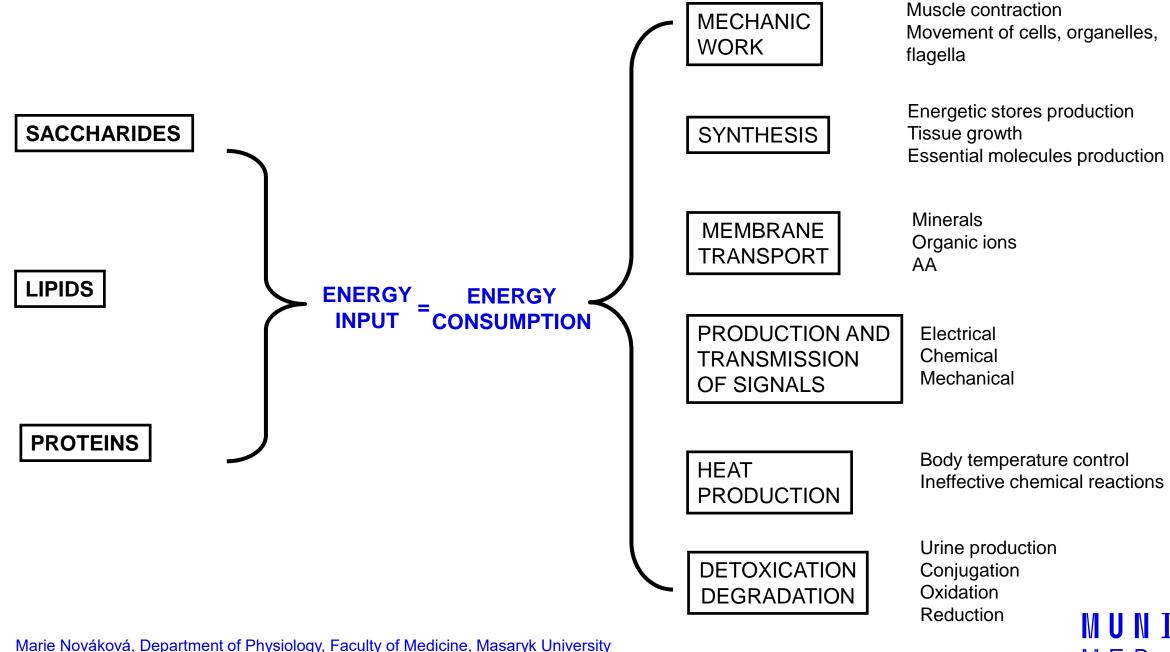


Energetic metabolismPhysiology of Exercise


Energetic metabolism

- = summary of all chemical (and physical) processes included in:
- 1. Production of energy from internal and external sources
- 2. Synthesis and degradation of structural and functional tissue components
- 3. Excretion of waste products and toxins from body

Metabolic speed: amount of energy released per unit of time

Calorie (cal) = amount of thermal energy, necessary for warming up 1g of water for 1°C, from 15°C to 16°C

I. thermodynamic law: At steady state, input of energy equals to its expenditure

Input stores

Expenditure of energy = external work + energy stores + heat

Intermediate stages: various chemical, mechanical and thermal reactions

Energy intake (input)

Saccharides, lipids, proteins

Burning releases: 4.1kcal/g, 9.3kcal/g, 5.3kcal/g (4.1 in body)

1kcal=4184J

Conversion of proteins and saccharides to lipids – effective storage of the energy

Conversion of proteins to saccharides – need of "fast" energy

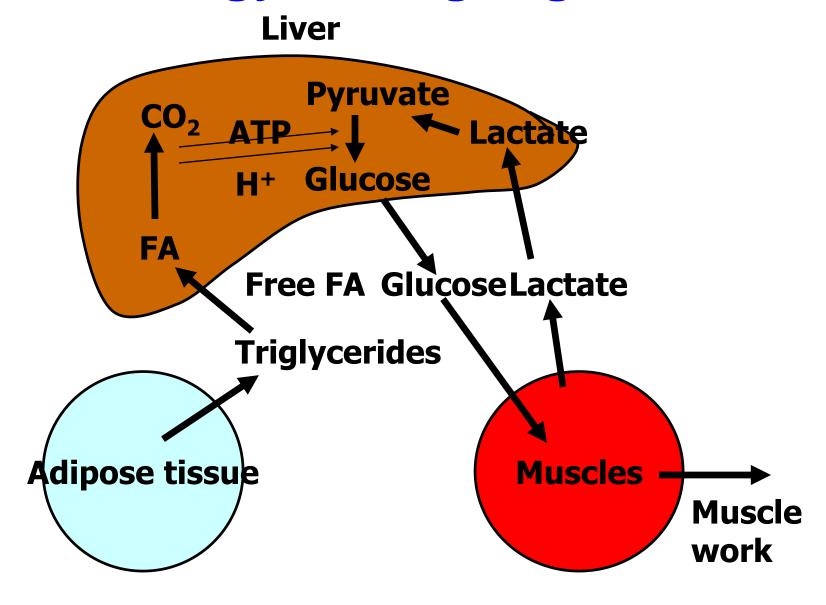
BUT: there is no significant conversion of lipids to saccharides

Energy output

1. At rest: basal metabolism; 8 000 kJ / day; 200-250 ml O₂/min; directly depends on body mass and surface; decreases with age; increases with ambient temperature; decreases by 10-15% during sleep; genetically determined
75%BM

2. After meal: slight increase in energetic output – specific dynamic effect – e.g. for glycogen formation

7%BM


3. In sitting people: spontaneous physical activity

18%BM

- 4. Facultative thermogenesis: non-shivering
- 5. During exercising: energetically most demanding; individual; changes according to season

Transport of energy among organs

- Energy stores: ATP, creatinphosphate, GTP, CTP (cytosin), UTP (uridin), ITP (inosin)
- Macroergic bond 12kcal/mol
- Efficiency is not 100% 18kcal of substrate to 1 bond in ATP
- Daily: 63 kg of ATP (128 mol)
- Glycolysis: only short-lasting source of energy (2 pyruvates only approx. 8% of glucose energy); supply of glucose is limited, lactate

RESPIRATORY QUOTIENT

$$\mathbf{RQ} = V_{CO2} : V_{O2}$$

(per unit of time, at steady state)

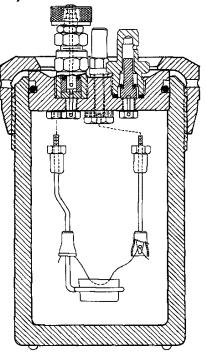
R – ratio of respiratory exchange (no steady state!)

Saccharides: RQ = 1 Lipids: RQ = 0.7

Proteins: RQ = 0.8

Storage and transport of energy

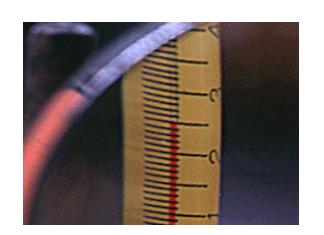
- Both input and output of energy are irregular necessity of storage
- 75% of stores: triglycerides (9kcal/g) in adipose tissue (10-30% of body mass), lasts up to 2 months; source dietary FA and esterification with a-glycerolphosphate or synthesis from acetylCoA (from glycolysis) saccharides are converted to more effective store of energy = lipids
- 25% of stores: proteins (4kcal/g); conversion to saccharides (gluconeogenesis during stress); adverse effects on organism
- Less than 1% of stores: saccharides (4kcal/g) as glycogen; important for CNS!!! and short-term enormous exercise; ¼ of glycogen stores in liver (75-100g), rest in muscles (300-400g); liver glycogen glycogenolysis release of glucose; muscle glycogen used only in muscles (no glukoso-6-phosphatase)
- Gluconeogenesis: from pyruvate, lactate and glycerol and AA (except of leucin); NO from acetyl-CoA
- Storage and transport of energy requires input of other energy: 3% from original energy lipids (triglycerides to adipose tissue), 7% glucose (glycogen), 23% conversion of saccharides to lipids, 23% conversion of AA to proteins or glucose (glycogen).


Direct calorimetry

= measurement of energy released by burning of diet out of body (oxidation of compounds in a calorimeter)

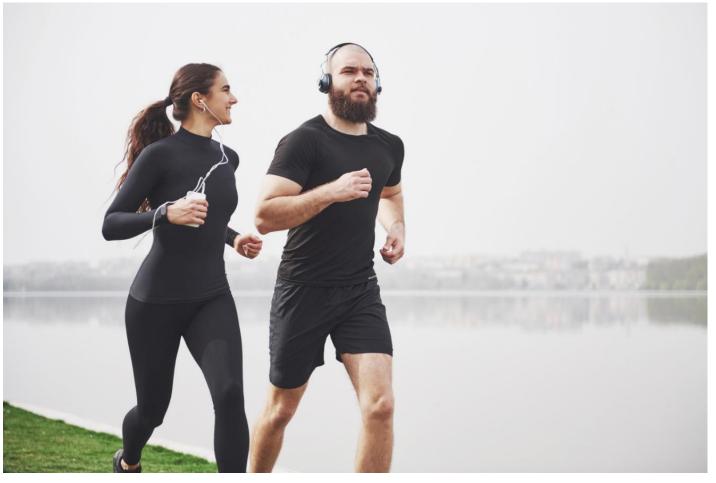
1. Caloric bomb

2. Whole-body calorimeter (for laboratory animals, for humans)



Indirect calorimetry

- Amount of consumed O₂.
- Amount of energy released for 1 mol of consumed O₂; differs according to type of oxidized compound (the effect of diet composition)


Factors affecting basal metabolism

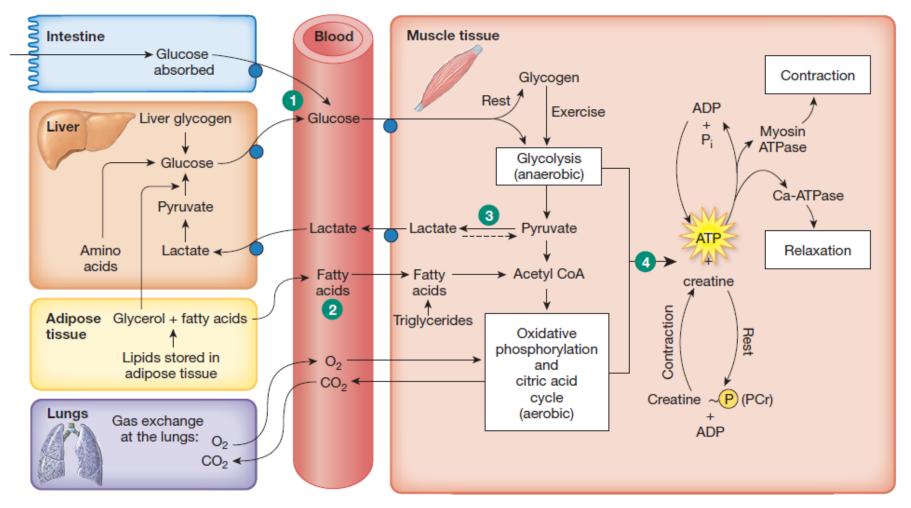
- Muscle work (before and/or during measurement)
- Food intake (before measurement)
- High or low ambient temperature (the dependence is expressed as a **U** curve)
- Height, weight, body surface
- Gender
- Age
- Emotional situation
- Body temperature
- Thyroidal status
- Plasmatic level of catecholamines

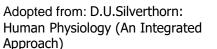
Work (physical activity, exercise)

Source: www.freepik.com. Photos created by freepik and standret

Skeletal muscle

Contraction: isometric (static work) vs. isotonic (dynamic work)


- Blood flow depends on muscle tension
- Metabolic autoregulation: ↓pO₂; ↑pCO₂; ↓pH; ↑K+; ↑local temperature


– Metabolism: aerobic vs. anaerobic

Muscle spindles – muscle tension – afferentation of exercise pressor reflex

Skeletal muscle metabolism

Reaction of the body to exercise

Sympathetic NS (ergotropic system)

- Cardiovascular changes
- Respiratory changes
- Metabolic changes

– HOMEOSTASIS

Anticipation of exercise

- Reaction of the body (cardiovascular system)
- Prepares the body for the increased metabolic turnover in the exercising skeletal muscles

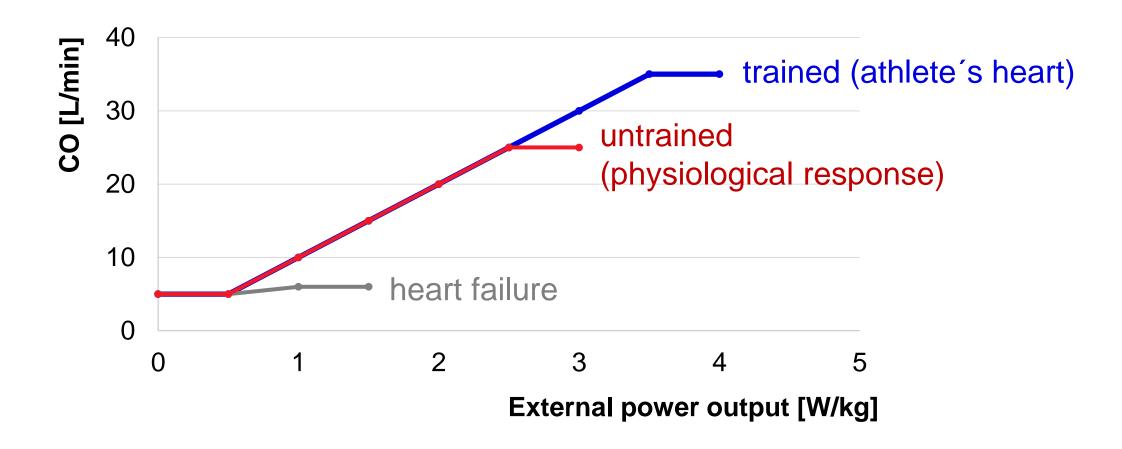
- Similar to the early response to exercise
- Resembling fight-or-flight reaction

Cardiovascular response to exercise

- Increased cardiac output
- Vasoconstriction in inactive skeletal muscles, the GIT, skin, (kidneys)
- Vasodilation in active muscles (metabolic autoregulation)
- Increased venous return
- Histamine release
- Epinephrine release (adrenal medulla)
- Thermoregulation

Increase of cardiac output. Cardiac reserve

 $-CO = SV \times HR$ (SNS: positive inotropic and chronotropic effects)


- Cardiac reserve = maximal CO / resting CO (4-7)

- Coronary reserve = maximal CF / resting CF (~3.5)
- Chronotropic reserve = maximal HR / resting HR (3-5)
- Volume reserve = maximal SV / resting SV (~1.5)

CO – cardiac output; CF – coronary flow; HR – heart rate; SV – stroke volume

Cardiac reserve in healthy and failing heart

Changes of arterial blood pressure

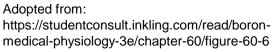
PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Cardiac output [L/min]	5 – 6	25 (35)	4 – 5 (7) cardiac reserve
Heart rate [1/min]	(45) 60-90	190 – 200 (220) age-dependent	3 – 5 chronotropic reserve
Stroke volume [mL]	75	115	~1.5 volume reserve
Systolic BP [mmHg]	120	static work ↑ dynamic work ↑↑	
Diastolic BP [mmHg]	70	static work ↑↑↑ dynamic work — / ↓	
Mean arterial P (MAP) [mmHg]	~90	static work ↑ dynamic work — / ↑	
Muscle perfusion [mL/min/100g]	2 – 4	60 – 120 (180) static vs. dynamic work	30 (10% CO _{max})

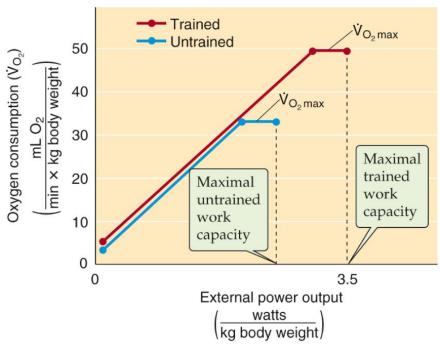
Respiratory response to exercise

- Respiratory centre ↑ ventilation
 - chemoreceptors: ↑ pCO₂ + ↓ pH
 - proprioceptors in lungs

Sympathetic stimulation (stress – anticipation)

Respiratory response to exercise


PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Ventilation [L/min]	6 – 12	90 – 120	15 – 20 respiratory reserve
Breathing frequency [1/min]	12 – 16	40 – 60	4 – 5
Tidal volume (V _T) [mL]	0.5 – 0.75	~ 2	3 – 4
Pulmonary artery blood flow [mL/min]	5 – 6	25 – 35	4 – 6
O ₂ uptake (V _{O2}) [mL/min)]	250 – 300	~ 3000	10 – 12 (25)
CO ₂ production [mL/min]	~ 200	~ 8000	~ 40

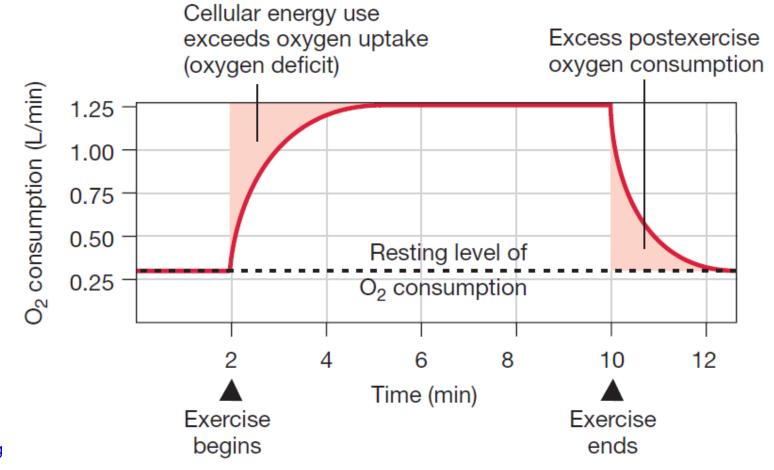


Oxygen uptake by lungs

Spiroergometry

- Resting V_{O2} : ~3.6 mL O_2 / (min x kg)
- V_{O2 max} objective index for aerobic power
 - untrained middle age person: 30 40 mL O₂ / (min x kg)
 - elite endurance athletes: 80 90 mL O_2 / (min x kg)
 - HF / COPD patients: 10 20 mL O_2 / (min x kg)

Determinants of V_{O2 max}

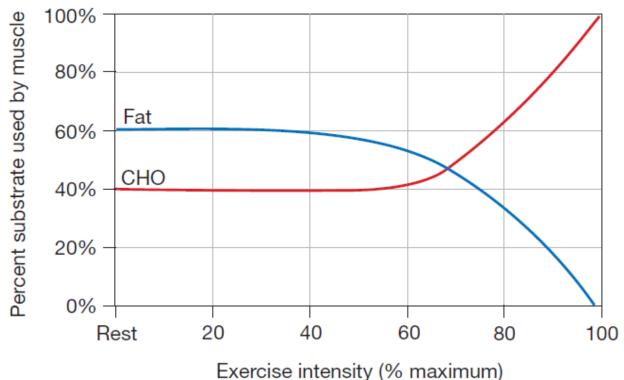

- 1. Uptake of O₂ by the lungs
 - pulmonary ventilation
- 2. O₂ delivery to the muscles
 - blood flow (pressure gradient cardiac output x resistance)
 - hemoglobin concentration
- 3. Extraction of O₂ from blood by muscle
 - pO₂ gradient: blood mitochondria

Oxygen consumption during exercise

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

– Oxygen debt

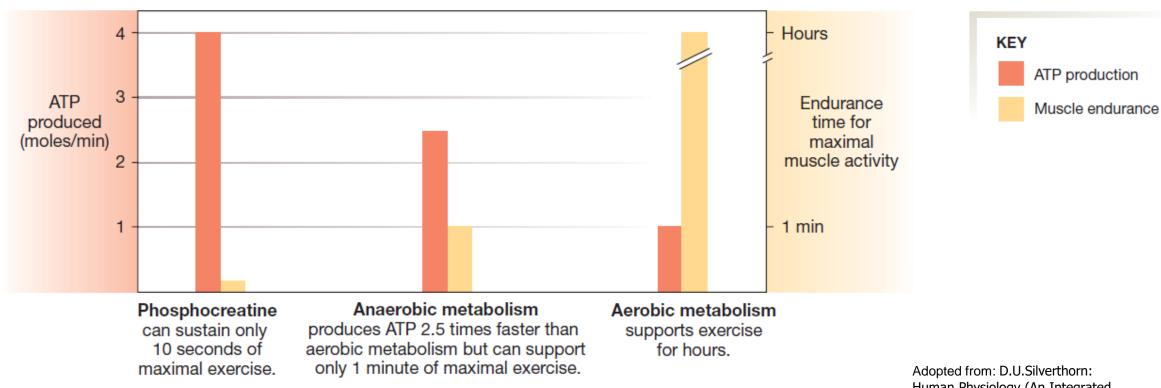
Blood gases during exercise

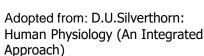


Energy substrate used by skeletal muscle during exercise

Low-intensity e.: fats

– High-intensity e.: glucose




Data from G. A. Brooks and J. Mercier, *J App Physiol* 76: 2253–2261, 1994

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

Energy substrate use – aerobic vs. anaerobic

Testing of fitness

- Spiroergometry
- Standardised workload
 - exact: in W/kg
 - comparative (simple, inaccurate): in MET
 - metabolic equivalent (actual MR / resting MR)
 - 1 MET = uptake of 3.5 ml O_2 /kg.min ≈ 4.31 kJ/kg.h
 - sleeping ≈ 0.9 MET; slow walking ≈ 3-4 MET; fast running ≈ 16 MET

Indexes of fitness

- $-W_{170}$ [W/kg]
- $-V_{O2 max}[mL O_2 / (min x kg)]$
- Aerobic / anaerobic threshold

- Fatigue
- Training
- Adaptation to exercise

