
Lecture 6



Concepts from statistical testing
Types of tests

Data normality and its importance for testing
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Parametric vs. non-parametric tests

• Parametric tests
• Have assumptions about the distribution of the input data (e.g. normal 

distribution)
• Given the same N and assumptions, they have higher test power than non-

parametric tests
• If the assumptions of parametric tests are not met, then the power of the 

test drops sharply and the test result may be completely wrong and 
meaningless 

• Non-parametric tests
• They have no assumptions about the distribution of the input data, so they can be 

used even with asymmetric distributions, outliers, or non-detectable distributions
• The reduced power of these tests is due to the reduction of the information value 

of the original data, where non-parametric tests do not use the original values, but 
most often only their order
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Problems of parametric and non-parametric tests

Parametric tests

• Real data do not fit the model 
distribution

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Non-parametric tests

• By converting the data to order, we lose 
some of the information

40 50 60 70 80 90 100 110 120

In the original 
data we see a 
"gap" between 
the groups

We lose this information when we convert to the 
order.
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One- and two-sample tests

• One-sample tests
• They compare a single sample (one sample, one-sample tests) with a reference value (or 

statistical parameter of the target population)
• Thus, the test compares the distribution of values (sample) with a single number 

(reference value, target population value)
• The question asked in the test can be related to the mean, variance, proportion of values 

and other statistical parameters describing the sample

• Two-sample tests
• They compare two samples with each other (two sample, two-sample tests)
• The test compares two distributions of values
• The question asked in the test can again be related to the mean, variance, proportion of 

values and other statistical parameters describing the sample
• In addition to tests for two groups of values, there are of course tests for more groups of 

data
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Unilateral and bilateral hypotheses

• One-sided tests (one-tailed)
• The hypothesis of the test is constructed asymmetrically, 

i.e. we ask for greater than/less than
• The test can only have a double output - one of the values 

is larger (smaller) than the other and all other cases
• Only if there is a clear hypothesis - otherwise it can be 

challenged for being purposive (easier to confirm 
significance with appropriate choice of testing direction)

• Two-tailed tests
• The hypothesis of the test asks an equal/not equal question
• The test can have a triple output - less than - equal to -

greater than
• The situation does not equal is therefore the sum of two 

possible outcomes of the test (smaller+larger)
• Meaning-neutral

Critical field (0.05)

Critical field 

(0.025+0.025=0.05)
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Unpaired vs. paired design

• Unpaired design
• The groups of data being compared are completely independent of 

each other (also independent design), e.g. people from different 
countries, independent groups of patients with different 
treatments, etc.

• When calculating, it is necessary to take into account the 
characteristics of both data sets

• Pair design
• There is a link between the objects in the groups being compared, 

e.g. human before and after surgery, reaction of the same rat 
strain, etc.

• The binding may be either directly given or merely assumed (in 
which case it must be verified)

• The test is essentially performed on the groups' differences, not on 
their original data
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Important notes on hypothesis testing

• Not rejecting the null hypothesis does not automatically mean accepting it! It may be a 
situation where we do not have enough information to reject the null hypothesis.

• The level of significance achieved in a test (whether 5%, 1% or 10%) must not be taken 
blindly as a threshold for the existence/non-existence of the effect being tested.

• A small p-value does not necessarily mean a large effect. The value of the test statistic 
and the p-value may be affected by the large sample size and the small variability of 
the observed data.

• The results of the testing must be viewed critically - it is a conclusion based "only" on 
one sample.

• Statistical significance indicates that the observed difference is not due to chance, but 
may not mean that it is significant in reality. Practical (clinical) significance is also 
important.
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Statistical tests and normality

• Normality of data is one of the assumptions of so-called parametric tests (tests based on the 
assumption of a distribution) - e.g. t-tests

• In general, any statistical method whose algorithm includes the calculation of the mean or standard 
deviation has the assumption of a normal distribution

• If the data are not normal, they do not fit the model distribution that is used for the calculation (t-
distribution) and the test may lie

• So the solution is:
• Data transformation to achieve normality of distribution
• Nonparametric tests - these tests have no (or minimal) assumptions about the distribution of the 

data
Type of comparison Parametric test Non-parametric test

2 groups of data unpaired: Unpaired t-test Mann-Whitney test

2 groups of data in pairs: Paired t-test Wilcoxon test, sign test

Multiple groups unpaired: ANOVA (analysis of variance) Kruskal-Wallis test

Correlation: Pearson coefficient Spearman's coefficient
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Normality tests

• Normality tests work with the null hypothesis that there is no difference between the 
processed distribution and the normal distribution. However, it is always a good idea 
to look at the histogram as some deviations from normality, such as bimodality, are 
not detected by some tests.

Chi-square goodness-of-fit test

• In a goodness-of-fit test, the data are categorised (similar to histogram generation), 
these intervals are normalised (converted to a normal distribution) and the expected 
values at the intervals are calculated according to the general normal distribution 
formulae if the distribution were normal. The observed normalised frequencies are 
then compared with the expected frequencies using the χ2 goodness-of-fit test. The 
test gives good results, but is demanding on n, the amount of data, to produce a 
sufficient number of classes of values.

Kolmogorov - Smirnov test

• This test is often used, it can find outliers well, but it assumes symmetry of values 
rather than normality directly. It is a non-parametric test for comparing the difference 
between two distributions. It is based on finding the difference between the real 
cumulative distribution (sample) and the theoretical cumulative distribution. It should 
only be calculated if we know the mean and standard deviation of the hypothetical 
distribution; if we do not know these values, a modification of the Liliefors test should 
be used.

Shapiro-Wilk test

• It is a non-parametric test applicable even at very small n (10) with good test power, 
especially compared to alternative test types, it is aimed at testing symmetry.
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Skewness and pointedness as tests of normality

• The normal distribution, skewness and kurtosis parameters can be used for normality 
testing, but only for large samples (skewness - 100, skewness - 500).
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Visual assessment of normality I
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Visual assessment of normality II

• Axle replacement 
only
• Observed and 
theoretical quantile 
shown

???

• Cumulative 
distribution plotted

REMEMBER:

If the data come from a normal 

distribution, then the points will lie 

around the line
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Visual assessment of normality III

Educational materials: Computational 
Statistics, RNDr. Marie Budíková, Dr., 2011
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Parametric one-sample statistical 
tests
One-sample t-test

One-sample test of variance
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Annotation

• One-sample statistical tests compare some descriptive sample statistic (mean, 
standard deviation) with a single number whose significance is statistically the value of 
the target population

• From the point of view of statistical theory, it is about verifying whether a given 
sample comes from the target population being tested.
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Summary of statistical tests

Type of comparison The null hypothesis Parametric test Non-parametric test

1 data selection vs. reference 
value

The mean value is equal to the 
chosen reference value.

single-line 
t-test / z-test

One-sample Wilcoxon 
test

2 independent data sets
(test of agreement of means)

Mean values do not differ 
between groups.

unpaired t-test Mann-Whitney test

2 independent data groups
(test for homoskedasticity)

The dispersion of both groups is 
identical.

F-test Levene's test

2 pairwise dependent data 
selections

The difference (differential) of the 
paired values is zero.

paired t-test
Wilcoxon test;

sign test

Congruence of the sampling 
distribution with the 
theoretical distribution

The data distribution corresponds 
to the theoretical (selected) 

distribution.

goodness of fit test
(χ2 test)

Shapiro-Wilk test;
Kolmogorov-Smirnov 

test;
Liliefors test

3 or more groups unpaired
(test of agreement of means)

Mean values do not differ 
between groups.

ANOVA Kruskal-Wallis test

Correlation
There is no relationship between 
the values of the two selections.

Pearson correlation 
coefficient

Spearman's correlation 
Coefficient
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Basic decision making on the selection of statistical tests

Data type

Continuous x 
continuous data

Continuous x 
categorical data

Categorical x 
categorical data

One selection
Two 

selections

Three or 
more 

selections 
(unpaired)

One selection
More 

selections

Paired data
Unpaired 

data

Pearson 
correlation 
coefficient

One-shot
t-test

Paired t-test
Two-Sample 

t-test
ANOVA

Paired data
Unpaired 

data

Chi-square test

Spearman 
correlation 
coefficient

One-sample 
Wilcoxon test

Wilcoxon/mole
cule test

Mann-Whitney 
test

Kruskal-Wallis 
test 

One-sample 
binomial test

McNemar test
Fisher's exact 

test

Parametric tests
Non-parametric tests
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Parametric one-sample tests

• Prerequisite: data normality

• One-sample z-test (comparison of the baseline and sample, we know the mean and 
variance of the baseline)

• Student's one-sample t-test (testing differences between two means) - (comparing 
the baseline and sample, we know the mean but do not know the variance of the 
baseline; we replace it with the sample variance of our data)

• Chi-square test (testing the difference between target vs. sample population)
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One-sample z and t test

• In the case of one-sample tests, it is a comparison of the data selection (i.e. one sample) 
with the target population. For parametric tests, the data set must have a normal 
distribution. 

• The difference between a one-sample z-test and a t-test is knowing the variance of the 
underlying population (z-test) or replacing it with the sample variance of our data (t-
test)

𝑡 =
ҧ𝑥 − 𝜇

𝑠
𝑁

𝑧 =
ҧ𝑥 − 𝜇

𝜌
𝑁

t-test:

z-test:
H0 HA Test statistics Critical value

ҧ𝑥 ≤ 𝜇 ҧ𝑥 > 𝜇 z / t 𝑧 > 𝑧1−𝛼 / 𝑡 > 𝑡1−𝛼
𝑁−1

ҧ𝑥 ≥ 𝜇 ҧ𝑥 < 𝜇 z / t 𝑧 < 𝑧𝛼 / 𝑡 < 𝑡𝛼
𝑁−1

ҧ𝑥 = 𝜇 ҧ𝑥 ≠ 𝜇 z / t 𝑧 > 𝑧1− ൗ𝛼 2
/ 𝑡 > 𝑡1− ൗ𝛼 2

𝑁−1
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Example: z-test for one selection 1

• In a population-based epidemiological survey, 
the mean prostate volume in men was found 
to be 32.73 ml (SD = 18.12 ml). 

• At a significance level of α = 0.05, we want to 
test whether men over 70 differ from the 
general population. 

• We have a random sample of size n = 100 and 
a sample mean of 36.60 ml.

• We want to check the validity:

• H0 : m = 32.73

• HA : m ≠ 32.73 from0,025 = -1.96

from0,050 = -1.64

1,96 = z0,975

1,64 = z0,950

from0,005 = -2.58 2,58 = z0,995

1 - α α / 2α / 2

90 %

95 %

99 %
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Example: z-test for one selection 2

• The value of the test statistic:

• Can we reject the null hypothesis at the 
significance level of the α = 0.05 test or not?

• We reject the null hypothesis of equality of 
prostate volume in men over 70 years of age 
to the population value of 32.73 ml at the 
significance level α = 0.05 because the 
resulting value from the statistic is greater 
than the critical value (the corresponding 
quantile) of the N(0.1) distribution.

α / 2α / 2

2,5 %2,5 % 95 %

with statistics

𝑧 =
ҧ𝑥 − 𝜇

𝜌
𝑁 =

36,60 − 32,73

18,12
100 = 2,14

𝑧 = 2,14 > 1,96 𝑧1− ൗ𝛼 2
= 𝑧0,975
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Example: t-test for one selection

• A certain urban bus line has an average speed of 8 km/h during peak hours. It was 
considered whether a change of route would lead to a change in the average speed. 
The new route was therefore driven on ten randomly selected days and the following 
average speeds were found: 8.4; 7.9; 9.0; 7.8; 8.0; 7.8; 8.5; 8.2; 8.2; 9.3. Decide 
whether the change of route leads to a change in the average speed. Assume a 
normal distribution and α=0.05. 

• Procedure:

1. At the 0.05 significance level, we test the hypothesis H0 : m = 8, against HA : m ≠ 8

2. Calculate the arithmetic mean and variance of the sample.

3. Calculate the test statistic t: 

4. We compare the calculated t with the critical value:

5. If - > statistically insignificant difference of the tested parameters at the chosen α; 
we do not reject the null hypothesis, at the significance level α=0.05 we could not 
show that the change of the route would result in a change of the average speed.

𝑡 =
ҧ𝑥 − 𝜇

𝑠
𝑁 =

8,310 − 8

0,507
10 = 1,934

𝑡1− ൗ𝛼 2

𝑁−1 = 𝑡0,975
9 = 2,262
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Typical SW outputs (Statistica, similar in others)

Sampling average 
(average of observed data)

Sampling standard deviation 
(observed data)

Scope of selection

Standard error

Reference constant-assumed magnitude of the mean value

Test criterion value

Degree of freedom

ATTENTION: Valid for both sides of the test!!!
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Example to solve: t-test 1

Data - antibiotic concentration in the target organ

• In 1000 measurements of the antibiotic, the mean concentration in the target organ 
was found to be 202.5 units and the standard deviation was 44 units. 

• The required antibiotic concentration is 200 units. 

Research questions

1. Is the difference of 2.5 significant given the trait variability at the 5% significance 
level? 

2. What is the true level of significance?
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Example to solve: t-test 1

Data - antibiotic concentration in the target organ

• In 1000 measurements of the antibiotic, the mean concentration in the target organ 
was found to be 202.5 units and the standard deviation was 44 units. 

• The required antibiotic concentration is 200 units. 

Research questions

1. Is the difference of 2.5 significant given the trait variability at the 5% significance 
level? 

2. What is the true level of significance?

𝑡 =
ҧ𝑥 − 𝜇

𝑠
𝑁 =

202,5 − 200

44
1000 = 1,797
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Example to solve: t-test 1

Research questions

1. Is the difference of 2.5 significant given the trait variability at the 5% significance level?

• We do not reject the null hypothesis 

2. What is the true level of significance?

• p = 2*(1-0,4641)=0,072

𝑡 =
ҧ𝑥 − 𝜇

𝑠
𝑁 =

202,5 − 200

44
1000 = 1,797~1,8 𝑡1− ൗ𝛼 2

𝑁−1 = 𝑡0,975
999 = 1,960
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Example to solve: t-test 2

Data - enzyme activity in cells

• The mean of 3.5 units and standard deviation of 1 were found when the enzyme 
activity was detected in a sample of 25 cells. 

Research questions

1. The question is, do the measured values of our sample differ from the results of an 
earlier large study on the whole target population, where an average activity of 2.5 
units was found?

2. question - what is the minimum deviation of X from another value we would capture 
at the given values? 

3. assuming that in practical terms a significant deviation is already 0.2 units, what is 
the minimum number of measurements we need to make to be able to demonstrate 
it ?
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Example to solve: t-test 2

Data - enzyme activity in cells

• The mean of 3.5 units and standard deviation of 1 were found when the enzyme 
activity was detected in a sample of 25 cells. 

Research questions

1. The question is, do the measured values of our sample differ from the results of an 
earlier large study on the whole target population, where an average activity of 2.5 
units was found?
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Example to solve: t-test 2

Data - enzyme activity in cells

• The mean of 3.5 units and standard deviation of 1 were found when the enzyme 
activity was detected in a sample of 25 cells. 

Research questions

2. question - what is the minimum deviation of X from another value we would capture 
at the given values? 
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Example to solve: t-test 2

Data - enzyme activity in cells

• The mean of 3.5 units and standard deviation of 1 were found when the enzyme 
activity was detected in a sample of 25 cells. 

Research questions

3. assuming that in practical terms a significant deviation is already 0.2 units, what is 
the minimum number of measurements we need to make to be able to demonstrate 
it ?
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One-sample test for variance

• In the case of one sample tests, it is a comparison of the data selection (i.e. one 
sample) with the target population. For parametric tests, the data set must have a 
normal distribution. 

𝜒2 =
𝑁 − 1 𝑠2

𝜎2

Chi-squared test:
H0 HA Test statistics Critical value

𝑠2 ≤ 𝜎2 𝑠2 > 𝜎2 𝜒2 𝜒2 > 𝜒1−𝛼
2 (𝑁−1)

𝑠2 ≥ 𝜎2 𝑠2 < 𝜎2 𝜒2 𝜒2 < 𝜒𝛼
2 (𝑁−1)

𝑠2 = 𝜎2 𝑠2 ≠ 𝜎2 𝜒2 𝜒2 > 𝜒
1− ൗ𝛼 2

2 (𝑁−1)
𝑛𝑒𝑏𝑜𝜒2 < 𝜒

ൗ𝛼 2

2 (𝑁−1)



Nonparametric one-sample 
statistical tests
One-sample t-test

One-sample test of variance
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Parametric vs. non-parametric tests

Parametric tests

• Have assumptions about the distribution of the input data (e.g. normal distribution)

• Given the same N and assumptions, they have higher test power than non-parametric tests

• If the assumptions of parametric tests are not met, then the power of the test drops sharply 
and the test result may be completely wrong and meaningless 

Non-parametric tests

• They require fewer assumptions about the distribution of the input data, so they can be used 
even with asymmetric distributions, outliers, or non-detectable distributions

• The reduced power of these tests is due to the reduction of the information value of the 
original data, where non-parametric tests do not use the original values, but most often only 
their order

• Related to small file size (we are not able to verify the normality of the data)

Why don't parametric and non-parametric tests come out the same?
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One-sample Wilcoxon test

• The assumption is that the data are symmetrically distributed around the median.

• Tests whether the median of one selection is equal to c (in the case of a pairwise design, x0.5 is represented 
by the median difference of the values)

H0 : x0.5 =c versus H1 : x0.5 ≠ c.
Procedure:
1. We calculate the differences of the selection values with the median value tested.
2. We arrange the absolute values of the differences in ascending order and assign them a ranking.
3. We compute the statistics Sw

+ and Sw
- , which correspond to the sum of the order of positive (Sw

+ ) and 
negative differences (Sw

- ). We take the minimum of Sw
+ and Sw

- as the final value of the test statistic. We 
reject the null hypothesis if the value of the test statistic is less than or equal to the tabulated critical value 
(at a given significance level and number of non-zero differences).

or
3. For N > 30, the asymptotic normality of the S statistic can be used.w

+

• If |Z|≥ at1-α/2 we reject the null hypothesis that the median selection is equal to c.

4
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One-sample sign test

• It can be used in situations where the assumption of symmetry of the distribution around the median is not satisfied.

• Tests whether the median of one selection is equal to c (in the case of a pairwise design, x0.5 is represented by the median of the 
difference of the values)

H0 : x0.5 =c versus H1 : x0.5 ≠ c.

Procedure:

1. We calculate the differences of the selection values with the median value tested.

2. Calculate the statistic Sz
+ , which corresponds to the number of positive differences → the test does not use the rank values of 

the original data but only the information whether the value is realized above or below the median → the power of the test is 
reduced

3. We reject the null hypothesis if the statistic Sz
+ realizes in the critical range of values W=(0,k1 )U(k2 , n), where n corresponds to 

the number of non-zero differences and the values of k1 and k2 can be traced in mathematical tables.

• or

3. For N > 20, the asymptotic normality of the S statistic can be used.z
+.

If |Z|≥ at1-α/2 we reject the null hypothesis that the median selection is equal to c.
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Example: one-sample test

• For 15 randomly selected patients, the amount of time they had to spend in the 
waiting room before being invited by a nurse to the office was assessed. At the 5% 
significance level, test the null hypothesis that the median waiting time is equal to half 
an hour. 
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Example: one-sample test - Wilcoxon test

• For 15 randomly selected patients, the amount of time they had to spend in the 
waiting room before being invited by a nurse to the office was assessed. At the 5% 
significance level, test the null hypothesis that the median waiting time is equal to half 
an hour. 

Patient no.
waiting time 

(min)
median difference

|difference
|

order

1 1 30 -29 29 15

2 45 30 15 15 10

3 25 30 -5 5 3.5

4 15 30 -15 15 10

5 34 30 4 4 2

6 19 30 -11 11 8

7 31 30 1 1 1

8 25 30 -5 5 3.5

9 8 30 -22 22 14

10 12 30 -18 18 12

11 20 30 -10 10 6

12 15 30 -15 15 10

13 40 30 10 10 6

14 20 30 -10 10 6

15 10 30 -20 20 13

S =19w
+

S =101w
-

min (Sw
+ , Sw

- )=19
Critical value w15 (0.05)=25
The value of the test static is smaller 
than the critical value → reject H0
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Example: one-sample test - Sign test

• For 15 randomly selected patients, the amount of time they had to spend in the 
waiting room before being invited by a nurse to the office was assessed. At the 5% 
significance level, test the null hypothesis that the median waiting time is equal to half 
an hour. 

Patient no.
waiting time 

(min)
median difference

Greater 
than the 
median?

1 1 30 -29 No

2 45 30 15 Yes

3 25 30 -5 No

4 15 30 -15 No

5 34 30 4 Yes

6 19 30 -11 No

7 31 30 1 Yes

8 25 30 -5 No

9 8 30 -22 No

10 12 30 -18 No

11 20 30 -10 No

12 15 30 -15 No

13 40 30 10 Yes

14 20 30 -10 No

15 10 30 -20 No

S =4z
+

Critical region: W=(0,3)U(12,15)
The value of statistics is realized outside of 
critical range of values → do not reject H0
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Example: software solution 

Number of non-zero differences

Test statistics: min (Sw
+ , S )w

-

Statistics and p-value for the 
asymptotic variant of the test (use 
only for N > 30)

Number of non-zero differences

Proportion of values less than the tested median

Statistics and p-value for the 
asymptotic variant of the test (use 
only for N > 20)

1) Wilcoxon test output

2) Sign test output
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Flowchart for testing with one-sample tests

Data

Normal distribution?

Visual verification of 
normality

Histogram, Q-Q chart, P-P chart, 
N-P chart, box plot

Normality test verification

S-W test, K-S test, Liliefors test

NO YES

Logarithmic transformation

Normal distribution?

NO YES

One-sample Wilcoxon test 
on original data

One-sample t-test / z-test
on transformed data

One-sample t-test /
z-test

Repeat

Parametric tests
Non-parametric tests



Parametric two-sample statistical 
tests
Two-sample unpaired t-test

Two-sample paired t-test
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Annotation

• One of the most common tasks in statistical data analysis is the comparison of 
continuous data in two groups of patients. 

• There is a range of tests to choose from, the choice of a particular test then depends 
on whether the comparison is pairwise or unpaired and whether it is appropriate to 
use a parametric test (has assumptions about the distribution of the data) or a non-
parametric test (does not have assumptions about the distribution of the data, but has 
lower predictive power). 

• The best known tests in this group are the so-called t-tests used to compare the 
averages of two groups of values 
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Two-sample tests: paired and unpaired I

• Using two sample tests, we compare two 
distributions together. Their basic division is 
into paired and unpaired tests according to the 
design of the experiment.

• The basic test for comparing two independent 
distributions of continuous numbers is the 
unpaired two-sample t-test

• The basic test for comparing two dependent 
distributions of continuous numbers is the 
paired two-sample t-test
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Two-sample tests: paired and unpaired II

Data
Independent 

arrangement

Pair arrangement

..
..

..
..

..

..
..

..
..

..

..
..

..
..

..

X1 X2

X1 - X2 = 

D

..
..
..
..
..

..
..
..
..
..

X1 X2

Design layout 

fundamentally influences the 

interpretation of parameters 
2

Ds

D

n

0D:H0 =

(n = n2 = n 

)1

210 μμ:H =

2

1

2

1

s

x

n

2

2

2

2

s

x
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Two-sample tests: paired and unpaired III

• Pairwise identification (Correlation, Covariance)

..
..
..
..
..

..
..
..
..
..

X1 X2

X1

X2

X1

X2

r = 0,954

(p < 0,001)

r = 0,218

(p < 0,812)
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Unpaired two-sample t-test assumptions

• Random selection of subjects of each group from their target populations

• Independence of the two compared samples

• Approximately normal distribution of the variable in the samples, however, small deviations from 
normality are not critical, the test is robust to small deviations from this assumption, normality can be 
tested with normality tests

• The variance in both samples should be approximately the same (homoscedastic). This assumption is 
tested by several possible tests - Levene's test or F-test.

• It is always advisable to look at histograms of the variable in each sample for octo-metric comparison 
and to check assumptions of normality and homogeneity of variance - it will not replace statistical tests, 
but will give an initial idea. 

0

j(x)

μ

| | |

•
•

| |

•
•

X

Varianta 1 Varianta 2
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Unpaired two-sample t-test - calculation I

• null hypothesis: means of both groups are the same, 
alternative hypothesis is that they are not the same, two 
tailed test

• inspect the data, mean, median, etc. for deviations from 
normality and inhomogeneity of variance, perform F -test

• F-test for comparison of two sample variances

• It is used to compare the variance of two groups of 
values, often to check the homogeneity of the 
variance of these groups of data.

• In the case of homogeneity testing, the hypothesis of 
matching variances (two tailed) is tested; if the variances 
are the same, everything is fine and the t-test can be 
continued, otherwise it is not appropriate to calculate the 
test. 

H0 HA Test statistics
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Unpaired two-sample t-test - calculation II

• Calculation of the test statistic (degrees of freedom are ):

• Compare the resulting t with the tabulated t value for the given degrees of freedom 
and (usually =0.05)

• The confidence interval for the difference of means (e.g. 95%), the number of degrees 
of freedom and s2 can be calculated to match the previous formulae 
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Unpaired two-sample t-test - calculation summary

• Null hypothesis: the means of the two groups are the same

• The alternative hypothesis is that they are not identical.

• View the data waveform, average, median, etc. 

• Verify normality of data (e.g. Shapiro-Wilk test)

• Verify homogeneity of variances (F-test)

• In the case of homogeneity verification, the hypothesis of matching variances is 
tested; in the case of matching variances, everything is fine and it is possible to 
continue calculating the t-test, otherwise it is not appropriate to calculate the test. 

• Calculate the value of the test statistic and the p-value. When the calculated p-value is 
less than 0.05, reject the null hypothesis.



Lecture 7
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Example : Unpaired two-sample t-test

• The average weight of sheep at the time of mating was compared for the control group and the group fed the increased 
diet. The control group comprised 30 sheep, and the enhanced feed group comprised 24 sheep.

• The actual experiment was conducted by starting with 54 sheep (ideally of the same breed, same age, etc.), which we 
randomly divided into two groups (randomizing objects into experimental groups is the subject of an entire specialized 
branch of statistics called randomization). After the experiment has been run, we must first test the theoretical 
assumption for the use of the unpaired t-test. Graphs are plotted for the two groups (we can also calculate the basic 
descriptive statistics) on which we can assess normality and homogeneity of variance; in addition to the octo-metric 
view, we can use normality tests to test normality and the F-test to test homogeneity of variance.

• If all the assumptions of the two-sample unpaired t-test are valid, we can calculate the test statistic, the resulting t is 2.43 
with 52 degrees of freedom, according to the tables, a t0,975 (52) = 2.01, so |t|> t0,975 (52) and we can reject the null 
hypothesis, the true probability is 0.018. The difference between the groups is 1.59 kg in favour of the group with 
increased income. 

• The 95% confidence intervals for the difference between the two sets are calculated as 1.59±2.01*(0.655) kg, 
corresponding to a range of 0.28 to 2.91 kg. The fact that the confidence interval does not include 0 is further 
confirmation that there is a significant difference between the groups - this is another way of testing the significance of 
the differences between the data sets - the null hypothesis that the difference in the means of the two data sets is equal 
to some value is rejected if the 95% confidence interval for the difference does not include that value (in this case 0).
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Example : Unpaired two-sample t-test

• First, verify the normality of the weight in both the control group and the group with increased food

• In both cases, the dots deviate only slightly from a straight line and the p-values of the S-W test exceed 0.05. 
The assumption of normal distribution of data in both groups is justified.
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Example : Unpaired two-sample t-test

•ATTENTION: The output table is evaluated from the back!!!

Scope of selection of Group 1

Value of the test statistic
(for the test of agreement of means)

Sampling average for group 1

Sampling average for group 2

Number of degrees of freedom

Test statistic for the test of agreement of variances
(F-test)

Scope of selection of Group 2

Sampling standard deviation for group 2 

These columns can only be interpreted 
if the difference between the variances was inconclusive !!!
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Paired two-sample t-test

• Data sets are linked via the object of measurement, an example of this would be the measurement of patient 
parameters before and after treatment (not necessarily the same object, another example could be rats from 
the same line). 

• Both files must have the same number of values, because all measurements in one file must be paired with 
the measurements in the other file. The actual calculation then takes into account the change in the values 
(differences) of the subjects in both files. 

• In the case that the measurements are not on the same subject, it is advisable to check whether there is a 
relationship between the two groups - plotting on a graph, correlation - before the paired test.

There are several possible experimental designs, briefly summarized:

• the experiment is paired, and the pairing is

• paired experimental design - paired experiments do not occur
• maybe the pairing isn't
• poorly performed experiment - small n, high variability, poor selection of individuals

• we expected independent and they are

• we were expecting independent and they are not
• Binding
• Coincidence
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Paired two-sample t-test

• This test makes no assumptions about the distribution of the input data because it is calculated only on the basis of their differences. 

• These differences should be normally distributed and the question in a paired t-test is whether the mean of the differences equals some number, 
typically a comparison to zero as evidence of no change between the two paired groups. 

• Basically, it is a one sample t-test, where instead of the difference between the sample mean and the target population mean, the mean of the 
differences and the number being compared is given (0 in the case of the question whether there is no difference between the samples).

• For comparison with 0 (the test statistic is the t distribution):

• Sometimes it is difficult to decide whether or not it is a pairwise arrangement, a paired t-test should only be used if we can confirm the association 
(correlation, plotting), one of the reasons for checking this is that in the case of a paired t-test it is not necessary to take into account the variability 
of the original two sets, but this assumption is only valid in the case of an association between variables. In fact, the calculation of the two types of 
tests differs in the s used, in one case it is with the difference, in the other case it is a composite estimate of the variance of the two sets.

• Whether a pairwise arrangement is more efficient can be determined by:
• Binding forces

• If sD is significantly smaller than sx1-x2

• The dependence can be broken down using the formula: 

• in the case Cov=0, i.e. in the absence of coupling, then sD
2 corresponds to the sum of the original variances, i.e. approximately Sx1-x2 .

D
t n

s
= 1n = −

1 2

2 2 2

1 22 ( ; )D x xs Cov x x  + −
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Example 1: Paired two-sample test

• An experiment was conducted with the diet of 11 diabetic dogs, each dog was exposed 
to two diets with different type of carbohydrates (easily absorbed X slowly decomposing 
into glucose), blood glucose values during each diet were to be compared to determine 
the effect of diet on blood glucose levels. Since each dog completed both diets, this is a 
paired design where the results of the values in both experiments are pooled across the 
experimental animal. 

1. The null hypothesis is that the true average difference between the two diets is 0; the 
alternative hypothesis is that it is not 0.

2. For each dog, the difference between its glucose levels on the two diets is calculated and 
the assumptions for a one sample t-test - i.e. at least an approximately normal 
distribution - should be verified.

3. The test characteristic is calculated, the calculation is actually done as a one-sample t-
test, where the significance of the mean of the differences of the two sets is determined 
as the difference between this value and zero (zero is the value that the mean difference 
should take if the null hypothesis holds). T=4.37 with 10 degrees of freedom, true value 
p=0.0014 and therefore at the p=0.05 level we can reject the null hypothesis

4. In conclusion, the null hypothesis of no difference between the two diets was rejected, 
which means that the high-fibre diet has a significant effect on lowering blood glucose 
levels.
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Example 2: Paired two-sample test

• A diet experiment was conducted in 18 diabetic rats, each rat was exposed to two diets (one novel special diet and one 
control diet). Because each rat was exposed to both diets, this is a paired design, where the values in both experiments are 
pooled across the experimental animal. Determine whether the test diet causes a change in weight in the rats (whether 
the weight of the rats differs after the new special diet and after the control diet). 

1. The null hypothesis is that the actual mean difference in weight between rats on the special and control diets is zero 
(the special diet did not lead to a change in weight compared to the control diet), the alternative hypothesis is that the 
difference in weight is different from zero (the special diet led to a change in weight compared to the control diet).

2. For each rat, the difference in weights measured after the two diets is calculated and the assumptions for a one-sample 
t-test - at least an approximately normal distribution of differences - should be verified.

3. A test statistic is calculated, the calculation is actually done as a one-sample t-test, where the significance of the mean 
of the differences of the two sets is tested as the difference between this value and zero (0 is the value that the mean 
difference should take if the null hypothesis holds). T=-1.72 with 17 degrees of freedom, true p-value=0.102 and 
therefore at the α=0.05 significance level we cannot reject the null hypothesis.

4. In conclusion, the null hypothesis of no difference in the effect of 
on weight loss between the two diets has not been rejected.

_ _ _ _
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Example: paired two-sample test

Sampling average
Sampling standard deviation

Number of observations

Average value of differences

Sampling standard deviation of differences

Test criterion value



Nonparametric two-sample 
statistical tests
Unpaired Mann-Whitney test

Paired Wilcoxon and sign test
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Mann-Whitney U test

• A non-parametric alternative to the two-sample t-test.

• Counts the order of the data in the files instead of the original data. 

• Assumption: the probability distribution of a variable in groups can only differ by a shift.

Procedure:

1. Determine the null and alternative hypotheses (F(x)=distribution function): 

H0 : F(x1 )=F(x ) 2
H1 : F(x1 )≠ F(x2 ).

2. The numbers of both files are merged and their order in this merged file is determined.

3. For both selections separately, the sum of the rankings (T1 and T2 ) is computed.

4. The final value of the test statistic U is determined from the sums of the rankings in the groups.

5. We compare the value of the test statistic U with the critical value of the test, if this value is less than the critical value of the 
test, we reject the null hypothesis of agreement between the distribution functions of the two groups.
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Mann-Whitney U test - asymptotic variant

5. The asymptotic normality of the U statistic can be used for large n1 and n2 (>30).

6. Z-statistics can be used for testing:

7. If |Z|≥ at1-α/2 we reject the null hypothesis of identity of distribution functions
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Mann-Whitney U test

• Like many other non-parametric tests, this 
test also considers the order of the data in 
the files instead of the original data. It is a 
non-parametric analogue of the unpaired t-
test and has the highest test power of these 
non-parametric tests (95% paired t-test).

• In the case of the Mann-Whitney test, first 
the numbers of both files are merged and 
their order is created in this merged file, 
then the values are returned to the original 
files and only their order is worked with. 

• Thus, a rank sum is produced for both sets 
and the smaller of the two sums is compared 
to the critical test value; if this value is less 
than the critical test value, we reject the null 
hypothesis of a match between the 
distribution functions of the two sets.

X1 X2 ALL
Rank 
ALL

X1 
rank

X2 rank

27 25 25 5 6 5

35 29 29 7,5 11 7,5

38 31 31 9 13 9

37 23 23 4 12 4

39 18 18 2 14 2

29 17 17 1 7,5 1

41 32 32 10 15 10

19 19 3 3

27 6

35 11

38 13

37 12

39 14

29 7,5

41 15
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Example: the Mann-Whitney U test

• 17 puppies were trained to go to the toilet using positive 
motivation (praise when going to the toilet outside) or 
negative motivation (punishment when going to the toilet at 
home). As a parameter, the number of days a puppy is trained 
was measured.

• The null hypothesis is that there is no difference in the training 
methods, i.e. that the puppy is trained in the same amount of 
time by both methods.

• After comparing the + distribution due to the low number of 
values, it is appropriate to use a non-parametric test.

• The order of values in the complete file is created.

• The value of the test statistic is determined from the sum of 
the rank order of the values in each group.

• How will the testing go?
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Example: software solution

The sum of the order T1

The sum of the order T2

Value of the test statistic

Value From statistics

Asymptotic p-value

Exact p-value 
(use if the selection range is less than 30)
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Paired Wilcoxon and sign test

• We start from pairwise differences and move to a one-sample test design

• Tests whether the median of the pairwise differences (D) is equal to c H0 : D0.5 =c versus H1 : D0.5 ≠ c.

Wilcoxon matched pairs test

1. Calculate the differences of the selection differences with the tested median = c.

2. We arrange the absolute values of the differences in ascending order and assign them a ranking.

3. We compute the statistics Sw
+ and Sw

- , which correspond to the sum of the order of positive (Sw
+ ) and negative differences (Sw

-

). We take the minimum of Sw
+ and Sw

- as the final value of the test statistic. We reject the null hypothesis if the value of the test 
statistic is less than or equal to the tabulated critical value (at a given significance level and number of non-zero differences).

Sign Pair Test

1. Calculate the differences of the selection differences with the tested median = c.

2. Calculate the statistic Sz
+ , which corresponds to the number of positive differences → the test does not use the rank values of 

the original data but only the information whether the value is realized above or below the median → the power of the test is
reduced

3. We reject the null hypothesis if the statistic Sz
+ realizes in the critical range of values W=(0,k1 )U(k2 , n), where n corresponds to 

the number of non-zero differences and the values of k1 and k2 can be traced in mathematical tables.
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Example 2: Paired two-sample test

A new diet for laboratory rats was tested, and its effect on weight in different rat lines 
was investigated, so a pair arrangement was chosen where rats in both diets are 
connected through their line, i.e. at the beginning there were pairs of rats of the 
same line, one of them was randomly assigned to the diet, the other of the pair to 
the other diet.

1. the null hypothesis is that the weight of the rats is not affected by the diet used, the 
alternative hypothesis is that there is an effect of diet

2. calculate the differences - these differences are non-normal and therefore it is 
appropriate to use a non-parametric test

3. Calculate the sum of the order of positive and negative differences, here is the 
smaller sum of negative differences - 31

4. the result of the calculation is p>0.05 and therefore we do not have sufficient 
evidence to reject the null hypothesis, we cannot say that the new diet is more 
effective than the old one

5. to complement the results, it is also useful to find out the actual magnitude of the 
difference in weights between the groups, e.g. in the form of a median
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Scheme when testing 2 or more groups

Data

Normal distribution within groups?

NO YES

Logarithmic transformation

Normal distribution within groups?

NO YES

Two-sample t-test, ANOVA 
on transformed data

Two-sample t-test, ANOVA

Homogeneity of scatter?

NO YES

Mann-Whitney test, 
Kruskal-Wallis test *Homogeneity of scatter?

NO YES

Mann-Whitney test, 
Kruskal-Wallis test 
on original data *

Mann-Whitney test, 
Kruskal-Wallis test 
on the original data

Parametric tests
Non-parametric tests

* If the assumption of agreement of 
variances between groups is not met, a 
parametric t-test with Welch correction 

can be used
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Paired testing scheme

Data

Normal distribution?
(normal distribution of 

differences!)

NO YES

Paired t-test
Paired Wilcoxon test 

/ sign test

Parametric tests
Non-parametric tests



Binomial distribution
Description of the binomial distribution

Hypothesis testing of binomial distributed data
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Annotation

• In addition to continuous data, we also encounter categorical data, the simplest case 
of which is binary data. 

• The binary data are described by a binomial distribution, the descriptive statistics of 
the binary data (percentage of occurrence of a phenomenon), its confidence interval 
and binomial tests for comparing the percentage of occurrences of phenomena in 
different groups are derived from the behaviour of the binomial distribution.
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Alternative distribution

• One of two possible scenarios will occur

(x) =  for X = 1
(x) = 1 -  for X = 0
(x) = 0 otherwise

X = 1 ......jev

0 1 X



1−


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Binomial distribution

X ..... total number of occurrences in n independent experiments  

E(x)= n . 
D(x)= n .  (1- )

 ~ p

5,0= 2,0=

single distribution parameter

determines the shape of the distribution
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Binomial distribution as a model for investigating the occurrence of 
the observed phenomenon

p ~ π .. the only parameter of the 
binomial distribution

p .... relative frequency of occurrence

p .......... determines the shape of the 
distribution

n ..... number of independent repetitions 
(queries)

X ..... number of people with a certain 
symptom

r means the total number of occurrences 
of the phenomenon in n independent 
experiments

r : 0 ...... n 

n
rp =

X X

5,0= 2,0=

Binomial variable X
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Binomial distribution as a model

Phenomenon: birth of a boy P = 0.5
n : family with 5 children 
r: 0,1,2,3,4,5 boys

( ) ( )( )

( )
( )rnrrnr

qp
! rn !r 

! n
p1p

r

n
rP

−−


−
=−








=

r = 0 :

r = 1 :

r = 2: P(r) = 0.3125

r = 3: P(r) = 0.3125

r = 4: P(r) = 0.15625

r = 5: P(r) = 0.031

( )
( ) ( ) 031,05,05,0

!5!0

!5 50
=

    

 

( )
( ) ( ) 15625,05,05,0

!4!1

!5 41
=

    

 

X: Binomial variable 

Center of the layout:

Dispersal:

Example: n = 100 respondents
r = 20 has a symptom

is the centre of the 
distribution            

and the most likely 
.....value

( ) pnx =E

( ) )1(D ppnx −=

( ) 20E == pnx
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Binomial distribution as a model

( )
( )

( )rnr qp
! rn !r 

!n 
rxP −

−
== q = 1 - p

n = 10 
p = 0,3

n = 30 
p = 0,3

n = 100 
p = 0,3

0

0,05

0,1

0,15

0,2

0,25

0,3

0 1 2 3 4 5 6 7 8 9 10

n = 50 
p = 0,1

n = 50 
p = 0,5

n = 50 
p = 0,9

0

0,05

0,1

0,15

0,2

0,25

0,3
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0
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0
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0,1

0,12

0 5 10 15 20 25 30 35 40 45 50

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0 5 10 15 20 25 30 35 40 45 50
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Application of the binomial distribution

• Prevalence of blood group B in a population: p = 0.08

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

B
not B

B
not B

B
B 

not B
not B

0,0064
0,0736
0,0736
0,8464

2
1
1
0

Number in 
blood group B

Probability

Binomial distribution of 
number of people out 
of two in blood group B

Number: blood group B in 2 cases

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 1 2

P
ro

b
ab

ili
ty

0

0,1

0,2

0,3

0,4

0,5

0 1 2 3 4 5 6 7 8 9 10

Binomial distribution showing 
the number of subjects out of 
ten in blood group B based on 
the probability of being in 
blood group B of 0,08.

Number of subjects

P
ro

b
ab

ili
ty

Binomial distribution showing 
the number of subjects out of 
100 in blood group B based on 
the probability of being in 
blood group B of 0,08.

Number of subjects
P

ro
b

ab
ili

ty
0 10 20 30 40 50 60 70 80 90 100
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Application of the binomial distribution

• Population: 60% of individuals have elevated cholesterol; sample size: 5 people

• How many people have higher cholesterol levels in the selection ? 

• n. p = 5 . 0.6 = 3 people ~ E(x)

• What is the P that just 3 people will have higher cholesterol levels ?  ~ That is, the 
selection exactly matches the population ?

• What is the P that most individuals (i.e. at least 3) have 
higher cholesterol levels ? ~ I.e., a selection of at least 
generally corresponds to the population under study ? 

• P(X > 3) = P(3) + P(4) + P(5) = 0.346 + 0.259 + 0.078 = 68 %

( ) ( ) ( ) %35346,04,06,0
! 3)-(5 ! 3

! 5 23

3 ===P
p(x)

X
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Estimation of the parameter Π of the binomial distribution

• In multiple estimation, the parameter Π behaves as a normally distributed

j(x)

p

n1;p1

n2;p2

n3;p3 0
p1 p1 p1Π 1

p0 Π 1

j(x)

p
0 Π 1

For small or large 
values of p (Π), 
however, the 
normality 
assumption is limited

j(x)
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Estimation of the parameter Π of the binomial distribution

1) Spot

2) Interval - approximation

n
rpp = ˆ   ; ˆ

( )
1

ˆ1ˆ
   ;ˆ 2

−

−
=

n

pp
sp p

( ) ( )
1

ˆ1ˆ
ˆ

1

ˆ1ˆ
ˆ

2
1

2
1 −

−
+

−

−
−

−− n

pp
Zp

n

pp
Zp  

( )
1

1
ˆ   :

2
1 −

−


− n

pp
Zp 
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Estimation of the parameter Π of the binomial distribution: 
example I

X: % of individuals with a given trait
n = 100 individuals
r = 60;   

Confidence Interval : 95%

FROM0,975 = 1.96

6,0ˆ =p

049,0ˆ =ps

049,096,16,0049,096,16,0 +− 

697,0504,0  


( ) 95,0697,0504,0  P
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Estimation of the parameter Π of the binomial distribution

• Interval estimation without approximation to normal distribution

lower limit of the interval

upper limit of the interval

( ) ( )21 ;

2

1
1



Frnr

r
L

+−+
=

( ) rrn 2   ;12 21 =+−= 

( ) ( )

( ) ( )21

21

;

2

;

2
2

1

1











++−

+
=

Frrn

Fr
L

( )

( ) 22

212

12

21

−=−=

+=+=





rn

r

( )  − 121 LLP
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Estimation of the parameter Π of the binomial distribution: 
example II

Random sample n = 200 individuals.
Only r = 4 individuals without a particular trait were found.

95% confidence interval = ?

Lower boundaries Upper limit

02,0
200

4ˆ ==p

( ) ( )

( )

( )
0055,0

67,3142004

4

67,3

8422

39414200212

1

8;394

2
1

2

1

=
+−+

=

=

===

=+−=+−=

−

L

F

r

rn





 ( )

( ) ( )

( )

( )
( )

051,0
08,2144200

08,214

08,2

392420022

1012

2

392;10

2
1

2

1

=
++−

+
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=
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=+=

−

L

F
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r
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Binomial distribution in data: visualization

Probability of occurrence of X values

Xn1

Model distribution of the estimated parameter

P (x) j(x)

pΠ

Binary nature of the original values 

phenomenon 

YES 
n repetition 

phenomenon 

NO 

Confidence interval for P

I.

П 

II.0

YESNO
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Statistical testing of binomial data

Does the estimate of p differ from the expected value 
of P ?

Do two or more estimates differ p ?

Is the occurrence of categories of two phenomena 
independent ?

An assessment of the relative risk of a phenomenon 
occurring within a group of people

- dependent 
estimates -

- independent 
estimates -

II.

I.

III.

IV.
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One-sample binomial test 

H0 HA Test statistics Confidence interval

p ≤  p >  z z > z 1-

p ≥  p <  z z < z 

p =  p ≠  z ½z½ > z 1-/2

H0 HA Test statistics Confidence interval

p ≤  p >  p = r / n > L1

p ≥  p <  p < L2

p =  p ≠  L1 ; L2 (F/2 ; F )1-/2 p < L2 v p > L 1
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

++−
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=

21
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1
)1(

)1(
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)1(

vv
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Continuity( ) ( )ppn
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ppn
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Z
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Test  ? p: Example 1

• Trees with altered crown shape

• n = 9 000 individuals

• r = 2 250 altered individuals

• How likely is change in up to 1/3 of individuals?

• 95% confidence interval ... p: (0.241; 0.258)

( )
26,18

900075,025,0

30002250

1
−=



−
=

−

−
=

npp

npn
Z



 = 5%; Z1-/2 = 1.96; Z1- = 1.645

Z > Z1-/2 .........reject H0 : p < 0.01  
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Test  ? p: Example 2

• The probability of a boy being born is about 1/2. 

• You are to evaluate the results of a survey of a population living in a severely 
degraded environment. 

• The survey covers 1000 randomly selected families and the observed 
proportion of boys born is 0.41.
What are your conclusions about this population (are the same proportion of 
boys born as in the general population?) 
How does your estimate become more precise if you use a sample of n = 
10,000 families while keeping the estimate of p = 0.41?
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Test  ? p: Example 2

• We use a one-sample binomial test with null hypothesis H0: p=π, significance level 
α=0.05

• Test statistics: and the corresponding quantile:

• Because the null hypothesis ????

• Confidence interval: 

• If we use n=10 000, the int. reliability will be ????: 
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Test  ? p: Example 2

• We use a one-sample binomial test with null hypothesis H0: p=π, significance level 
α=0.05

• Test statistics: and the corresponding quantile:

• Because we reject the null hypothesis. Boys are not born in the study 
population with probability 0.5.

• Confidence interval: 

• If we use n=10,000, the int. reliability will be narrower: 

( )
79,5

59,041,01000

5,0100041,01000
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Test  ? p: Example 3

• Example of a test without approximation to the normal distribution

12 individuals were examined for the presence of a particular trait,
10 individuals had no sign

How much does this result differ from the 6 - 6 result: i.e. from a situation where half 
of the individuals have the trait?
a) Use of the distribution function

P (r  10) = 0.01611 + 0.00393 + 0.00024 = 0.01928

H0 : p = 0.5 is therefore highly improbable

b) The observed exceeded the upper limit of the 95% interval

reliability for p:
833,0

12
10ˆ ==p

( )
( )

755,0
64,216612

64,216
:5,0 2 =

++−

+
== Lp   

r 0 1 2 3 4 5 6 7 8 9 10 11 12

P(r) 0,0002
4

0,0029
3

0,0161
1

0,0537
1

0,1208
5

0,1933
5

0,2255
9

0,1933
6

0,1208
5

0,0537
1

0,0161
1

0,0029
3

0,0002
4
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Two-sample binomial test (p1 ? p2)

( ) ( )
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Two-sample binomial test (p1 ? p2)

• This example is an example of testing differences between two binomial populations (i.e., comparing two estimates 
of p).

• A total of 49 experimental mice were used to test the toxic preparation during a two-month culture period. The 
following table contains the original data along with the test of the null hypothesis: the proportion of surviving 
individuals is the same in the affected population.

573,1
009996,0010413,0

225,0

25

)490,0()510,0(

24

)490,0()510,0(

400,0625,0
=

+
=

+

−
=Z Z0.05(2) = t0.05(2) = 1.96

We do not consider H0 : 0.10 < P < 

0.20

287,1
143,0

420,0604,0

143,0

25

5,010

24

5,015

=
−

=

+
−

−

=Z

With correction 

on continuity:
Z0.05(2) = t0.05(2) = 1.96

We do not consider H0 : 0.10 < P < 

0.20

Alive Dead Total Proportion alive Proportion dead

Treated 15 9 24

Not Treated 10 15 25

Total 25 24 49

625,0ˆ
1 =p

400,0ˆ
2 =p

510,0ˆ =p

375,0ˆ
1 =q

600,0ˆ
2 =q

490,0ˆ =q
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Contingency tables
Goodness of fit test

Fisher's exact test

McNemar test

Odds ratio and relative risk
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Annotation

• The contingency table analysis allows to analyze the relationship between two 
categorical variables. 

• The basic method of testing is the so-called chi-square test, which compares the 
observed frequencies of combinations of categories against the expected frequencies 
based on the theoretical situation where the relationship between the variables is 
random.

• The goodness-of-fit test is also used to compare observed frequencies against 
expected frequencies given by a rule (a typical example is Hardy-Weinberg equilibrium 
in genetics)

• A specific type of outputs derived from contingency tables are odds ratios and relative 
risks, often used in medicine to identify and describe at-risk patient groups.
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What is a contingency table ?

• Frequency summation of two categorical variables (binary, nominal or ordinal 
variables).

• In general: R x C contingency table (R - number of categories of one variable, C -
number of categories of the other variable).

• Special case: 2 x 2 table = four-field table.

• Contingency tables: absolute frequencies, total percentages, row/column frequencies

• Example: summary of examined persons by sex and diagnostic test result.

Gender

Result of the 
examination

Sick Healthy Total

Man 45 11 56

Woman 25 6 31

Total 70 17 87
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Sample contingency table

• Relationship between sex and disease incidence (beware of assessing a nonsensical 
relationship) 

Sick Healthy Total

Man a b a + b

Woman c d c + d

Total a + c b + d a + b + c + d = N

Sick Healthy Total

Man 45 11 56

Woman 25 6 31

Total 70 17 87

Total number of values

Simultaneous absolute 
frequency 

Marginal absolute 
frequency

Are men or 
women sicker?
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Goodness-of-fit test - basic theory


2

viewed at

frequency

awaited

frequency

expected frequency
= +

2
viewed at

frequency

awaited

frequency

expected frequency

1. 

phenomenon
2. 

phenomenon

-
2

-

+
..

.


2

viewed at

frequency

awaited

frequency

expected frequency
=

2

-

∑

.).(
2

)1(

2

vs
−


... we reject H0

Test statistics:

1 - significance level degrees of freedom
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Goodness-of-fit test: example
Binomial 

phenomena (1/0)


2

)1(

viewed at

frequency

awaited

frequency

expected frequency= +

2 viewed at

frequency

awaited

frequency

expected frequency
I. 

Phenomen

on 1

II. 

phenomen

on 2

-
2

-

0

1

Example 10,000 people flip a coin flip: 4,000 cases (R)

face: 6 000 cases (L)

Can the result be considered statistically significantly different

(or not different) from the expected ratio R : L = 1 : 1 

(i.e., the outcome of the coin toss is random)?

The difference is highly statistically significant (p < 0.001)

( ) ( )
400

5000

50006000

5000

50004000
22

2

=
−

+
−

=

Table value: )195,0(84,3)11(
2

)95,0(
 −===−= k
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Contingency table - hypotheses

• INDEPENDENCE (Pearson chi-square test, Fisher's exact test)
• One selection, 2 characteristics - similar to unpaired arrangement
• E.g.: the existence of a relationship between eye colour and students' biostatistics 

grades

• STRUCTURE agreement (Pearson chi-square test, Fisher's exact test)
• The so-called homogeneity test
• Multiple selections, one characteristic - similar to unpaired arrangement
• E.g.: age structure of diabetic patients in K hospitals (i.e. K selections)

• SYMETRY (McNemar test)
• One selection, repeatedly one characteristic - similar to a pairwise arrangement
• E.g.: assessment of tree condition in two seasons
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Basic decision making on the selection of statistical tests -
contingency table analysis

Data type

Continuous x 
continuous data

Continuous x 
categorical data

Categorical x 
categorical data

One selection
Two 

selections

Three or 
more 

selections 
(unpaired)

One selection
More 

selections

Paired data
Unpaired 

data

Pearson 
correlation 
coefficient

One-shot
t-test

Paired t-test
Two-Sample 

t-test
ANOVA

Paired data
Unpaired 

data

Chi-square test

Spearman 
correlation 
coefficient

Wilcoxon/mole
cule test

Wilcoxon/mole
cule test

Mann-
Whitney/medi

an t.

Kruskal-Wallis 
test / median 

t.

One-sample 
binomial test

McNemar test
Fisher's exact 

test

Parametric tests
Non-parametric tests
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Contingency table - general

• We have two nominal quantities, X (has r variations) and Y (has s variations)

• Contingency table of type r x s

• Designation:
• njk- simultaneous absolute frequency,
• nj.- marginal absolute frequency

y[1] ..... ..... y[s] nj.

x[1] n11 ..... ..... n1s n1.

. . ..... ..... . .

. . ..... ..... . .

x[r] nr1 ..... ..... nrs nr.

n.k n.1 . . n.s n

x[j]

y[k]

Simultaneous absolute 
Frequency 

Marginal absolute 
frequency

Marginal absolute 
Frequency
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Contingency tables H0 :Independence of two phenomena A and B

Contingency 

table

2 x 2

N = a + b + c + d

( ) ( )
N

ba
BP

+
=+

( ) ( )
N

dc
BP

+
=−

+ - Share (+)

+ a b

- c d

Share 
(+)

B A

( )ca

a

+ ( )db

b

+
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+
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Expected frequencies in the contingency table

• The expected frequencies for calculating a goodness-of-fit test in a contingency table 
correspond to a table that has no relationship between rows and columns (random 
row-column relationship)


2

)1(

viewed at
frequency

awaited
frequency

expected 
frequency

=

2

-
Calculated for 
each cell of the 
table

  ☺

A 10 0

B 0 10

Observed table

  ☺

A 5 5

B 5 5

Expected table
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Independence testing - Pearson chi-square test

• Is the occurrence of two nominal traits measured on a single sample related?

• Example: the eye colour (blue, green, brown) and hair colour (brown, black, blonde) of 
a sample of 30 students are independent.

• The null hypothesis: the characters X and Y are independent random variables.

• Alternative hypothesis: the characters X and Y are dependent random variables.

• Test: Pearson chi-square

• Expected (theoretical) frequencies ejk :

• We reject H0 at the α significance level if

• Assumptions of the test ?

( ))1)(1(
)(

2

1 1

2

−−
−

= 
= =

sr
e

en
K

r

j

s

k jk

jkjk


H0 applies

n

nn
e

kj

jk

..
=

( ))1)(1(2
1 −− − srK 
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Independence testing - Pearson chi-square test

Pearson chi-square test assumptions:

• Individual observations summarized in the contingency table are independent, i.e. 
each element belongs to only one cell of the contingency table, it cannot belong to 
two at the same time.

• Good approximation conditions: expected (theoretical) frequencies are greater than 
or equal to 5 at least 80% of the time and must not be less than 2 100% of the time (if 
this assumption is not met, it is appropriate to merge categories with low frequencies). 

• Measuring the strength of dependence:

Cramer's coefficient:
Significance of values: 0-0.1....negligible dependence

0.1-0.3...weak dependence

0.3-0.7...medium dependence

0.7-1 strong dependence

  ( )1,0int,,min,
)1(

ervaluzjeVsrmkde
mn

K
V =

−
=
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Contingency tables: example

FA = 102 * 30 / 166 = 18.43

FB = 102 * 136 / 166 = 83.57

FC = 11.57

FD = 52.43

( ) ( ) ( ) ( )
423,0

43,52

43,5254

57,11

57,1110

57,83

57,8382

43,18

43,1820
2222

2

)1( =
−

+
−

+
−

+
−

= 84,3423,0 )1(2

95,0 = 

Yes No S

Yes 20 82 102

No 10 54 64

S 30 136 166

gen

e



Contingency table in picture

15,6

84,4

Zemřelí Žijící

%

20

80

Zemřelí Žijící

%c: 49%

d: 33%

a: 12%

b: 6%

Gen: YES Gen: NO
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Output of the solution in SW

Table 1: Observed frequencies

Are the conditions for a good approximation met?

Table 3: Paerson chi-square 

p-value
The value of the test statistic

Number of degrees of freedom

Table 2: Expected frequencies
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R x C contingency table

Sample: N people from a sociological survey (offenders)

Phenomenon A: Origin from broken homes

Phenomenon B: Crime rate I < II < III < IV

I. II. III. IV. S

numbe

r 1
YES a b c d

NO e f g h

S

A B

number2

Degrees of freedom:

(R-1) * (C-1) = 1 * 3 = 3 N

čísločíslo
Fa

21 
=

)(2

)1(


 −Tables:

Expected frequencies:

ea

a
pa

+
=

fb

b
pb

+
=

gc

c
pc

+
=

hd

d
pd

+
=



Institut biostatistiky a analýz, PřF a LF MU

Recoding categorical variables to binary

Original Dummies Given the reference

NYHA NYHA I NYHA II NYHA III NYHA IV NYHA II ref NYHA III ref NYHA IV ref

I 1 0 0 0 0 0 0

I 1 0 0 0 0 0 0

I 1 0 0 0 0 0 0

II 0 1 0 0 1

II 0 1 0 0 1

III 0 0 0 0 1

III 0 0 0 0 1

IV 0 0 1 1 1

IV 0 0 1 1 1
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Recoding categorical variables to binary

• Categorical and ordinal data can enter the analysis as binary variables

• Categorical data (cannot be sorted) -> dummies

• Ordinal data (sortable) 

• Dummies

• Definition of the reference category (usually the category with the lowest risk for the endpoint 
being evaluated

• Example: the New York Heart Association (NYHA) Functional Classification 
Original Dummies Given the reference

NYHA NYHA I NYHA II NYHA III NYHA IV NYHA II ref NYHA III ref NYHA IV ref

I 1 0 0 0 0 0 0

I 1 0 0 0 0 0 0

I 1 0 0 0 0 0 0

II 0 1 0 0 1

II 0 1 0 0 1

III 0 0 0 0 1

III 0 0 0 0 1

IV 0 0 1 1 1

IV 0 0 1 1 1
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Goodness-of-fit test: example I

H0 : The observed frequencies for each flower color are a sample of the population having a ratio of

yellow and red flowers 3:1.

The sum of the frequencies for both flower colors (fi ) equals 100 and the observed frequencies for the 

color categories

will be compared with the expected frequencies (given in brackets):

Using data from an experiment with 100 flowers of a particular species, verify that flower colour is 

genetically split in

ratio yellow : red = 3 : 1.

Categories of colour

Yellow Red n

f poz. 84 16 100

f oček. 75 25

St. of freedom = n = k - 1 = 

1

( ) ( ) ( )
320,4

25

2516

75

7584
22

.

2

..2 =
−

+
−

=
−

= 
oč

očpoz

f

ff


We reject the hypothesis of the matching of the 

compared frequencies

In testing H0 , we used the mathematical notation (0.025 < P < 0.05). From the 2 distribution tables, we see 

that the probability of crossing the 2.706 threshold is 0.1 (10%), which can be written succinctly as 

P (2  2.706) = 0.10. 

Furthermore, we can find for P (2  3.841) = 0.05. In the problem we solved, we arrived at the value of the test 

statistic 2 = 4.320. Thus, for this case, we can write 0.025 < P (2  4.320) < 0.05; and more simply, 0.025 < P 

< 0.05. This is essentially an approximation of the bounds of a type 1 error.
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Goodness-of-fit test: example II

A total of 250 seeds of a particular plant species were examined and classified into the 
following categories: yellow/smooth; yellow/wrinkled; green/smooth; green/wrinkled. The 
following table contains the original observation data and the procedure for testing H0 .

This example is an extension of the problem in Example 1 to compare observed and 
expected frequencies for multiple categories of the observed trait:

yellow/smo
oth

yellow/wrinkl
ed

green/smooth green/wrinkled n

f poz. 152 39 53 6 250

f oček. 140,6250 46,8750 46,8750 15,6250

 = k - 1 = 3

We reject the hypothesis that the observed frequencies are consistent 

with the expected

972,8
6250,15

6250,9

8750,46

1250,6

8750,46

8750,7

6250,140

3750,11 2222
2 =+++=
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Goodness-of-fit test: example III

For the data from the previous problem, suppose we want to test the 
hypothesis of the existence of a 9 : 3 : 3 splitting ratio for the first three seed 
categories:

More complex examples solved by frequency comparisons can be divided into partial 
hypothesis testing:

yellow/smoot
h

yellow/wrinkle
d

green/smooth n

f poz. 152 39 53 244

f oček. 146,400 48,800 48,800

544,2
80,48

200,4

80,48

800,9

40,146

600,5 222
2 =++=

n = k - 1 = 2

We do not reject the hypothesis that the observed frequencies match the 

expected frequencies.
We now test the hypothesis of a splitting ratio of the categories 
green/wrinkled:other types = 1:15

green/wrinkled Other n

f poz. 6 244 25

f oček 15,625 234,375

n = k - 1 = 1

324,6
375,234

625,9

625,15

625,9 22
2 =+=

We reject the hypothesis that the observed frequencies match the 

expected frequencies.
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Homogeneity testing (conformity of structure)

• Motivation: we are interested in the occurrence of a nominal trait in r independent 
samples from r different populations.

• Example: is the interest in sport the same for girls as for boys?

• Null hypothesis: the probability distribution of the categorical variable is the same in 
different populations

• Test: Pearson chi-square Girls Guys

Interes
t

about 
sport

Yes a b a+b

No c d c+d

a+c b+d n

Some marginal frequencies (either column or row) 
are fixed in advance
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Homogeneity test for binomial distributions

Phenomenon: Leukaemia mortality

Assumption:  = 0.6

Absolute frequency of the phenomenon denoted 

by ri

Followed with authors from s 

countries:
Author ni ri pi

1

2

.

.

.

s

Real r consistency test

S

p
p

i
=

( )
( )pp

rppr iii

S
−

−
=

 
−

1

2

1Homogeneity test for binomial distributions

After possible merger with 

selections ( )−









−−

=


1

2

1
2

2

)1(
N

Nri



( )  nari

Nni =
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Test for homogeneity of binomial frequencies: an example

Six independent samples were taken from a population of young men who developed severe 

meningitis in childhood. 

H0 : In this population, right-handed and left-handed individuals occur in a 1 : 1 ratio.

The 2 distribution can also be used to assess the homogeneity of multiple independent 

experiments testing the same hypothesis.

Find the appropriate relationships in the literature to test the homogeneity of all six sample 

populations and decide on a course of action based on the results of this test.

The following table 

shows the original 

data and the result 

of the testing 

(expected 

frequencies are in 

brackets):

Sample
The 

Right
Lefties n c2 St. Liberty

1 3 (7) 11 (7) 14 4,5714 1

2 4 (8) 12 (8) 16 4,000 1

3 15 (10) 5 (10) 20 5,000 1

4 14 (9) 14 (9) 18 5,5556 1

5 13 (8,5) 4 (8,5) 17 4,7647 1

6 17 (11) 5 (11) 22 6,5455 1

2,302 =taheterogeni

51 =−= s

001,0P

Simple testing reveals that all tests for each sample are significant, meaning that in no case was the agreement between the 

expected and observed frequencies confirmed. The test for homogeneity of the splitting ratio in the populations examined also led 

to the rejection of the possibility to merge the individual samples and consider them as a whole (thus, apart from the tested 1 : 1 

ratio, there is no other uniform splitting ratio between the two traits in the data.

In the event that this test did not show variation between the sample populations, the individual samples could be pooled and

treated as a homogeneous sample.
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2 test - example of fractionation of more complex contingency 
table I

The aim of the larger population survey was to investigate the relationship between two types 

of diseases and blood types in humans. The specific data are shown in the table:

Blood group Stomach ulcers
Cancer of the 

stomach
Check Total

0 983 383 2892 4258

A 679 416 2625 3720

B 134 84 570 788

Total 1796 883 6087 8766

Calculate the test characteristic for this contingency table and

test the null hypothesis of independence of the phenomena (2 = 

40.54; 4 degrees of freedom)
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2 test - example of fractionation more complex contingency table 
II

A more detailed exploration of the more complex tables is greatly aided by transcribing the 
original table into a percentile representation of the categories:

Blood group Stomach ulcers Cancer of the stomach Check

0 983 383 2892

A 679 416 2625

B 134 84 570

Total 1796 883 6087

There are only small differences in the distribution of blood groups in 
the control and stomach cancer groups.

Patients with ulcers are much more likely to have blood type 0.

This table shows:

Based on these findings, it is possible to construct a smaller contingency table that tests

the hypothesis of an identical distribution of blood groups for cancer patients and healthy 

people. 
Construct this table and test the null hypothesis. 

(2 = 5.64 (2 deg. v.), P is approximately equal to 0.06)
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2 test - example of fractionation more complex contingency table 
III

• This subtest suggests the possibility of merging the group of cancer patients and 
healthy people because they behave as a homogeneous population due to the 
distribution of blood groups. 

• The next logical step in the detailed analysis is to test the agreement of the relative 
frequencies of blood groups A and B between the combined sample (merged cancer 
and control group) and the sample of people with gastric ulcers - i.e. we do not 
consider blood group 0 now. The result of this test is 2 = 0.68 (1 st. vol.); P > 0.7. 
Thus, the samples for blood groups A and B can be combined into a mixed A + B 
sample.

• We now test the concordance of the relative frequencies of group 0 versus A + B 
among the combined population (control + cancer patients) and among the sample of 
ulcer patients (c2 = 34.29; 1 st. vol.). 

• Thus, it can be summarized that the high value of the original c2 with 4 degrees of 
freedom was due to the increased frequency of people with blood group 0 among 
gastric ulcer patients. 
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2 test - example of fractionation more complex contingency table 
IV

Compare St. Liberty c2

0, A, B group in cancer patients (r) x control (k) 2 5,64

A, B group in patients with ulcers x combined sample (r + k) 1 0,68

0, A, B group in patients with ulcers x combined sample (r + k) 1 34,29

Total 4 40,61

The evaluation process can be summarised in 

a table:

The overall sum of the test statistics 2 (40.61) corresponds approximately to the

original value of 2 (40.54). This is also true for the degrees of freedom (4). This

fact confirms that we have exhausted the information content of the original

contingency table by detailed analysis and that, apart from the described

dependence (increased prevalence of blood group 0 in people with gastric ulcers),

the individual categories of the phenomena under study are completely

independent.
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2 x 2 contingency table: solutions for insufficient sample size

The test analyzes all possible 2 x 2 tables that give the same sum of rows and 

columns as the source table.

The algorithm assigns to each table the probability that such a situation occurs if H0 is 

true.

Yates' corection Fisher's exact test

H0 : Independence 

of phenomena

Spectacle wearing among juvenile delinquents and non-delinquents who failed a vision 
test (Weindling et al., 1986)

Spectacle wearers

Juvenile delinquents Non-deliquents Total

Yes 1 5 6

From 8 2 10

Total 9 7 16
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2 x 2 contingency table: solutions for insufficient sample size

a b c d P

( I ) 0 6 9 1 0,00087

( II ) 1 5 8 2 0,02360

( III ) 2 4 7 3 0,15734

( IV ) 3 3 6 4 0,36713

( V ) 4 2 5 5 0,33042

( VI ) 5 1 4 6 0,11014

( VII ) 6 0 3 7 0,01049

Total 0,99999

Probability of random 

occurrence of table variants

All possible variants of the table with 

the given sum of rows and columns

0 6

9 1

1 5

8 2

2 4

7 3

6 0

3 7

5 1

4 6

4 2

5 5

3 3

6 4

(I)

(II)

(III)

(IV)

(V)

(VI)

(VII)
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Fisher's exact test

• Use in a four-field table (currently larger due to increased computer power) with low 
frequencies that preclude the use of Pearson chi-square tests.

• It is a non-parametric test working with data on a nominal scale, in its simplest form in 
two classes: positive/negative, success/failure, etc.

• The null hypothesis assumes equal representation of the observed trait in two 
independent sets.

• The word exact (direct) means that the probability of rejection or validity of the null 
hypothesis is calculated directly.
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Fisher's exact test

• Calculating the "exact" p-value, which here plays the role of a test statistic:

• the partial probability of the four-field table p1 is calculated:

• The pa of all possible tables is computed while keeping marginal frequencies (row and 
column totals) and the resulting p-value is the sum of pa less than or equal to p1 that 
belongs to the observed table.
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Test of the symmetry hypothesis (McNemar's test for a four-field 
table)
• Motivation: we observe a binary variable on subjects before and after the experiment, the aim 

is to see if there is a change in the distribution of this variable.

• Analysis of paired dichotomous variables

• Null hypothesis: , the experiment has no effect on the occurrence of the trait

• Test statistic: if it is greater than the critical value of the distribution by one degree of freedom 
(suitable for numbers of data b+c > 8), then reject the null hypothesis

after

+ - nj.

Befo
re

+ a b a+b

- c d c+d

n.k a+c b+d n

Frequency table Table of theoretical probabilities

after

+ -

Befo
re

+ p11 p12 p1.

- p21 p22 p2.

p.1 p.2

cb

cb

+

−−
=

2

2 )1(


jiij pp =

2
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McNemar test: example I

• Find out whether the success of our athletes at the Olympics or World Cup is leading 
to a change in pupils' attitudes towards sport.

• Null hypothesis: the number of students who change their attitude in a positive 
direction is only randomly different from the number of students who change their 
attitude in a negative direction.

• Conclusion: the success of our athletes has a positive effect on the attitude of students 
towards playing sports.

Attitude after 
teaching

+ -

Attitud
e 

before 
teachin

g

+ 5 3 8

- 16 2 18

21 5 26

58,7
163

)1163( 2

2 =
+

−−
=

84,3)12/)1((2

1 ==−=− kkvTables:

H0 rejected

Degrees of 
freedom
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McNemar's test: example II

Example: comparison of 2 methods of antigen determination in blood (antigen 

always present)

H0 : method 1 = method 2

Method 1 Method 2 Frequency

success success 202

success Failure 60

Failure success 42

Failure Failure 10

102 =

( )
83,2

102

14260
2

2

)( =
−−

=c

84,3: )1(2

1 ==

−


Tabulky

H0 not rejected
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Application of 2 x 2 table analysis for risk assessment
I. Prospective study - estimation of relative risk

Individuals are followed prospectively to see if a trait occurs.

THE SELECTION IS GIVEN BY THE COLUMN

GENERAL
EXAMPL

E
Group

1

Group

2

Sign
YES a b

NO c d

Risk:

H0 : RR = 1

( )ca

a

+ ( )db

b

+

( )

( )db

b

ca

a

RR

+

+
=

Fetal retardation

Symmetric
al

Asymmetric

Agpar 
skore

> 7

YES 2 33

NO 14 58
2/16=0,13 33/91=0,36

345,0
91/33

16/2
==RR

The risk in the "symmetric group" is about 
35% of the risk in the asymmetric group

( )
dbbcaa

RRSE
+

−+
+

−=
1111

ln

IS: ln RR - Z1-/2 . SE (ln RR)

ln RR + Z1-/2 . SE (ln RR)
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Application of 2 x 2 table analysis for risk assessment
II. Retrospective study - "ODDS RATIO"

A fundamentally different approach from the retrospective study 
SELECTION IS GIVEN BY PROPERTY - ROW

It is therefore not possible to analyse the relative risk because we can change the 
size of the controls by preparing the lines.

GENERAL EXAMPLE

Group

1

Group

2

Sign
YES a b

NO c d

Dental defects

YES NO

Swimming

weekly

< 6h 32 118

≥ 6h 17 127
odds a/c b/d

db

ca
ratioOdds

/

/
:

dcba
ORSE

1111
)(ln +++=

( ) ( ) 026,2127/118/17/32 ==OR

( ) 706,0ln =OR

( )( ) 326,0ln =ORSE
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Relative risk vs. Odds ratio ?

• The meaning of RR and OR

• Calculation

• Comparability

• Interpretation 

• Advantages and disadvantages

• Applications in clinical trials

Relative risk
(relative risk)

Odds ratio
(odds ratio)
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The meaning of RR and OR

• Description of the influence of the factor (treatment, clinical 
parameter) on the occurrence of the event (death, progression, 
etc.)

Relative risk
(relative risk)

Odds ratio
(odds ratio)

 Easy natural interpretation 
of risks expressed as a 
percentage of events

BUT

 Mathematical constraints 
for some applications

 Only a few people have the 
natural ability to interpret OR

BUT

 OR more advantageous 
mathematical properties in 
many applications
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Calculation

Relative risk
(relative risk)

Odds ratio
(odds ratio)

event

A B

RR= 2

10

3
10

6

== OR= 5.3

7

3
4

6

==

without event
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Relationship between RR and OR

Zhang, J. et al. JAMA 1998;280:1690-1691.

Relative risk
(relative risk)

Odds ratio
(odds ratio)

RR and OR are directly 
comparable only at low 

basal risk
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Comparability of RR and OR I: maximum

• RR varies its maximum according to the 
basis risk

Relative risk
(relative risk)

Odds ratio
(odds ratio)

Basal risk

M
a
x
im

u
m

 p
o
s
s
ib

le
 R

R

 Odds ratio always has a range from 
0 to infinity

 The size of the OR is independent 
of the size of the basal risk

 ORs can be used to compare 
studies with different basal risks 
!!!!

 Advantageous for meta-analysis

 RRs in studies with different basal risks are 
incomparable !!!!
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Comparability of RR and OR I: symmetry

• Is there a difference between RR and O in the case of exchanging the definition of event 
and non-event?

Relative risk
(relative risk)

Odds ratio
(odds ratio)

I II

vs.

RR(II)= 2

10

3
10

6

== OR(II)= 5.3

7

3
4

6

==

RR(I)= 57.0

10

7
10

4

== OR(I)= 29.0

3

7
6

4

==

)(

1
)(

IIOR
IOR =

)(

1
)(

IIRR
IRR 
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RR and OR in studies with different baseline risk levels

C
o
n
tr

o
l

C
a
s
e

Event occurrence (%)

Event occurrence (%)

Basal (control) event incidence (%)

In the "Case" group, there are 4 times as 
many patients with an event per patient 
without an event than in the "Control" 
group

Odds ratio

R
R
/O

R

Relative risk

A patient in the "Case" group has an x times 
increased probability of having an event than a 
patient in the "Control" group. X times depends 
on the basal incidence of the event.
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RR and OR in prospective and retrospective studies

 Tracking back the causes of an 
event

 Mainly case-control studies

 Patient selection influences the 
basal incidence of the event

Retrospective studyProspective studies

 RR cannot be used -limited by the basal 
occurrence of the event

 Use of OR - not constrained by study 
design

 Tracking the occurrence of an event and 
subsequent analysis of its causes

 Predominantly cohort studies

 The basal incidence of the event is 
determined by the characteristics of the 
patient cohort

 Seamless use of RR

Relative risk
(relative risk) Odds ratio

(odds ratio)
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Relative risk vs. Odds ratio: summary

 Intuitively easy to interpret

 For prospective studies

 The maximum varies according 
to the basal value of the event 
occurrence

Relative risk
(relative risk)

Odds ratio
(odds ratio)

 Retrospective study

 Applications in meta-analysis

 Standard logistic regression output

 Range always 0 to infinity, not 
affected by the basal occurrence of 
the event

 More difficult to interpret



Lecture 9



Poisson distribution
Description of the layout and its use



Institut biostatistiky a analýz, PřF a LF MU

Annotation

• The Poisson distribution is used to describe the frequency of occurrence of a 
phenomenon per experimental unit, an example being the number of bacterial 
mutations per petri dish or the number of heart defects per unit time
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Poisson distribution

Total number of phenomena in n independent experiments

E(x) = n p

D(x) = n p

average number of phenomena from n trials
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Poisson distribution as a model
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Poisson distribution exists in nature

Mutation of bacteria on 

incubation plates

Occurrence of the 

phenomenon in space  
(number of earthworms per certain 

area of the field)

Approximate determination of 

the phenomenon 
(in gas production by bacteria)

+ + +- -

The most probable number 

technique

Occurrence of the 

phenomenon in time    

(cardiac arrhythmias at specific time intervals)

Tim

e
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Poisson distribution as a model for random occurrence of 
phenomena

Uniform Clustered Random

m 2 m 2

Assumption: random distribution of the phenomenon among the 

studied objects 

(possibly in time, in space).

m =2

Poisson

If  is rather larger (~5-10), then the Poisson corresponds to a binomial to 

normal distribution.
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Formal presentation of the Poisson distribution
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Poisson random variable

• When measuring the number of blood cells altered by a particular disease (relatively rare), a diluted blood sample is observed under a 
microscope in a chamber divided into equal-sized fields. The observed quantity, indicating the number of blood cells in the i-th field, can 
be considered to follow a Poisson distribution:

• n = 169 = number of independent variable observations

• r = 10 = number of observed blood cells

• What is the value of the Poisson distribution parameter and what is its interpretation ?

• What is the 95% confidence interval for the parameter 

• If we were to observe the total number of red blood cells (again in n = 169 independent fields), could this variable also be considered to 
follow a Poisson distribution ? Consider the total number of observed red blood cells as 2013.

Calculation of confidence interval for (without approximation to normal distribution)

IS lower limit Upper limit of IS

2

)212(
2

2
2

+=
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Poisson random variable

Poisson variable:

* Excellent model for experiments in 

which the time

the number of occurrences of a 

certain phenomenon
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i: number of particles in the interval (x)

si : observed frequency of intervals with i particles
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Poisson distribution: one-sample test
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Analysis of variance
Parametric analysis of variance

Post hoc tests

Kruskal-Wallis test
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Annotation

• Analysis of variance is a basic tool for analysing differences between means in several 
groups of objects.

• The basic idea on which ANOVA is based is to divide the total variability in the data 
(unknown, given only by random distribution) into a systematic part (associated with 
patient categories, explained variability) and a random part. If the systematic, i.e., non-
random and explained part of the variability dominates, we consider the categorical 
factor to be important in explaining the variability in the data.

• Analysis of variance evaluates only the overall effect of a factor on variability, in the 
case of category-by-category analysis, post-hoc tests should be used
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Basic decision making on the selection of statistical tests

Data type

Continuous x 
continuous data

Continuous x 
categorical data

Categorical x 
categorical data

One selection
Two 

selections

Three or 
more 

selections 
(unpaired)

One selection
More 

selections

Paired data
Unpaired 

data

Pearson 
correlation 
coefficient

One-shot
t-test

Paired t-test
Two-Sample 

t-test
ANOVA

Paired data
Unpaired 

data

Chi-square test

Spearman 
correlation 
coefficient

One-sample 
Wilcoxon test

Wilcoxon / 
mole test

Mann-Whitney 
test

Kruskal-Wallis 
test 

One-sample 
binomial test

McNemar test
Fisher's exact 

test

Parametric tests
Non-parametric tests
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Goal of stochastic modelling

• The general goal is to try to explain 
the variability of the predicted 
variable (endpoint, Y) using predictors 
(explanatory variable, factor, X)

• Both the predicted variable and the 
predictor can be of different types

• Binary 
• Categorical
• Ordinal
• Continuous

• Censored (-> survival analysis)

• The combination of the data type of 
the predicted variable and the 
predictor determines the analysis 
method used 4 

4 .5
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Why the 
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?
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Explains the categorical 
predictor?
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Analysis of variance - ANOVA

Basic technique used 
to assess differences 

between multiple 
levels of experimental 

intervention
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Increasing concentration of test substance/s

Overall significant changes in the response of the biological 
system 

Mutual differences in the effect of individual doses

Differences in dose effect from control
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Analysis of variance - ANOVA

Important steps of the 
analysis leading to an 
effective comparison 

of options ..............

Increasing concentration of test substance/s

Meeting the assumptions of the analysis
Data transformation

Relevance of the control
(effect of self-application of substances)

Suitability of the ANOVA model for test purposes

Custom comparison of variants
Minimising errors in hypothesis testing
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Analysis of variance - ANOVA

ANOVA
= parametric data 

analysis

Presumption of independence 
repetition of the experiment

Normality of distribution 
within the experimental 
variants

Homogeneity of 
variance within 

experimental variants

MEETING THE ANOVA PREREQUISITES IS A NECESSARY CONDITION
THE USE OF THIS TECHNIQUE

NON-PARAMETRIC METHODS ARE AN ALTERNATIVE

1.

3.

2.
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ANOVA - assumptions 

• Symmetric distribution of values and normality of deviations from the estimated ANOVA model. Much 
of the data can be adequately normalized using a logarithmic transformation. Of course, the assumption 
of a lognormal transformation can be theoretically ruled out for many data sets containing discrete 
parameters where the appropriateness of another type of transformation is indicated. For 
asymmetrically distributed and discrete data, it is necessary to use nonparametric alternatives to 
analysis of variance.

• Homogeneity of variance is a prerequisite for meaningful comparisons between experimental variants. 
In toxicity tests, this assumption should be verified (Bartlett's test), as serious differences (up to orders 
of magnitude) in the units of the parameter tested may occur due to inhibition by doses of the 
substance. Inhomogeneity of variance is often related to non-normality (asymmetry) of the data and 
can be removed by an appropriate normalising transformation. 

• Statistical independence of residuals evaluated by ANOVA model. If the estimation and assessment of 
correlation relationships between experimental variants is not directly under investigation, their 
influence on the evaluation can be eliminated by re-ranking the data within experimental variants - i.e. 
changing the order to random. However, the extent of the influence of these autocorrelations must 
primarily be limited by the accuracy of the experimental design.

• Additivity as an assumption concerning more complex experimental setups. The exact testing of the 
additivity of multiple experimental factors is a procedure quite demanding for an experimental design 
balanced in terms of the number of repetitions. It is also difficult to test the interaction on non-standard 
data, as any transformation may change the nature of the deviations of the original data from the 
ANOVA model being evaluated.
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Limitations of ANOVA can be addressed

• Missing data. A serious problem is missing data on the whole group of combinations of test substances, 
for example in factorial experiments, where it is impossible to evaluate the experiment as a whole.

• Different numbers of repetitions. This is a typical phenomenon for experimental datasets. With 
different numbers of repetitions in the experimental variants, ANOVA tests are more sensitive to data 
non-normality. If the numbers of repetitions are completely different(except for order of magnitude 
differences), non-parametric techniques or analysis of variance of unbalanced trials should be used.

• Outliers. Isolated outliers must be excluded before parametric analysis of variance.

• Lack of independence between model residences. This is a serious deficiency, biasing the result of the 
F-test. Very often this is the result of poor execution or planning of the experiment.

• Inhomogeneity of dispersion. A very common deficiency in experimental data, often associated with 
non-normality of distribution or outliers.

• Data abnormality. Also in this case, the situation can be corrected by excluding outliers or by a 
normalizing transformation.

• Non-additivity of the combined effect of multiple experimental interventions. This situation can be 
tested either by special additivity tests or directly by the F test controlling for the significance of the 
effect of the interaction of the experimental interventions. When the interaction is significant, it is 
necessary to examine first of all its nature in an appropriate experimental setup. 
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Analysis of variance models
Model I. Fixed model Model II. Random model
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The principle of ANOVA

• The basic principle of ANOVA is to compare the variance attributable to:

• The division of data into groups (so-called effect, variance between groups)

• Variation of objects within groups (so-called error, variance within groups), it is assumed that it is a 
random variation (=error)

11 −= k

kn −=2

groupswithin

groupsbetween
F

_

_
=

We compare the 
resulting ratio (F) 

with the F 
distribution tables 
for the v1 and v2

degrees of 
freedom

SS=sum of 
squares

1. Variability between groups

The variance is calculated for the overall 
mean (grand mean) and the 
averages in each data group

The degrees of freedom are derived from 
the number of groups (= number of 
groups -1)

2. Variability within groups

The variance is calculated for the averages 
of the groups and the objects 
within the groups, and the total 
variability is summed for all groups

The degrees of freedom are derived from 
the number of values (= number of 
values - number of groups)
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Model design

• Model design means what variables and in what combinations will explain the variable being assessed  

• In general, it is advisable, either expertly or as a result of preliminary analysis, to develop and test 
hypotheses about the interrelationships of variables and to build the final model according to these 
preliminary results

• Model design is closely related to concepts:

• Analysis of main effects of variables only 

• Analysis of interactions between variables and complexity of interactions 

• The model design can be expressed graphically or in an equation or matrix notation

𝑦 = ℎ𝑚𝑜𝑡𝑛𝑜𝑠𝑡 ∗ 1.5 + 𝑣ě𝑘 ∗ 3.6 + ℎ𝑚𝑜𝑡𝑛𝑜𝑠𝑡 ∗ 𝑣ě𝑘 ∗ 1.8 + 9
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Simple ANOVA design

• The simplest case of ANOVA design is to divide into groups according to one parameter
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Nested ANOVA

• Splitting groups into random subgroups (e.g. repeating an experiment)

• The aim is to see if the data in one group is not a mere coincidence

• First, the agreement of subgroups in the main groups is tested, 

• if they are identical, everything is fine

• if they are not, it is still possible to see if the variability within the main groups 
differs from the overall variability
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Two way ANOVA

• There are more parameters for categorization

• Unlike nested ANOVA, these are not random repetitions of the experiment, but 
controlled interventions (e.g. the effect of pH and O2 concentration)

• In addition to the influence of the main factors, there is also their interaction
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ANOVA - basic output

• The basic output of the analysis of variance is the ANOVA table - fractionation of 
variance components 

Source of 

dispersion

Pok. 

intervention

(between 

groups)

Inside the 

groups

Total

SS /SSBT

MS /MSBT

St. v.

a -1 SSB SSB /(a -1) MS /MSBE

N - a SSE SSE /(N - a)

N -1 SST

SS MS F

Quantified proportion of the difference between experimental 

interventions in the total variance

Statistical significance of the difference
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Main effects and interactions

A B

Faktor 1

8

10

12

14

16

18

20

22

24

A B

Faktor 1

8

10

12

14

16

18

20

A B

Faktor 1

8

9

10

11

12

13

14

15

16

17

18

A B

Faktor 1

8

9

10

11

12

13

14

15

16

17

18  Faktor 2  I

 Faktor 2  II

SS D.f. MS F p

The 
Intercept

33487 1 33487 8165.3 0.000

Factor 1 1978 1 1978 482.2 0.000

Factor 2 1 1 1 0.3 0.602

F1*F2 1 1 1 0.3 0.570

Error 804 196 4

A B

Faktor 1

8

9

10

11

12

13

14

15

16

17

18

SS D.f. MS F p

The 
Intercept

33487 1 33487 8165.3 0.000

Factor 1 4 1 4 1.0 0.314

Factor 2 1891 1 1891 461.1 0.000

F1*F2 1 1 1 0.3 0.570

Error 804 196 4

A B

Faktor 1

8

10

12

14

16

18

20

22

24

26

SS D.f. MS F p

The 
Intercept

57391 1 57391 13993 0.000

Factor 1 5293 1 5293 1290.7 0.000

Factor 2 861 1 861 209.9 0.000

F1*F2 1 1 1 0.3 0.570

Error 804 196 4

SS D.f. MS F p

The 
Intercept

28511 1 28511 6952.0 0.000

Factor 1 4 1 4 1.0 0.314

Factor 2 1 1 1 0.3 0.602

F1*F2 867 1 867 211.3 0.000

Error 804 196 4

SS D.f. MS F p

The 
Intercept

38863 1 38863 9476.2 0.000

Factor 1 920 1 920 224.3 0.000

Factor 2 1 1 1 0.3 0.602

F1*F2 867 1 867 211.3 0.000

Error 804 196 4

SS D.f. MS F p

The 
Intercept

45203 1 45203 13596 0.000

Factor 1 4799 1 4799 1443.4 0.000

Factor 2 316 1 316 95.0 0.000

F1*F2 175 1 175 52.5 0.000

Error 652 196 3
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Analysis of variance - general F test

general F test

H0 : m1 = m2 = m3 = .... = mp
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Testing partial hypotheses

• In many analyses, it is necessary to work with peer testing of multiple groups of objects in a peer-to-peer style

• The general analysis procedure is

• Testing overall significance - all groups among groups

• If overall significance is found, testing continues by analysing specific combinations of pairs of groups (ENG: between)

• The problem is the effect of multiple testing on the statistical significance of the tests:

• Every single test has a=0.05 (type I error)

• With multiple testing, the probability that at least one test will erroneously reject the null hypothesis (i.e., a Type I error) 
increases

0
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Number of tests

The solution is various p-
value correcting procedures 
(e.g. Bonferroni correction, 
FWR, FDR procedures, etc.)
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Analysis of variance - contrast tests
ANOVA:H0 rejected

Contrast tests

..........
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Contrast testing

"Multiple range tests"

Parametric Nonparametric

Planned
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To compare the 
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control
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A number of different post-hoc tests
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Anova - One way

Plant stimulator dose (0, 4, 8, 12 mg/l)

A = 4 ; n = 8

I.      ANOVA

Bartlett's test: P = 0.9847

K-S test: P = 0.482 - 0.6525 for each category

II.     Multiple Range Test (NKS -test)

Source D.f. SS MS F p

Between 3 305.8 101.9 8.56 <0.001

Within 28 322.2 11.9

Total 31 638

Level Average Homogeneous groups

0 34.8 x

4 41.4 x

12 41.8 x

8 52.6 x
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