

Tachycardia

Jan Hruda

Goals

 students can define tachycardia and understand elementary pathophysiology of associated risks

 students understand basic principles and methods of tachycardia treatment according to ERC Guidelines

Basic principles

HR above 100/min is tachycardia

- systole:diastole = 1:2 at 60 bpm, 1:1 at 100 bpm
- tachycardia may lead to
 - insufficient ventricular filling
 - myocardial ischaemia
- max. HR <u>estimate</u>: 220-age
- clinical consequences
 - (pre)syncope
 - cardiogenic shock
 - cardiac arrest

require immediate treatment guidelines knowledge crucial

Tachycardia Algorithm

- Assess using the ABCDE approach
- Give oxygen if appropriate and obtain IV access
- Monitor ECG, BP, SpO₃, record 12 lead ECG
- Identify and treat reversible causes (e.g. electrolyte abnormalities)

Assess for evidence of adverse signs

1. Shock

- 3. Myocardial ischaemia
- 2. Syncope
- 4. Heart failure

Airways
Breathing
Circulation
Disability
ECG, Electrolytes &
"Everything Else"

https://www.erc.edu/

REMEMBER!

Haemodynamic (un)stability of the patient **determines urgency** and modes of treatment in all arrhytmias

Tachycardia Algorithm ("unstable")

https://www.erc.edu/

Assess for evidence of adverse signs

1. Shock

- 3. Myocardial ischaemia
- 2. Syncope
- 4. Heart failure

Unstab**l**e

Stable

Synchronised DC Shock

Up to 3 attempts

- Amiodarone 300 mg IV over 10-20 min and repeat shock; followed by:
- Amiodarone 900 mg over 24 h

Tachycardia may be treated with:

- **pharmacotherapy**: antiarrhytmics
- electrotherapy: cardioversion

REMEMBER!

Immediate treatment with **electrotherapy** is recomended in an **unstable** patient with tachycardia

Tachycardia Algorithm ("unstable")

https://www.erc.edu/

Synchronised DC Shock
Up to 3 attempts

DC **cardioversion** is an electrotherapy method of delivering a controlled and synchronised DC shock to the heart in order to restore sinus rhytm

Unlike defibrillation (cardiac arrest), cardioversion is performed in patients that still have a pulse, but are hemodynamically unstable.

Myocardium is electrically vulnerable during cardiac repolarization (ECG T wave).

Delivering a DC shock during repolarization may induce ventricular fibrillation.

Tachycardia Algorithm ("unstable")

https://www.erc.edu/

Synchronised DC Shock
Up to 3 attempts

Once ECG attached, verify quality of ECG trace and look for **synchronizing markers**– QRS detection by the defibrillator

REMEMBER!

DC shock has to be synchronised with QRS

- Amiodarone 300 mg IV over 10-20 min and repeat shock; followed by:
 - Amiodarone 900 mg over 24 h

Amiodarone

- class III antiarrhytmic (blocks potassium currents) with a unique profile
- most widely used in intensive care with the potential to treat both atrial and ventricular arrhythmias
- prolongs QT interval
- may cause hypotension and bradycardia
- 300 mg over 10 min, max. 2 g per day, usuall dose 900 mg per day
- in 5% dextrose

Tachycardia Algorithm ("stable")

https://www.erc.edu/

Narrow QRS suggests supraventricular origin of arrhytmia...

REMEMBER!

Atrial fibrillation carries a risk of **thrombembolic complications**

Tachycardia Algorithm ("stable")

https://www.erc.edu/

Take home message

- tachycardia may lead to myocardial ischaemia and/or insufficient ventricular filling
- immediate cardioversion is recommended in an unstable patient with tachycardia
- cardioversion: DC shock has to be synchronised with QRS
- amiodarone has the potential to treat both atrial and ventricular arrhythmias, but prolongs QT interval and may cause hypotension and bradycardia
- atrial fibrillation carries a risk of thrombembolic complications
- European Resuscitation Council Guidelines:
 - "Executive summary" 2021 and 2015

