expected HCO₃:
 - -acute (PaCO₂ 5,3) x + 24
 - $\frac{1}{2}$ chronic (PaCO₂ 5,3) x 3 + 24
- Respiratory alkalosis: calculate the expected HCO₃:
 - $acute 24 1.5 x (5.3 PaCO_2)$
 - -chronic 24 4 x (5,3 PaCO₂)

2. evaluate the compensatory response: example

Patient with COPD exacerbation, dyspnoic, soporous pH 7,15, PaCO₂ 16,3 kPa, PaO₂ 10,3 kPa, HCO₃ 42 mmol/l, BE 7,9 mmol/l, SaO₂ 90%

- Compare the direction of change:

 pH PaCO₂ primary respiratory acidosis
- Calculate the expected $HCO_3 = (PaCO_2 5,3) \times 3 + 24$ $HCO_3 = (16,3 - 5,3) \times 3 + 24 = 57$
- Compare the actual and calculated HCO₃
- Primary respiratory acidosis with insufficient compensatory metabolic alkalosis

3. Detection of unmeasurable anions - AG

Example: a patient with a history of chronic alcohol abuse, admitted to hospital in a coma, Kussmaul breathing.

—	pH 7,31	Na 144 mmol/l
—	PaCO ₂ 2,9 kPa	K 4,3 mmol/l
—	HCO ₃ - 10,6 mmol/l	CI 106 mmol/l
—	BE -13,4	Ca ²⁺ 1,12 mmol/l
	Albumin 27,8 g/l	Mg 0,81 mmol/l
	Lactate 2,4	P 1 mmol/l

1. What is the primary disorder?

Primary metabolic acidosis

2. What is the compensatory response?

pH 7,31	Na 144 mmol/l
PaCO ₂ 2,9 kPa	K 4,3 mmol/l
HCO ₃ - 10,6 mmol/l	CI 106 mmol/l
BE -13,4	Ca ²⁺ 1,12 mmol/l
Albumin 27,8 g/l	Mg 0,81 mmol/l
Lactate 2,4	P 1 mmol/l

- Calculate the expected PaCO₂ in case of full compensation
- $PaCO_2 = HCO_3^{-1}/5 + 1$
- $PaCO_2 = 10,6/5 + 1 \neq 3,12$
- Compare the actual and calculated PaCO₂

Fully compensated respiratory metabolic acidosis (no superimposed disorder present)

3. Detection of unmeasured anions with AGc

pH 7,31	Na 144 mmol/l
PaCO ₂ 2,9 kPa	K 4,3 mmol/l
HCO ₃ - 10,6 mmol/l	Cl 106 mmol/l
BE -13,4	Ca ²⁺ 1,12 mmol/l
Albumin 27,8 g/l	Mg 0,81 mmol/l
Lactate 2,4	P 1 mmol/l

AGC =
$$[(Na^+ + K^+) - (Cl^- + HCO_3^-)] - (0.2 \text{ x albumin } (g/l) + 1.5[phosphate (mmol/l)]) - lactate AGc = $[(140 + 4.3) - (106 + 10.6)] - (0.2 \times 27.8) + 1.5 \times 1) - 2.4$
AGc = $18.24$$$

Metabolic acidosis with a high AG dif. dg.: MUDPILES

- Fully compensated respiratory metabolic acidosis with a high AG
- Probable cause: alkoholic ketoacidosis or intoxication by toxic alcohols

Take home message

- ABB disturbance is present when there is abnormal pH or PaCO₂.
- When evaluating ABB disorders, first determine what the primary disorder is, then evaluate the compensatory response.
- BE is a more reliable parameter to diagnose metabolic acidosis than bicarbonate concentration.
- The anion gap (AG) calculation is used to detect unmeasurable anions that cause metabolic acidosis.

Source literature

- Maláska J, Stašek J, Kratochvíl M, Zvoníček V. *Intenzivní medicína v praxi*. Praha: Maxdorf, [2020]. Jessenius. ISBN 978-80-7345-675-7.
- McNamara J, Worthley, LIG. Acid-base balance: part I. Physiology. Critical care and resuscitation. 2001;3:181-187.
- McNamara J, Worthley, LIG. Acid-base balance: part I. Physiology. Critical care and resuscitation. 2001;3:188-201.

