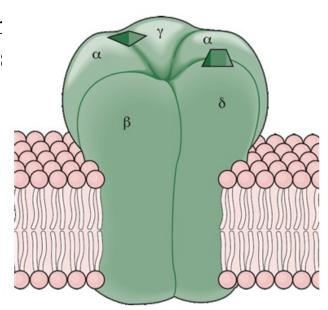
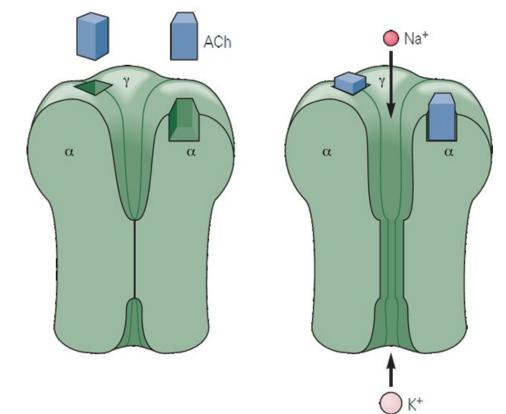

MASARYKOVA UNIVERZITA

ANS vs. somatic NS

Comparison of Somatic Motor and Autonomic Divisions			
	SOMATIC MOTOR	AUTONOMIC	
Number of neurons in efferent path	1	2	
Neurotransmitter/receptor at neuron-target synapse	ACh/nicotinic	ACh/muscarinic or NE/α- or β-adrenergic	
Target tissue	Skeletal muscle	Smooth and cardiac muscle; some endocrine and exocrine glands; some adipose tissue	
Neurotransmitter released from	Axon terminals	Varicosities and axon terminals	
Effects on target tissue	Excitatory only: muscle contracts	Excitatory or inhibitory	
Peripheral components found outside the CNS	Axons only	Preganglionic axons, ganglia, postganglionic neurons	
Summary of function	Posture and movement	Visceral function, including movement in internal organs and secretion; control of metabolism	



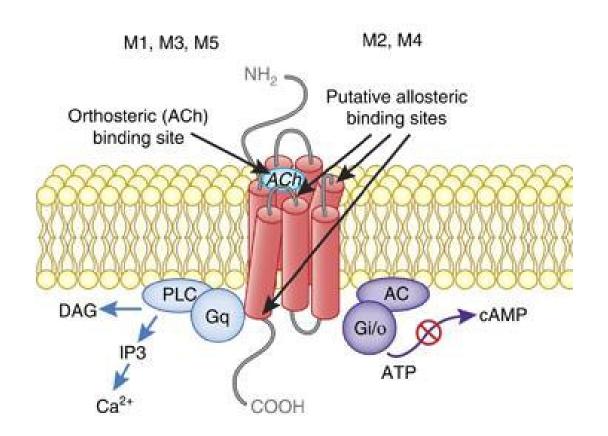
MED


Preganglionic fibers

- □SNS, PNS
- □*Nikotinic recep*
 - $\square N_N$ type and N_M type
 - ☐ Excitatory receptor

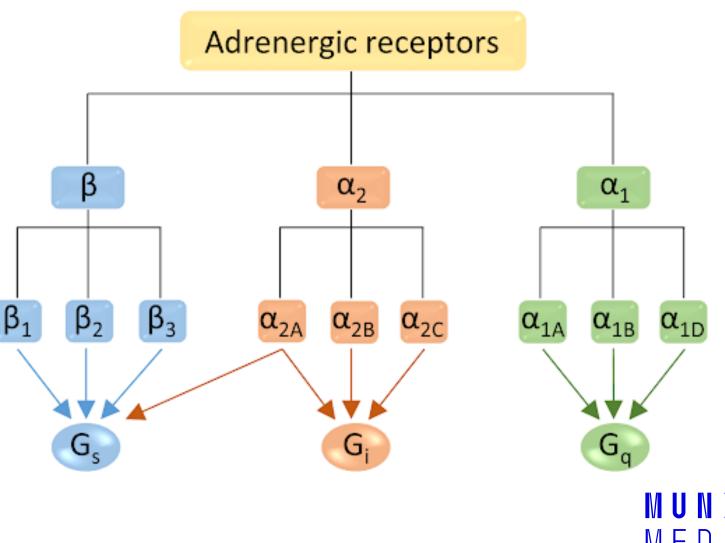
ACh

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

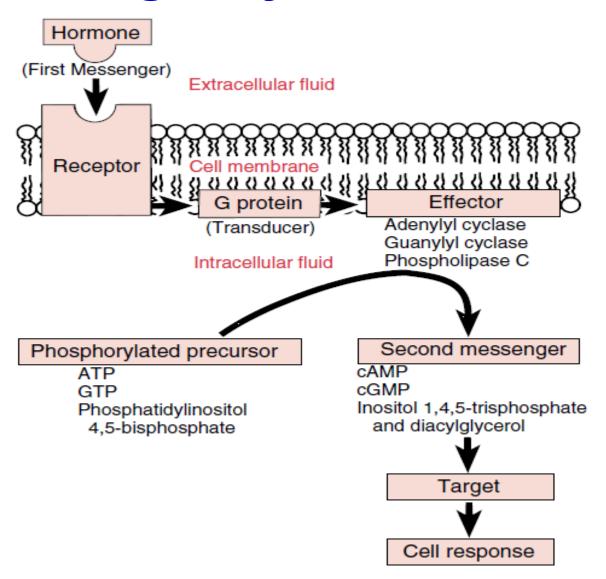


Postganglionic fibers

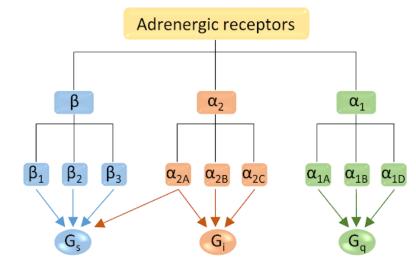
PNS


☐ Muscarinic receptor

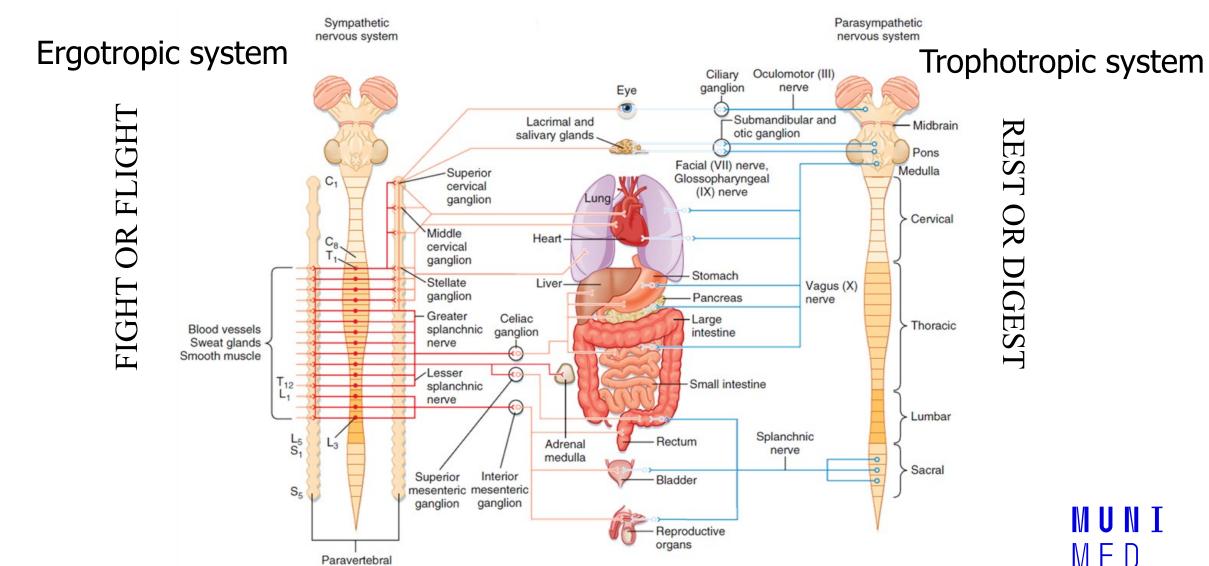
- ☐ G-protein coupled
- \square Excitatory receptors (M_1, M_3, M_5)
- \square Inhibitory receptors (M_2, M_4)



- **Postganglionic fibers**
- **SNS**
- Adrenergic receptor
 - ☐ G-protein coupled


Second messenger systems

Adrenergic receptor


- ☐ G-protein coupled
- □ Type α –Excitatory receptors
- □ Type β − Inhibitory receptors

Receptor Type	Primary Mechanism of Action	Examples of Tissue Distribution	Examples of Action
α_1	↑ IP3 and Ca ⁺⁺ , DAG	Sympathetic postsynaptic nerve terminals	Increase vascular smooth muscle contraction
α_2	↓ cAMP	Sympathetic presynaptic nerve terminals, beta cell of pancreatic islets	Inhibit norepinephrine release, inhibit insulin release
β_1	↑ cAMP	Heart	Increase cardiac output
β ₂	1 cAMP	Liver; smooth muscle of vasculature, bronchioles, and uterus	Increase hepatic glucose output; decrease contraction of blood vessels, bronchioles, and uterus
β_8	1 cAMP	Liver, adipose tissue	Increase hepatic glucose output, increase lipolysis

chain

ANS innervates

and vice versa.

☐ The secretory glands (salivary, sweat, tear, and various mucus-producing glands; smooth muscles, cardiac muscles) ☐ The heart and blood vessels to control blood pressure and flow ☐ The bronchi of the lungs to meet the oxygen demands of the body ■ ANS regulates: ☐ The digestive and metabolic functions of the liver, GIT, pancreas ☐ The functions of the kidney, urinary bladder, large intestine, rectum ☐ ANS is essential to the sexual responses of the genitals and reproductive organs ☐ Interacts with the body's immune systém ☐ Mnemonic used: ☐ The sympathetic division tends to Fs: fight, flight, fright, and sex ☐ The parasympathetic division facilitates various non-fourF processes – as digestion, growth, immune response, energy storage

□ In most cases the activity levels of the 2 ANS divisions are reciprocal- when one is high, the other tends to be low, □ □

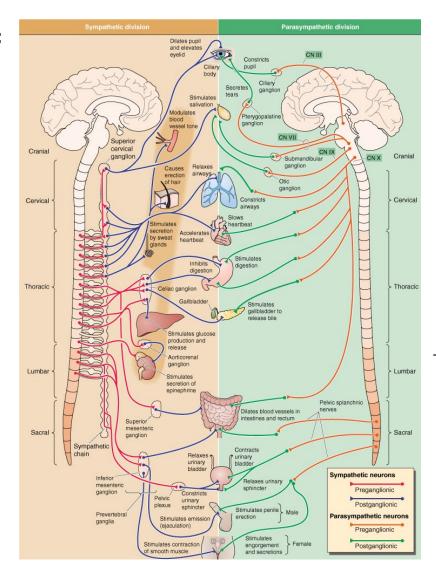
Sympathetic nervous system

Fight or flight response

Energy/store consumption

Preganglionic neuron

Spinal cordThoraco - lumbar system


Ganglia Paravertebral

-Truncus sympathicus - Majority

Prevertebral

-Plexus aorticus

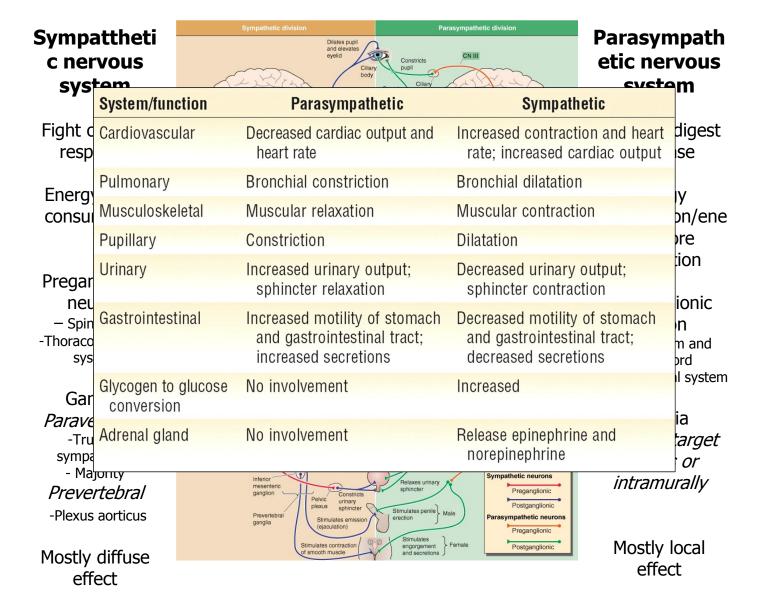
Mostly diffuse effect

Parasympath etic nervous system

Rest and digest response

Energy conservation/en. store production

Preganglionic neuron


Brain stem and spinal cordcranio-sacral system

Ganglia Close to target organs or

intramurally

Mostly local effect

ANS

Effector Response	Anatomical Pathway	Neurotransmitter	Receptor	G Protein	Enzyme or Protein	Second Messenger
Tachycardia	Sympathetic	NE	β ton cardiac pacemaker	Gαs	†AC	↑[cAMP];
Bradycardia	Parasympathetic	ACh	M ₂ on cardiac pacemaker	Direct action of dimeric Gβγ	GIRK1 K+ channels	$\Delta V_{\rm m}$
Increase cardiac contractifity	Sympathetic	NE	β ; on cardiac myocyte	Gα _s Direct action of Gα _s on Cav1.2	1AC	↑[cAMP];
Decrease cardiac contractility	Parasympathetic	ACh	M ₂ on cardiac myocyte Presynaptic M ₂ receptor on noradrenergic neuron	Gα, Gα,	↓AC ↓AC	↓[cAMP] ↓[cAMP]; in neuron
			M₃ receptor on cardiac myocyte	$G\alpha_q$	\uparrow PLC $\rightarrow \uparrow$ [Ca ²⁺] _i \rightarrow \uparrow NOS $\rightarrow \uparrow$ GC	$\uparrow [cGMP]_i \rightarrow \uparrow Cav 1.2$
Vaso constriction in most blood vessels (e.g., skin)	Sympathetic	NE	α ₁ on VSMC	$G\alpha_q$	ÎPLC .	↑[Ca²+],
Vaso constriction in some blood vessels	Sympathetic	NE	α ₂ on VSMC	Gα _{Vo}	↓AC	↓[c4MP] _i
Vasodilation in most blood vessels (e.g., muscle)	Adrenal medulla	Epi	β ₂ on VSMC	Gα _s	↑AC	↑[cAMP]
Vasodilation in erectile blood vessels	Parasympathetic	ACh	Presynaptic M ₂ receptor on noradrenergic neurons	Gα	↓AC	↓[cAMP]; in neuron
¥ C33C13		ACh	M ₃ on endothelial cell	$G\alpha_q$	$\uparrow PLC \rightarrow \uparrow [Ca^{>}]_i \rightarrow \uparrow NOS$	NO diffuses to VSM
		NO	NO receptor (i.e., GC) inside VSMC	_	↑GC	↑[cGMP] _i
		VIP	VIP receptor on VSMC	Gαs	1AC	↑[cAM P] _i
Vasodilation in blood vessels of salivary gland	Parasympathetic	ACh	M ₃ receptor on gland cell	$G\alpha_q$	†Kallikrein	Kinins
Vasodilation in blood vessels of muscle in fight-or-flight response	Sympathetic	ACh NANC	Presynaptic M ₂ receptor on noradrenergic neurons Receptor on VSMC	$G\alpha_i$	↓AC	↓[cAMP] _i in neuron

AC, adenylyl cyclase; ACh, acetylcholine; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; Epi, Epinephrine; CC, guanylyl cyclase; GIRK1, G protein—activated/inwardly rectifying K⁺ channel (Kir3.1); NANC, nonadrenergic, noncholinergic; NE, norepinephrine; NO, nitric oxide; NOS, nitric oxide synthase; PLC, phospholipase C; VIP, vasoactive intestinal peptide; VSMC, vasoular smooth musde cell.

Boron et al: Medical Physiology, 2017

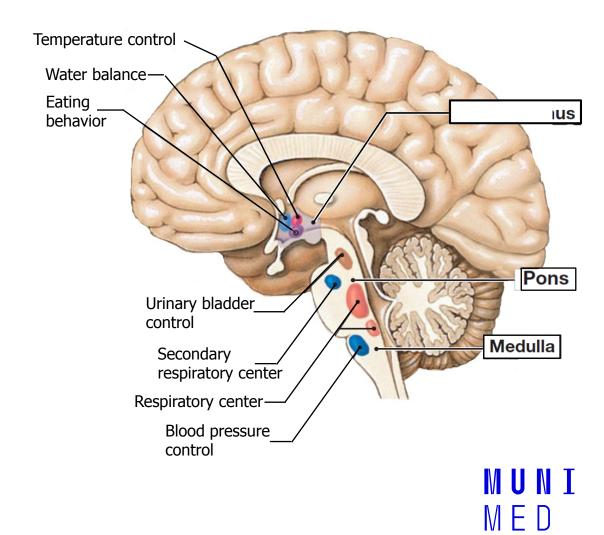
Brain control of ANS

Autonomic centers—brain stem and hypothalamus

1. Medulla

- Vasomotor center
- Respiratory center
- Swallowing, coughing, and vomiting centers

2. Pons


Pneumotaxic center

3. Midbrain

Micturition center

4. Hypothalamus

- Temperature regulation center
- Thirst and food intake regulatory centers

Hypothalamus

- Key center of autonomic regulations and coordination
- Integration of the information from inner and outer environment
- Behavioral modulation
- Regulation of autonomic nervous system
- Maintenance of homeostasis

Preoptic nucleus

Anterior commisure
Involves

Anterior hypothalamic area

Anterior hypothalamic area

Prontal cortex

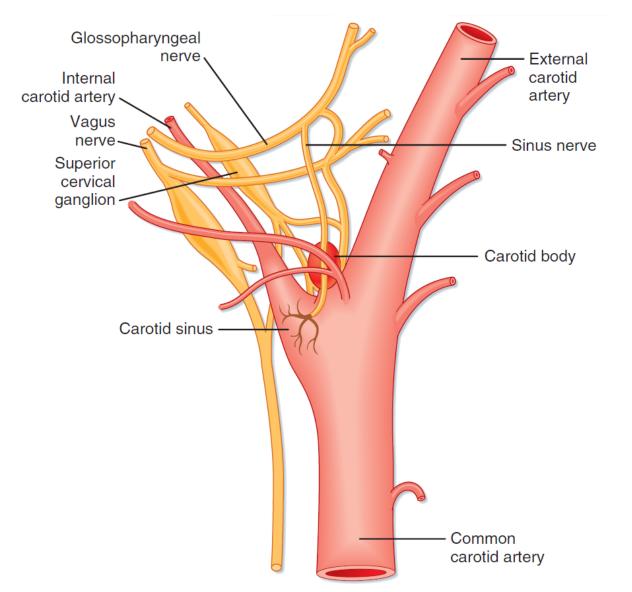
Frontal cortex

Supra-optic nucleus

Optic chiasm

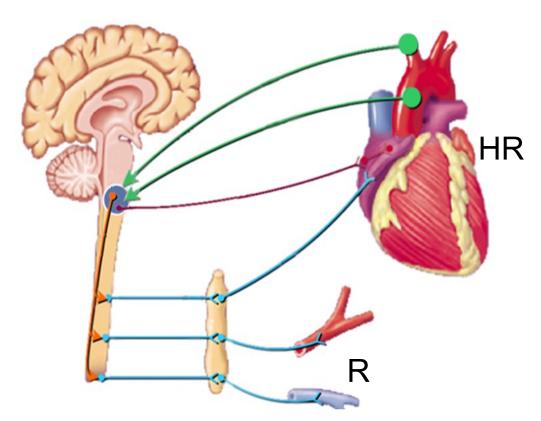
Anterior pituitary

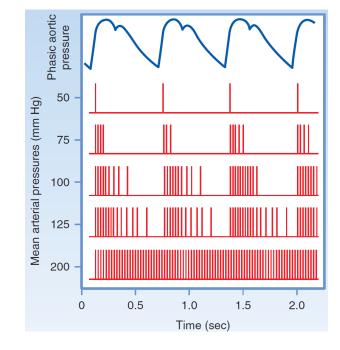
Posterior pituitary


Posterior pituitary

Posterior pituitary

http://www.slideshare.net/physiologymgmai/hypothalamus-15-apr-2016


Baroreceptor vs. Chemoreceptor


Baroreflex I

Aferent pathway
Parasympathetic pathway
Sympathetic pathway

effect

- Inotropic
- Chronotropic
- Dromotropic
- Batmotropic

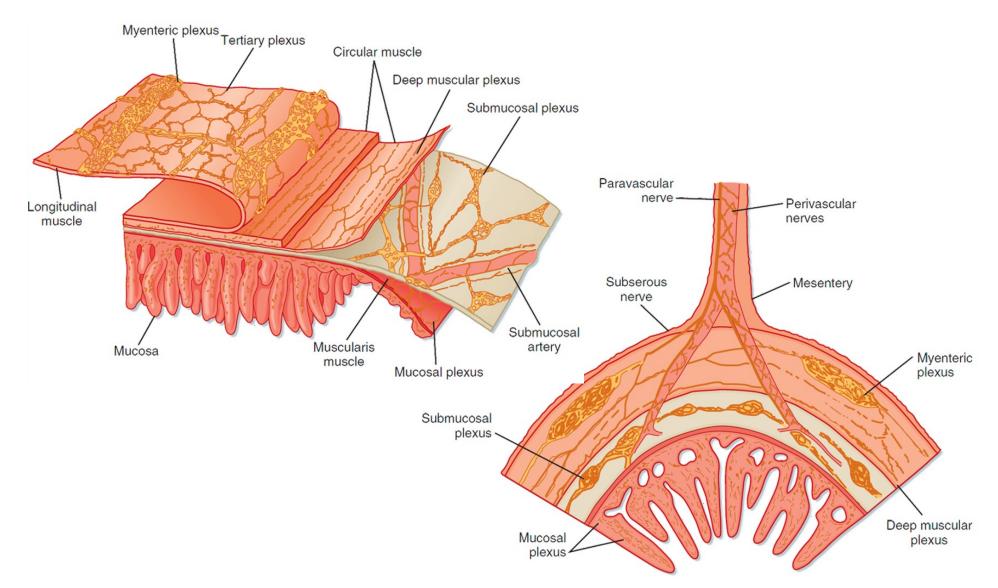
BP=HR x SV x R

Something more...

- □ Oculocardial reflex
 - ☐ Pressure on the eyebulbes decreases heart rate (activation of the vagus)
 - ☐ It is used to suppress or stop atrial tachycardia
- □ Low pressure baroreflex
 - □ greater expansion of the left ventricle stimulates baroreceptors –vagus→medulla inhibition of SNS vasodilation, bradycardia decrease of BP
- □ Diving reflex
 - ☐ Cold water on the face causes respiratory arrest, peripheral vasoconstriction and bradycardia
- □ Coronary chemoreflex (Bezoldov-Hirtov-Jarisch reflex)
 - □ Substances applied to the left coronary artery (veratridine, capsaicin, some contrast agents, substances produced by ischemic tissue) induce apnea and then hyperpnea, hypotension, bradycardia (vagal afferentation)

Testing of autonomic nervous system

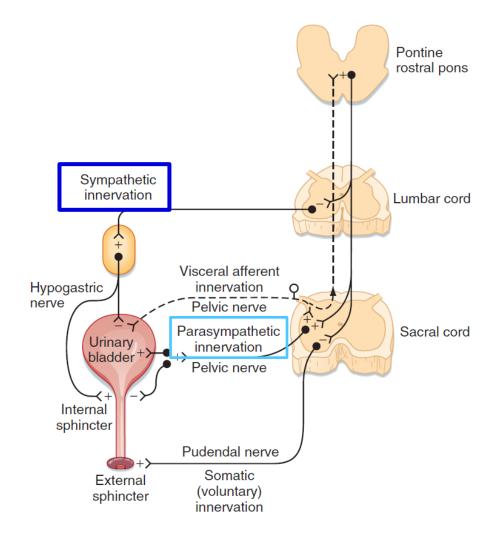
- **□Tilt table test**
 - Neurocardiogene syncopa (cardioinhibitory vasodepresory-both)
 - □ Cerebral vasoconstriction with syncopa
- □ Pressure of the eyebulbes or sinus caroticus
 - □ Cardioinhibitory-vasodepresory-both answer (hypersensitivity of sinus caroticus)
- ☐ Farmacological tests
 - **□With norepinephrine, isoprenaline, atropine**


ANS and blood vessels

EFECTORS	RECEPTORS	ADRENERGIC
CORONARY A.	α, β ₂	C, D
SKIN A.	α	С
SKELETAL MUSCLE	α, β ₂	C, D
BRAIN A.	α	С
LUNGS A.	α , β_2	C, D
ABDOMINAL A.	α, β ₂	C, D
VEINS	α, β ₂	C, D

GIT - Enteric Nervous System

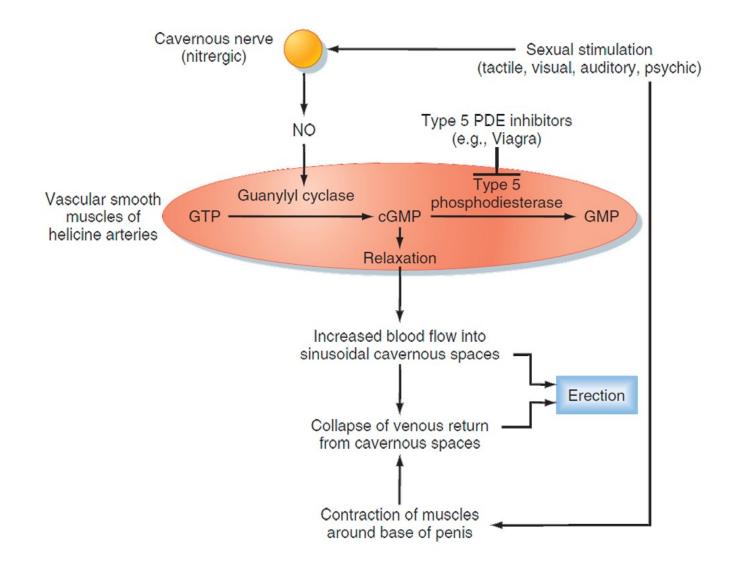
GIT and ANS


SNS PNS Vagal nerves Medulla Medulla oblongata blongata -(dorsal vagal Superior complex) cervical ganglion Thoracolumbar region — Sacral pinal cord Pelvic Prevertebral ganglia nerves 1. Celiac 2. Superior mesenteric 3. Inferior mesenteric

ANS and urinary bladder

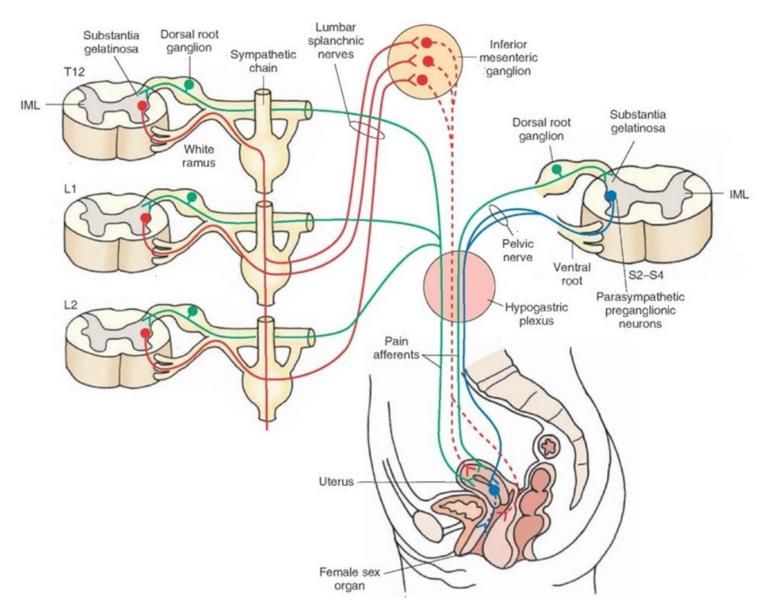
SNS		
DETRUSOR	RELAXATION	
SPHINCTER	CONTRACTION	

PSN		
DETRUSOR	CONTRACTION	
SPHINCTER	RELAXATION	


Thank you for your attention

Extra information

ANS and sexual function



Neurogenic bladder

NAME	COMMENTS
Uninhibited bladder	Lesion: above the pontine micturition center Signs: reduced awareness of bladder fullness, incontinence may occur
Upper motor neuron bladder (Detrusor-sphincter dyssynergia)	Lesion: between the pontine micturition center and sacral cord Signs: detrusor is usually spastic, simultaneous detrusor and urinary sphincter contractions increase pressures in the bladder, can lead to vesicoureteral reflux that and renal damage
Mixed type A bladder	Lesion: sacral cord lesion at the detrusor nucleus with sparring of the pudendal nucleus Signs: the detrusor muscle is flaccid, bladder is large, external urinary sphincter is spastic, incontinence uncommon
Mixed type B bladder	Lesion: sacral cord lesion at the pudendal nucleus with sparring of the detrusor nucleus Signs: the bladder is spastic and the external urinary sphincter is flaccid, incontinence is common
Lower motor neuron bladder	Lesion: sacral cord or sacral root while the thoracic sympathetic outflow to the lower urinary tract is preserved Signs: bladder is large and hypotonic, incontinence uncommon

ANS and sexual function

