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Correlation and regression
Parametric and non-parametric correlation

Linear regression
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Annotation

• Correlation analysis is used to evaluate the degree of relationship between two 
continuous variables. 

• Similar to other statistical methods, correlations can be parametric or non-parametric 

• Regression analysis models the relationship between two or more variables, i.e. how 
one variable (the explained variable) depends on other variables (the predictors).

• Regression analysis, like ANOVA, is a tool for explaining the variability of the variable 
being evaluated
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Basic decision making on the selection of statistical tests

Data type

Continuous x 
continuous data

Continuous x 
categorical data

Categorical x 
categorical data

One selection
Two 

selections

Three or 
more 

selections 
(unpaired)

One selection
More 

selections

Paired data
Unpaired 

data

Pearson 
correlation 
coefficient

One-shot
t-test

Paired t-test
Two-Sample 

t-test
ANOVA

Paired data
Unpaired 

data

Chi-square test

Spearman 
correlation 
coefficient

One-sample 
Wilcoxon test

Wilcoxon/mole
cule test

Mann-Whitney 
test

Kruskal-Wallis 
test 

One-sample 
binomial test

McNemar test
Fisher's exact 

test

Parametric tests
Non-parametric tests
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Description of the relationship of continuous variables

• The basic tool for describing the relationship of continuous variables is the XY graph, 
which allows to assess the type and strength of their relationship.

Strong positive linear relationship Strong linear negative relationship

Positive linear relationship Negative linear relationshipA casual relationship

Non-linear relationship



Institut biostatistiky a analýz, PřF a LF MU

Assumptions of parametric correlation analysis

• A correct interpretation of parametric correlation analysis assumes a linear relationship between the 
variables and a normal distribution of the values of both variables.
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Bimodal distribution of values entering the correlation analysis

• In the case of a bimodal distribution of values entering the correlation analysis, it is not appropriate to 
calculate the correlation analysis; the result cannot be interpreted as a description of a linear 
relationship of continuous variables, but as a consequence of the existence of subsets of objects in the 
data.
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Presence of outliers in the data entering the correlation analysis

• If outliers are present in the data entering the correlation analysis, it is not appropriate to calculate the 
correlation analysis; the result cannot be interpreted as a description of a linear relationship of 
continuous variables, but as a consequence of the presence of outliers in the data.



Institut biostatistiky a analýz, PřF a LF MU

Correlation and covariance - parametric measures of the 
relationship between continuous variables

• Covariance and Pearson's correlation coefficient are basic methods for describing the 
linear relationship of continuous variables

• The assumption for the calculation of covariance and Pearson correlation coefficient is:

• Data normality in both dimensions 

• Linearity of the relationship between variables

Linear relationship -
seamless use of covariance 
or Pearson correlation 
coefficient

The correlation is given by two sets 
of values - it leads to the 
identification of groups of objects 
in the data

The correlation is given by the 
outlier - the analysis only 
describes the effect of the 
outlier 
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Calculation of covariance I

1; 2

8; 16

9; 18
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16

18

20

0 2 4 6 8 10

X

Y

Covariance = shared variance

How to describe the relationship of variables numerically?
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Calculation of covariance II

1; 2

8; 16

9; 18

6; 12

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

X

Y

Covariance = shared variance

How to describe the relationship of 
variables numerically?

Data occur in different quadrants 
according to the mean !

Average
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Calculation of covariance III

1; 2

8; 16

9; 18

6; 12

0
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4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

X

Y

Covariance = shared variance

How to describe the relationship of 
variables numerically?

Data occur in different quadrants 
according to the mean !

Let us calculate the shared variance 
similarly to the variance of !!

Average
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Calculation of covariance IV

1; 2

8; 16

9; 18

6; 12

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

X

Y

Covariance = shared variance

How to describe the relationship of 
variables numerically?

Data occur in different quadrants 
according to the mean !

Let us calculate the shared variance 
similarly to the variance of !!

Average

𝐶𝑜𝑣(𝑥, 𝑦) =
σ𝑖=1
𝑁 𝑥𝑖 − ҧ𝑥 ∗ 𝑦𝑖 − ത𝑦

𝑁 − 1
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Calculation of covariance IV

Cov = ? Cov = ? Cov = ?
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Calculation of covariance IV

Cov = positive number Cov = 0 Cov = negative number

Is there a given minimum and maximum covariance?
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Calculation of covariance IV

Cov = positive number Cov = 0 Cov = negative number

Is there a given minimum and maximum covariance?

None, thermoetically there can be covariance from - ∞ to +∞; disadvantage in interpretation
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Covariance of standardised data

• How does the covariance calculation work on data with a standard normal distribution 
(mean = 0, variance = 1)?

1; 2

8; 16
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Calculation of Pearson correlation coefficient

• Pearson correlation coefficient represents a standardized form of covariance
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𝐶𝑜𝑣(𝑥, 𝑦)

𝑠𝑥𝑠𝑦
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Calculation of Pearson correlation coefficient

r = positive number ≤ 1 r = 0 r = negative number ≥ -1

Is there a given minimum and maximum of the Pearson correlation coefficient?

Yes, the Pearson correlation coefficient is in the range <-1;1> 
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Pearson correlation coefficient testing
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Comparison of two correlation coefficients (r)
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Non-parametric correlation (Spearman's correlation coefficient -
rs)

PI in soil 1 2 3 6 7 5 4 8

PI in rostl. 1 2 4 8 6 5 3 7

dI 0 0 1 2 -1 0 -1 -1

i = 1, ..... n; n = 8 => v = 6

( )
9048,0

1

6
1

2

2

=
−


−=


nn

di
rs

( ) 89,06 ==vrs   :tab

( )
857,0

1497

86
1 =

−


−=sr P = 0,358

Patient 
no.

1 2 3 4 5 6 7

Doctor 1 4 1 6 5 3 2 7

Doctor 2 4 2 5 6 1 3 7

dI 0 -1 1 -1 2 -1 0
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Pearson and Spearman correlation coefficient

• Comparison of Pearson (r) and Spearman (rs) correlation coefficient values allows to 
assess the type of relationship between variables 

Similar value of r 
and rs 

High r (due to outlier) and 
low rs (outlier removed by 
transformation to order)

Low r (due to the non-
linearity of the relationship) 
and high rs (in the order of 
the strong relationship 
between the two variables)



Institut biostatistiky a analýz, PřF a LF MU

Correlation in graphs I.

Y

X

Y

X

Relationships very often imply a functional relationship between Y and 

X.

Y = a + b . X

Y = a + b1 . X1 + b2 . X2 + b3 . X3

Y = a + b1 . X1 + b2 . X 2
Y = a + b1 . X1 + b2 . X2 + b3 . X1 . X2
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Correlations in graphs II.

The problem of value 

distribution
Model type problem

X

Y

X

r = 0,981

(p < 0,001)

r = 0,761

(p < 0,032)

Y

Sample size problem

Y

X

Y

X

r = 0,891

(p < 0,214)

r = 0,212

(p < 0,008)
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Creating models

PredictorsE
x
p
la

in
e
d
 v

a
ri

a
b
le

1.Creation of the model
•Parameters influencing the 
explained patient characteristics 
• Equations allowing prediction  
• Validity of the model only in the 
range of predictors

2.Model validation

• Danger of "overlearning" the 
model
• Testing the model on known data
•Cross-validation

3. Application of the model

• Individual prediction of the 
condition of non-small patients
• The model must be supported by 
correct statistics and extensive 
data

?

?
?
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Goal of stochastic modelling

• The general goal is to try to 
explain the variability of the 
predicted variable (endpoint, 
Y) using predictors 
(explanatory variable, factor, X)

• Both the predicted variable and 
the predictor can be of 
different types
• Binary 
• Categorical
• Ordinal
• Continuous
• Censored (-> survival 

analysis)

• The combination of the data 
type of the predicted variable 
and the predictor determines 
the analysis method used

4 

4 .5

5 

5 .5
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8 .5

Why the 
variability

?

4 
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6 
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7 .5

8 

8 .5

Explains the categorical 
predictor?
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2 .2
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2 .6
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4 .5

5 
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6 

6 .5

7 

7 .5

8 

8 .5 Does the continuous 
predictor explain it?
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Basics of regression analysis

• Regression - a functional relationship between two or more 
variables

One-dimensional

y = f(x)

Multidimensional

y = f(x1, x2, x3, ......xp)

Relationsh

ip x, y

Deterministic

Regression, stochastic

Y

X

Y

X

Y

X

For each x there is a probability distribution y
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Linear regression I
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Linear Regression II

y

1

n

x y1

n
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n
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x y

-
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Linear Regression III
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Linear regression IV

• Least squares method

• X: Fixed, non-stochastic variable

• The distribution of y values for each x is normal

• The distribution of y values for each x has the same variance

• The residues are independent of each other and have a normal 
distribution
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Linear regression V
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Exhausted variability and its statistical significance

• A basic indicator of model quality is the amount of variability explained by the model

• It is generally denoted by R2 and is reported as a percentage or proportion of the total variability (in the 
case of linear regression, it is the Pearson correlation coefficient squared)

• Statistical significance of the calculated variability can be tested by analysis of variance
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Analysis of variance in regression

• Calculation of the statistical significance of the variance 
extracted by the regression model
Overall ANOVA SS /SSBT (variance ratio)

MS /MSBE = F

Analysis of variance of the regression model (straight lines 

here)

(SS /SSMODT ) . 100 = 

% of the variance of 

Y "drained" by the 

line = coefficient of 

determination (R )2

Source of 
dispersion

st.v. SS MS F

Model 

(straight 
line)

1 SSMOD MSMOD

MSMOD / 
MSR

Residuum on - 2 SSR MSR

Total on - 1 SST
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Linear regression: analysis of residuals
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Adjustment of variables for the influence of other variables
1. In the first step, we define a regression model of the relationship between age and the adjusted parameter

2. For each patient, its residual from the regression line is calculated

3. The residual (representing the value of the parameter minus the effect of age, its average is 0) is added to the average 
value of the parameter

4. The resulting adjusted value has the effect of age subtracted, but at the same time the numerical value of the 
parameter is not changed

Original data Adjusted data
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Model validation on an independent set

• When creating models, a problem can occur when the created model is 
perfectly "trained" to solve a given problem on the data set on which it was 
created

• For this reason, it is problematic to test the results of the model on the 
same dataset on which it was created -> this is a proof by circle

• The solution is to test the results of the model on a set of known outcomes 
(here, known object groupings) that did not participate in the model 
definition
• Cross-validation 

• the data file is randomly divided into several subfiles (2 or more)
• A model is built on one subset and its results tested on the remaining subsets
• The calculation is performed sequentially on all sub-files

• One out leave out 
• The model is created on the whole file without one object
• the model is tested on this object
• the procedure is repeated for all objects

• Permutation methods
• Jackknife, bootstrap - the model is gradually created

on random subsamples of the file and 
tested on the rest of the data

Sub-set I
Model I

Subset II
Model II

Testing Model I Testing Model 
II
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Statistical significance vs. practical use of the model

• When applying the model in practice, it is necessary to take into account both the 
statistical significance found and the practical significance of the model outputs

• This is an analogy to statistical vs. practical significance of differences in e.g. t-test

• Statistical significance = relationship between variables, the difference between 
groups is not a mere coincidence (or the probability that it is not a coincidence is low 
enough)

• Practical significance of the model 
• In terms of predictors: the change in the predicted value when the predictor 

changes is practically significant (e.g. the magnitude of the increase in blood 
pressure when age changes by 10 years)

• In terms of objects: individual patient prediction is accurate enough to be 
practically usable (prediction of various events - hospitalization, death, 
development of complications, treatment outcome, etc.)
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Scope of applicability of the model

• Models can only be applied within the range of predictors on which they were developed

• This is due to our ignorance of the behaviour of the relationships between predictors and the predicted 
variable outside the boundaries within which the model was defined (typical examples are e.g. dose-
response curves, child growth vs. age, bacterial growth vs. substrate, etc.).

H
ei

gh
t 

(c
m

)

Age (years)

Linear model derived from a part of the data

The model 
works well in 
this range

When applied 
in this area, the 
model 
overestimates

Data: WHO Growth reference 5-19 years 
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Scope of applicability of the model: example
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General principles of prediction model development

• Requirements for a quality prediction model

• Maximum predictive power

• Maximum interpretability 

• Minimum complexity

• Creation of models

• Does not contain redundant variables

• It is tested on independent data

• Selection of variables 

• Forward and backward elimination algorithms are only an auxiliary indicator in the 
selection of the variables of the final model

• Both classical statistical methods (ANOVA) and expert knowledge of the meaning 
of variables and their substitutability are applied in the selection of variables
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Forward and backward elimination

• Forward and backward stepwise elimination of variables from a model is a common technique used in 
regression, discriminant and other models

• Variables are gradually added (subtracted) to the model according to their importance in the model

Each variable is individually assessed for its importance in discriminating against groups

In Step 1, the variable with the greatest individual significance for group discrimination is selected 

Additional variables are added to the selected variable and the importance of pairs of variables for group 
discrimination is evaluated

In step 2, the variable that, in combination with the variables selected earlier, contributes most to the 
discrimination of groups is added to the model

The procedure is repeated until all variables are exhausted or until the addition of another variable no 
longer improves the discriminative ability of the model

Schematic of forward 
elimination of variables in the 
model

In the case of backward 
elimination, the process starts 
from a model with all 
variables and gradually 
eliminates the variables with 
the smallest contribution to 
the discriminatory power of 
the model

The process needs to be 
expertly controlled, e.g. the 
presence of redundant 
variables is risky
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Steps of regression analysis

• Regression analysis (and other stochastic models in general) should proceed in the 
following steps

1. Verification of general assumptions - normality of data, linearity of relationship

2. Calculation of the model

3. Analysis of model residuals to verify the suitability of applying a linear or other 
model

4. Analysis of explained variability testing whether the model significantly explains 
the variability in the data

5. Testing regression coefficients 
1. Assessment of the significance of model components

2. Practical sensibility of the model

6. Conclusion on the usability and meaningfulness of the model 



Binary endpoint prediction
ROC analysis

Logistic regression
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ROC analysis

• A tool for identifying the cut-off (boundary of the continuous data distribution) in 
continuous data with respect to the best possible binary endpoint distinction 

• The result is a binarization of a continuous variable that is often more interpretable 
than results on continuous data

• The identification of a specific cut-off is related to a preference for either sensitivity or 
specificity for endpoint identification

• The preference for sensitivity or specificity is to some extent subjective to the real 
objective of the analysis

• High sensitivity - a screening test where all possible patients need to be caught 
(e.g. severe disease that needs to be caught at an early stage)

• High specificity - if it is necessary to catch only really sick patients (e.g. we don't 
want to expose patients to unnecessary treatment of a minor disease)
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ROC analysis

• Identification of cutt offs for categorizing continuous variables to maximize their 
sensitivity and specificity when used in models

Where is the optimal boundary between the groups?

Identification of the boundary with 

the highest sensitivity and specificity 

for distinguishing groups
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Sensitivity and specificity

• Key concepts in the description of the relationship between two binary variables = 
situation when we predict a binary endpoint with a binary predictor

1 - sick 0 - healthy

1 - risk group Truly positive False Positive

0 - non-risk group False Negative Truly negative

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑎 =
𝑠𝑘𝑢𝑡𝑒č𝑛ě 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑛í

𝑠𝑘𝑢𝑡𝑒č𝑛ě 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑛í + 𝑓𝑎𝑙𝑒š𝑛ě 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑛í

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑎 =
𝑠𝑘𝑢𝑡𝑒č𝑛ě 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑛í

𝑠𝑘𝑢𝑡𝑒č𝑛ě 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑛í + 𝑓𝑎𝑙𝑒š𝑛ě 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑛í
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ROC outputs

• Sensitivity and specificity at each point on the curve - can be supplemented with IS

• The best combination of sensitivity and specificity determines the appropriate split point of the 
continuous variable

• When identifying the cut-off, it is also necessary to check that the resulting risk group does not contain 
only the minimum values (a cut-off separating one patient is almost meaningless)

AUC (area under the curve) + IS
The different from 0.5, the better 
the endpoint identification
AUC significance testing
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ROC - example 
Distinguishing two groups of patients 
(blue=healthy; red=sick)

Continuous variable analysed

Optimal cut-off with 
highest specificity and 
sensitivity
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Logistic regression

• Logistic regression is an essential tool for analyzing the dependence of a binary endpoint (death, 
complication, taxon occurrence, category membership, etc.) on continuous or binary predictors

• The aim of the analysis is:

• Identification of relationships between predictors and endpoint and their description (odds ratio)

• Creation of a prediction model allowing patients to be assigned to evaluation groups

• Logistic regression belongs to the group of generalized linear models (linear statistical models with link 
function)

y=exp(-28.41096581446+(.29929760633475)*x)/(1+exp(-28.41096581446+

(.29929760633

40 60 80 100 120 140 160
0.0

0.2

0.4

0.6

0.8

1.0

Logistic regression example: prediction 

of a binary characteristic (y-axis) using a 

continuous variable (x-axis)

Logistic 

regression 

model
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The principle of logistic regression 

• In logistic regression, we model the effect of continuous or binary predictors on an 
endpoint with a binomial distribution - > classical linear regression cannot be used

• We predict the probability of occurrence of the phenomenon using the equation: 

• Where is the logit, the link function for the logistic regression and the equation a+b*x 
is the linear model used

• The concept of a link function is related to generalized linear models, where the link 
function converts the problem of nonlinear dependence of y on x into a linear model

• Simply put "non-linear relationship=link function(linear model)" 

• Generalized linear model with link function "identity" = linear model

𝑃 𝑥 =
exp(𝑎 + 𝑏 ∗ 𝑥)

1 + exp(𝑎 + 𝑏 ∗ 𝑥)

exp(𝑟𝑜𝑣𝑛𝑖𝑐𝑒)

1 + exp(𝑟𝑜𝑣𝑛𝑜𝑐𝑒)
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Odds ratio and logistic regression

• It describes the level of risk associated with:
• For continuous variables with a change of 1 (for this reason, 

continuous variables are often converted into interpretable units -
e.g. age by decades, concentration by hundreds of units) 

• For binary variables associated with the occurrence of a property 
(coded as 1) 
• For classical dummies, it is a risk to all other patients without a given trait
• For binary variables coded against the reference category, this is an increase over 

patients in the reference category

• Odds ratio is the exponential value of the coefficient of the regression 
equation
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Logistic regression: summary

• A basic tool for identifying factors influencing the occurrence of binary endpoints and 
predicting the individual probability of endpoint occurrence

• Applicable as an analogue of discriminant analysis for 2 groups

• Describes the riskiness of predictors for a binary endpoint in the form of odds ratios

• For multivariate models, it is important to analyze parameter redundancy and stability of 
multivariate models

• Cross-validation of the models, or other methods of testing the fit of the models on 
independent data, is necessary for practical deployment

• Cannot work with censored data (survival analysis)

• Standard risk factor analysis methodology for binary endpoints (occurrence of something -
death, taxon, etc.)



Multivariate data analysis: 
introduction
Principles and applications of multivariate data analysis
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Annotation

• Multivariate data analysis is a superstructure over classical, univariate statistics and is 
particularly suitable for biological and medical data, which are multivariate by nature

• However, in multivariate analysis it is necessary to remember that it is usually based 
on the same principles as univariate analysis and therefore it is necessary to observe 
the assumptions on which the calculation is based. This is important to note, especially 
given the relative availability of multivariate analyses in modern statistical software. 
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Relationship between classical and multivariate statistics

• Multivariate data analysis uses classical statistical approaches

• At the same time, she is also sensitive to their problems

• Data aggregation via summary statistics or contingency tables - correspondence 
analysis

• Correlation - principal component analysis, factor analysis, discriminant analysis

!
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Multidimensional perception of reality - a new quality of data 
analysis

x1 x2

n

Group 1

x1

Group 2

Multidimensional 
system

group 1 group 2

x1 x2

x2

group 2group 
1

Classical one-
dimensional 
analysis
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Routine aggregation of data "liquidates" the individuality of the 
individual

Diameter ± SE

COMMON STATISTICAL
SUMMARY
✓Data transparency
✓Does not distinguish 

the original 
measurement

?
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Multidimensional evaluation 
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Multidimensional evaluation - new quality 

A
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Only the combined parameters have adequate information power
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Examples of multivariate distribution

• R - MSBVAR library
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Multivariate distribution characteristics

• The basic characteristic of a multivariate distribution is a vector of means 
(vector of means) 

• and the covariance matrix

• where is the covariance of two random variables, i.e.
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Example of multivariate distribution I

vmat1=matrix(c(1,0,0, 0,1,0, 0,0,1),3,3)
x1<-rmultnorm(1000,c(10,10, 10), vmat1, tol = 1e-10)
write.table(x1, "x1.txt")

vmat2=matrix(c(1,0.5,0.5,1,0.5,0.5,0.5,1),3,3)
x2<-rmultnorm(1000,c(10,10, 10), vmat2, tol = 1e-10)
write.table(x2, "x2.txt")
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Example of multivariate distribution II

vmat4=matrix(c(1,0.7,0.7,1,0.7,0.7,0.1,1),3,3)
x4<-rmultnorm(1000,c(10,10, 10), vmat4, tol = 1e-10)
write.table(x4, "x4.txt")

vmat3=matrix(c(1,1,1,1,1,1,1,1),3,3)
x3<-rmultnorm(1000,c(10,10, 10), vmat3, tol = 1e-10)
write.table(x3, "x3.txt")



Institut biostatistiky a analýz, PřF a LF MU

Multidimensional evaluation is based on simple principles

• The easiest measure of the relationship between two objects in multidimensional 
space is their distance

• The simplest type of this distance (unfortunately with limited application to 
community data) is the Euclidean distance based on the Pythagorean theorem

a

b
c

y11 y12

y21

y22

2

211211 )(),( jj

p

j yyxxD −= =

X1

X2
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Correlation as a principle for calculating multivariate analyses

• Covariance and Pearson correlation coefficient is the basis of principal components analysis, factor 
analysis as well as other multivariate analyses working with linear dependence of variables

• The assumption for the calculation of covariance and Pearson correlation coefficient is:

• Data normality in both dimensions 

• Linearity of the relationship between variables

• For multivariate analyses, the most serious problem is the presence of outliers

Linear relationship -
seamless use of Pearson 
correlation coefficient

The correlation is given by two sets 
of values - it leads to the 
identification of groups of objects 
in the data

The correlation is given by the 
outlier - the analysis only 
describes the effect of the 
outlier 
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Analysis of contingency tables as a principle for calculating 
multivariate analyses

• The abundance of taxa (or number of any objects) at sites can be thought of as a 
contingency table, and the measure of the relationship between rows (sites) and 
columns (taxa) is the magnitude of the chi-square


2

)1(

viewed at
frequency

awaited
frequency

expected 
frequency

=

2

-
Calculated for 
each cell of the 
table

  ☺

A 10 0

B 0 10

Observed table

  ☺

A 5 5

B 5 5

Expected table

The chi-squared value defines the degree of deviation of a given cell (in our context, 
taxon-locality relationship) from a situation where there is no relationship between 
rows and columns (taxon-locality)
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Concepts of multivariate analyses 

• Multidimensional methods: the name multidimensional is based on the type of input 
data, this data consists of individual objects and each of them is characterized by its 
parameters and each of these parameters can be considered as one dimension of the 
object.

• Matrix algebra: Matrix algebra is the basis for working with data and calculations of 
multidimensional methods, matrices form both input and output data and calculations 
are performed on them.

• NxP matrix: N objects with p parameters then form the so-called NxP matrix, which is 
the first type of data input to multivariate analyses. 

• Association matrices: on the basis of these matrices, association matrices are 
calculated, on which further calculations are then performed.These are square 
matrices containing information about the similarity or dissimilarity (so-called metrics) 
of either objects (Q mode analysis) or parameters (R mode analysis).The scale of 
similarity varies according to the method used and the type of data, some methods 
allow the use of user metrics. 
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Input matrix of multivariate analyses 

Parameter values for individual 
objects

NxP MATRIX ASSOCIATION MATRIX

Correlation, covariance, distance, 
similarity

Calculation of 
similarity metrics/
distances
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Basic types of multivariate analyses 

• creating clusters of objects based 
on their similarity

• identification of object types

• simplification of a multidimensional problem into 
fewer dimensions

• the principle is to create new dimensions that better 
exploit the variability of the data

CLUSTER ANALYSIS SURGERY METHODS

CLASSIFICATIONS

 Model for assigning unknown 
patients to predefined groups

 A series of algorithms

MODELLING

 Prediction models with multiple 
predictors

 Regression methods and other 
types of algorithms
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Types of multivariate analyses 

Discriminatory space
y
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Thank you for your attention, I hope you took something away 
from the semester ☺
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