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ABSTRACT Microorganisms have shaped our planet and its inhabitants for over 3.5 billion years. Humankind has had a pro-
found influence on the biosphere, manifested as global climate and land use changes, and extensive urbanization in response to a
growing population. The challenges we face to supply food, energy, and clean water while maintaining and improving the health
of our population and ecosystems are significant. Given the extensive influence of microorganisms across our biosphere, we pro-
pose that a coordinated, cross-disciplinary effort is required to understand, predict, and harness microbiome function. From the
parallelization of gene function testing to precision manipulation of genes, communities, and model ecosystems and develop-
ment of novel analytical and simulation approaches, we outline strategies to move microbiome research into an era of causality.
These efforts will improve prediction of ecosystem response and enable the development of new, responsible, microbiome-based
solutions to significant challenges of our time.

Now well into the 21st century, the Human Genome Project
fades from our rearview mirror but its lasting impact extends

far into our future (1). Massively parallel DNA sequencing plat-
forms plus significant technological advances derived from this
previous international, public, and private initiative continue to
drive economic development and numerous paradigm shifts
across domains of the biological, physical, and social sciences.
Foremost among these paradigm shifts has been the realization
that our species, Homo sapiens, is at least as microbial as human in
terms of cell numbers (2) and much more so in terms of genetic
potential (3). The subsequent initiative to sequence our bodies’
“second genome,” represented by the NIH-funded Human Mi-
crobiome Project and its European equivalent, Meta-HIT, has cat-
alyzed numerous discoveries and sparked interest in identifying
the contributions of our microbiota to our health, development,
behavior, and emotions (summarized in Table 1 of reference 4).
As a result of this initiative and our anthropocentric tendencies,
the term “microbiome” is now becoming a familiar concept to the
general public and serves as a nucleation point for academic and
industrial efforts aiming to uncover hidden microbial roles in
health and disease and to discover microbiome-based interven-
tions. If our efforts are successful, their societal and economic
impacts will likely be substantial and accompanied by both phil-
osophical debate and ethical considerations.

We often overlook the fact that the concept and impact of the
“microbiome” extend far beyond the human body. In fact, micro-
organisms have populated, dominated, and shaped our planet and
its inhabitants for over 3.5 billion years. Plants and multicellular
animals (Metazoa) first emerged ~800 million and ~700 mil-
lion years ago, respectively. Modern humans have existed for

roughly only 250,000 years, and are thus merely a recently
emerged twig in the tree of life. It is perhaps not surprising that
single-celled microorganisms, the pioneers of life on Earth, played
critical roles in the evolution and functioning of all other living
organisms (5). Like a modern-day corporation, most eukaryotes
have outsourced (or, more accurately, insourced) several key
functions to bacteria (6). The mitochondrion that functions as a
cellular power plant in eukaryotes evolved from once-free-living
bacteria that were engulfed; similarly, the chloroplast that is the
center of photosynthesis in plants was likely derived from one or
more free-living bacteria. This intermingling of genes and func-
tions across the tree of life continues, allowing multicellular or-
ganisms to adapt more rapidly to new environments, using the
versatility of their microbial partners (7–15). The ubiquity of mi-
croorganisms and their breadth of impact on the habitability of
our planet have prompted musings of what life would be like
without them (16). However, unlike “germfree” animals or plants
in the confines of the laboratory, the health of the planet’s envi-
ronment and that of its inhabitants are absolutely dependent on
their microbial partners.
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MICROBES DROVE THE FORMATION OF OUR BIOSPHERE

So how did we get here? Stepping back approximately 2.5 to 2.3
billion years, we observe the Great Oxidation Event, a cataclysmic
shift in the oxidation-reduction status of our planet that can be
seen and traced in the geologic record, including global iron de-
posits (17). What was initially a nonoxidizing atmosphere, dom-
inated by methane, hydrogen sulfide, and carbon dioxide, flipped
(in geologic time) to an environment with abundant molecular
oxygen. This flip was mediated by the rise of microorganisms ca-
pable of oxygenic photosynthesis, ancestors of today’s Cyanobac-
teria (18), eliminating countless oxygen-sensitive microorgan-
isms and resulting in one of Earth’s most significant mass
extinctions. However, the energy available from oxygen-coupled
redox reactions (aerobic respiration) was significantly greater
than the previous anaerobic lifestyles and allowed rapid diversifi-
cation of new functions in a period termed the “archaean genetic
expansion” (19). This period of energetic adaptation led to species
diversification that was the precursor to the evolution of multicel-
lular organisms and ultimately, plants, animals, and the remain-
der of the tree of life. As such, the planet’s collective microbial
ancestors facilitated the formation of the biosphere as we know it
(Fig. 1).

While microorganisms were initially viewed as a curiosity to be
seen under the rudimentary microscopes of Anton van Leeuwen-
hoek, they are now appreciated as the “biogeochemical engines”

that continue to support all life on Earth (20). Microorganisms are
major drivers of the Earth’s carbon cycle. In the ocean, phyto-
plankton (single-celled photosynthetic bacteria and algae) drive
the “biological carbon pump” and are responsible for approxi-
mately half of the global carbon fixed from the atmosphere each
year, with the remainder sequestered by the Earth’s terrestrial veg-
etation (21). Microorganisms also perform key functions in the
stabilization and recycling of this fixed carbon across our oceans
and landforms. In our soils, microbes transform plant polymers
and deposit their products on soil minerals, forming the basis for
much of the Earth’s terrestrial carbon stocks (22). However, in the
face of disturbances like the tillage of agricultural soils (23) or
thawing of permafrost (24, 25), microbial activity can result in the
release into the atmosphere of large amounts of carbon that has
been stored for thousands of years, with a potentially positive
feedback to global temperatures (26).

Nitrogen fixation is another remarkable chemical feat achieved
by microorganisms. Microorganisms catalyze this energetically
costly reaction at ambient temperatures and pressures, frequently
forming close couplings (including symbioses) with higher organ-
isms such as plants (27) and insects (28). Our planet’s ecosystems
and inhabitants subsisted primarily on this microbially fixed ni-
trogen for 4 billion years until the beginning of the 20th century
with the production of nitrogen fertilizer by the Haber-Bosch pro-
cess (29). As transformative as this engineering process of nitro-

FIG 1 Microbial landmarks in the evolution of our biosphere. Adapted from original artwork of Mariana Ruiz Villarreal (https://commons.wikimedia.org/
wiki/File:Timeline_evolution_of_life.svg).
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gen fixation was for the production of food on our planet, it uti-
lizes approximately 1% of global fossil energy (30) for production
of the heat and pressure needed to accomplish this feat without
microorganisms.

Microorganisms provide a wide range of ecosystem functions
beyond carbon and nitrogen cycling. Collectively, they purify the
water in our rivers, streams, lakes, reservoirs, and aquifers, natu-
rally controlling the flux of nutrients like nitrogen and phospho-
rus that can regulate the development of stable ecosystems and the
establishment of complex food webs. However, detrimental
events can occur when the balance of microorganisms in nature is
altered because of either natural or human interventions. Mi-
crobes are sources of other greenhouse gases (including methane
and nitrous oxide) that are more potent or long-lived than CO2. In
agricultural systems, fertilizer and manure applications stimulate
the microbial release of 4 to 6 Tg of nitrous oxide per year (31),
while microbially produced methane associated with rice paddies
and livestock production represents approximately 30% of global
methane emissions (32). Nutrient runoff from agricultural, in-
dustrial, and municipal sources promotes the growth of harmful
microorganisms in our waterways, for example, forming toxic al-
gal blooms that threaten our water supplies, health, and ecosys-
tems (33) and contributing to dead zones in our oceans (34). The
disturbance of aquifer biogeochemistry due to the drilling of wells
and irrigation contributed to the “largest mass poisoning of a pop-
ulation in history” (35), where microorganisms mobilized natu-
rally occurring but previously immobile arsenic (36, 37).

GLOBAL CHALLENGES OF HUMAN POPULATION GROWTH
AND ENVIRONMENTAL CHANGE

The development of the Haber-Bosch process for the production
of nitrogen fertilizer that led to the advent of modern production
agriculture has been described as the “detonator of the population
explosion” (38). With a current population of 7.3 billion and the
majority of the world’s population now residing within urban
centers, we are entering an unprecedented phase in our Earth
system, one that we, and our planet’s microbiomes, have never
before experienced. A number of challenges arise related to sus-
tainable production of food, energy, and chemicals to support
Earth’s ever-growing human population (Fig. 2). Additionally,
there is a pressing need to understand, predict, and respond to
global environmental change, prevent and reverse ecosystem deg-
radation, and manipulate the microbial origins of plant, human,
and livestock diseases.

To put our current and projected future Earth system state into
context, the rate of CO2 entering our atmosphere is unprecedented
over at least 56 million years (39), demonstrating that human impacts
on our planet may persist over geologic time. If this rate of emissions
were to continue over the next few centuries, atmospheric CO2 may
reach 2,000 ppmv (5 times the current concentrations), average an-
nual temperatures would rise by 8°C, and our oceans would acidify by
0.7 pH unit (39), producing conditions not experienced on Earth
since the Paleocene-Eocene Thermal Maximum ~55 million years
ago. As a result, our planet’s natural biomes and those that we manage
for food and fuel will likely experience conditions beyond their con-
temporary climate boundaries, and our current understanding of the
sensitivities of their microbial components limits our ability to pre-
dict how they will respond (40).

THE ROLE OF MICROBIOME RESEARCH TO IMPROVE
HUMAN HEALTH AND RESILIENCE

The interface of the human microbiome and health is vast, and we are
at the early stages of a potential scientific revolution in this area. De-
spite enormous progress in the provision of a stable food supply in
many parts of the world, undernutrition persists for a sizable fraction
of the population in many locations (41). Simultaneously, overnutri-
tion affects a substantial, and growing, proportion of the human pop-
ulation, with obesity, type 2 diabetes, and other related metabolic
syndromes affecting people in both developed and developing coun-
tries (42, 43). Recent studies provide evidence that particular micro-
biome disruptions may play important roles in malnutrition (44, 45)
and obesity (46–48) and in modulating associations between diet and
disease (49). Beyond the gut, the human microbiome likely affects all
organs through the immune, circulatory, and nervous systems, in-
cluding communicating with our brains (50) and affecting our be-
havior and cognitive function (51, 52).

Other emerging concepts are that a portion of the human mi-
crobiome is heritable (53) and that we have coevolved with mi-
crobes with specific properties (54). A natural extension of these
concepts is that microorganisms play essential roles across the
human life span, including development, maturation, reproduc-
tion, and senescence. For example, a growing body of evidence
implicates microbiome perturbation during a critical window of
early-life development of our immune system in the rapid in-
creases of allergic and autoimmune conditions, including asthma,
atopic dermatitis, food allergies, and inflammatory bowel disease,
among others (55–58). We now appreciate that antibiotics and
our increasingly industrialized lifestyles likely contribute to loss of
microbes that are essential for healthy immune system develop-
ment and with which our species coevolved (59, 60).

URBANIZATION AND THE INTERSECTION OF THE HUMAN
AND ENVIRONMENTAL MICROBIOMES

Urbanization is a global phenomenon occurring at unprece-
dented pace and scale. In 1900, only 10% of the global populations
were urban dwellers. Now, for the first time in history, more than
half the world’s population lives in cities. It has been projected that
70% of humanity will live in cities by 2050 (61) (Fig. 2). Cities and
the buildings within them represent an unprecedented facet of
human or even planetary evolutionary history. One consequence
of increased urbanization is that most of the world’s people will be
in regular contact with new combinations of microorganisms that
thrive in urban built environments rather than the combinations
of microorganisms characteristic of natural environments (62).
This has prompted a new line of research to investigate the micro-
biology of built environments (reviewed elsewhere [63–65]).
Among the emerging themes from this nascent field are that in-
door microbiomes derive largely from our own bodies (66, 67)
and patterns of occupancy (68, 69). In addition, several studies
have demonstrated that characteristics such as surface materials
and ventilation strategies influence the diversity and abundance of
indoor microbial communities (e.g., 70–74). Although we cur-
rently lack sufficient mechanistic understanding to understand
the importance of indoor environmental quality in terms of mi-
crobial diversity, composition, and function to our health and
development, recent evidence suggests benefits of exposure to a
more diverse microbiota (75–77). A critical next step is to under-
stand the public health implications of exposure to distinct collec-
tions of microbiomes characteristic of the built environment.
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THE SOCIETAL BENEFITS OF HARNESSED MICROBIOME
FUNCTIONS

Feeding our growing population is a grand challenge facing soci-
ety. The last 100 years have seen great advances in increasing the
amount of land that can support agricultural activity and the yield
of food-grade crops per acre. The emergence of industrialized ag-
riculture in early 20th century, improving the quantity and nutri-
tional value of food, depended, in part, on understanding the role
of nitrogen-fixing symbiotic microbes in yield and the role of the
plant immune system in breeding for disease resistance. In con-
trast, incidents such as the “Dust Bowl,” the catastrophic wind
erosion of degraded soils in the United States and Canada during
the 1930s (78), and the continual emergence or spread of plant
diseases (79, 80) illustrate the delicate balance between a need to
intensify food production to meet population demand and the
unwanted and potentially dangerous long-term consequences of
altering the ecology of natural systems.

Microbes protect our crops. Soil microorganisms, either as
individuals or as communities, both help plants acquire nutrients

and help protect crops from insect pests (81) and microbial patho-
gens (82). Through a better understanding of these processes, we
may soon be able to harness microbes to protect crops from the
many microbes that cause diseases that ravage them, leading to
famine (83, 84), societal upheaval, and conflict. The projected
increases in population size and the desire to provide high-
nutritional-quality crops to a larger fraction of the population,
combined with limitations in arable land and the need to main-
tain or enhance ecosystem services while simultaneously in-
crease crop yields, reinforce a need to understand the impact of
plant-soil-microbe interactions on agricultural productivity.
This understanding must be developed for different geographic
and cropping systems to enable accurate prediction of how
modern agricultural management practices impact the ecology
and function of microorganisms. Determining how the inter-
actions of microbes, plants, and soil conditions confer resis-
tance to abiotic and biotic stress or impact nutrient availability
under current or future local climate conditions is likely key to
producing sufficient food for a growing population, providing

FIG 2 The microbiome and our changing Earth system. Population growth, urbanization, environmental degradation, and global climate change. Human-
induced soil degradation based on data from reference 180; urban population by 2050 based on data from reference 181; global surface warming data based on
data from reference 182; trends in global water extraction (dark color) and consumption (light color) by sector are based on data from reference 183; food yield
increases required by 2050 are based on data from reference 184.
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the underpinnings of microbial enhancement of plant perfor-
mance.

Microbes are Earth’s “master chemists.” The need to provide
a sustainable and renewable supply of energy and chemicals is
another grand challenge facing society. Microbes produce en-
zymes that catalyze all major biochemical transformations of in-
organic and organic matter on the planet. They are also the reser-
voir of literally billions to trillions of genes that can ultimately be
tapped for the construction of pathways to produce compounds
with environmental, industrial, and pharmaceutical value. To-
day’s global economy is heavily influenced by humankind’s use of
microbial activities, from our ancient practice of coopting yeast
for brewing and baking (85), the discovery and production of
antibiotics (86), microbial production of life-saving hormones
such as insulin (87), and the use of nitrogen-fixing microbial in-
oculants to reduce fertilizer needs for food and bioenergy crops
(88, 89) to the presence of enzymes in our low-temperature deter-
gents and the recent design of microbes to synthesize fuels (90)
and valuable chemicals from renewable substrates (91).

The desire to increase economic activity and affluence in
emerging and developing countries is projected to create a large
future demand for chemicals and fuels (92). The burgeoning de-
mand for oil and other natural resources makes sustainable bio-
commodity production an attractive alternative way to meet the
needs of these and other populations (93). Advances in biology,
engineering, and genomics hold the promise that single species,
consortia, or synthetic populations of microbes could produce
alternatives to fuels or chemicals that have been derived from oil
or other fossil fuels over the last 100 years (94). The microbe-based
manufacturing of biocommodities could also provide numerous
environmental benefits, especially if it depends on bio-based cat-
alysts (enzymes) or sustainable and local production processes.

Several successful industrial processes use mixed microbial
cultures to make food and vitamins (95, 96). A recent report of
improved hydrogen, methane, or chemical production by mixed
consortia (97) illustrates how knowledge of microbial activities
has the potential for increasing product yield and generating fewer
toxic by-products and less waste than traditional chemical pro-
cesses. In addition, the use of lignocellulose or other renewable
feedstocks for microbial production of fuels and chemicals can
achieve reductions in net greenhouse gas emissions compared to
producing the same compounds from oil or other fossil fuels (98).
Other potential benefits of using microbial processes include the
generally lower energy needs (temperature and pressure) for bio-
manufacturing and the potential for microbes to improve the ef-
ficiency of extraction or subsequent utilization of fossil fuels.
Given the finite area available and our population growth-related
challenges, the understanding of soil or aquatic microbial com-
munities also has the potential for remediation and reclamation of
currently contaminated environments for future use.

Understanding and harnessing “microbial dark matter.”
Historically, our progress in harnessing specific microorganisms
for societal benefit has been constrained in part by our ability to
cultivate only a minor fraction of the microbial diversity we now
recognize. The tools of (meta)genomics that were advanced by the
human genome sequencing efforts have made possible the large-
scale DNA sequencing of mixed microbial communities and have
revealed that we are surrounded by “microbial dark matter.”
Much like the physical sciences community has coordinated to
define and understand the universe’s dark matter (99), microbi-

ologists have embarked on a similar voyage using DNA sequenc-
ing to discover the hidden diversity and genetic potential of
Earth’s microbiomes (5, 64, 100–106). As a result, we are rapidly
and continually growing new branches on the tree of life (107–
111), and if we are to eventually harness this new knowledge for
the benefit of humankind and our planet, we must strive to define
the functions contained within this vast genetic potential (112)
and determine its interaction with, and regulation by, the micro-
biome’s local environment.

CROSS-CUTTING CHALLENGES TO MICROBIOME-BASED
INNOVATION: TECHNOLOGICAL ROADBLOCKS

Despite the potential to understand, predict, and harness the
Earth’s critical microbiomes, several key barriers remain (Fig. 3).
Just as the Human Genome Project reached across the traditional
biological, physical, engineering, and social science domains to
develop or respond to new technologies, next-generation ad-
vances in microbiome research must also reach beyond traditional
microbiology (113).

Although there have been significant advances in our ability to
obtain microbial genomic information, fundamental challenges ex-
ists regarding the scalability and portability of microbial readout tech-
nology. Even with improvements, our ability to decode the functional
relevance of microbiota at appropriate scales is severely limited. Sim-
ilarly, our inability to establish causality in complex microbial net-
works limits our ability to make informed manipulations that lead to
predictable outcomes in natural systems. Without systems to predict
or preempt outcomes of microbiome disturbance or manipulation,
we will have limited capabilities to understand the societal impacts of
this new knowledge. Success in understanding, predicting, and po-
tentially manipulating microbiomes for societal benefit will require a
broadly interdisciplinary approach; unintended consequences must
be thoroughly considered.

DECODING FUNCTIONS OF MICROBIAL GENOMES

The rate of DNA sequencing now outpaces our ability to deter-
mine gene functions by many orders of magnitude. In effect, we
are transcribing countless libraries of books but have only a rudi-
mentary understanding of the languages in which they are written.
In most cases, what we hope to know is the products of these genes
and their functions and how their production is regulated in na-
ture. Across microbial genomes, there are whole families of genes
possessing conserved “domains of unknown functions” that likely
provide critical (but unknown) capabilities essential for microbial
survival (114, 115). To identify the biological roles of these genes
requires new computational approaches that decode patterns of
gene covariation across environments, conditions, and genomes
to predict function. We must also develop technologies for high-
throughput functional determination. For example, massively
parallel systems are needed so to that candidate genes can be op-
timized for expression, purified, or assayed in vivo or in vitro.
Integrating these advances with nanoscale liquid handling (116),
droplet compartmentalization of reactions (117), and high-
throughput chemical imaging (118) can increase the rate of bio-
chemical characterization of microbial genes by several orders of
magnitude. Such advances will be critical to mine the genetic po-
tential of microbes and enable a new understanding of the bene-
ficial and detrimental aspects of microbiome function.

While obtaining genomic information has been simplified in
approach, scaled in throughput, and reduced in cost, DNA se-
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quence is a measurement of potential and not of function or ac-
tivity. Other biological (macro)molecules (RNA, proteins, metab-
olites) provide more appropriate windows into microbial activity
in situ, and improvements in the accuracy, integration, spatial and
temporal resolution, and cost of analyzing these components will
be a new frontier in microbiome research. Improved temporal
resolution of microbiome gene expression (metatranscriptomics)
or protein translation (metaproteomics) continues to illuminate
the functional roles of individual species within complex micro-
bial communities (119, 120), while metabolomic approaches are
beginning to yield insights into the complexity of microbiome
chemistry (121, 122).

Metabolomic technologies can provide critical insights into the
activities of specific genes, microbes, and microbiomes, for exam-
ple, when integrated with mutant libraries (123). Various forms of
chromatography coupled with mass spectrometry are used for this
purpose, but all are hampered by our limited ability to translate
mass spectra into reliable identification of specific molecules
(124). Just as the functions of many genes in a genome are
unknown, most ions from mass spectrometry of microbial cul-
tures or communities are also unknown. Efforts to develop
microbiome-relevant mass spectrometry libraries would help signif-
icantly (125), supported by developments in approaches to the struc-
tural elucidation of novel metabolites. If these technical advances are
accompanied by community-adopted databases and computational
platforms, the broader scientific community would leverage the
many parallel efforts in this area (126, 127). Because of sensitivity
limitations, cost constraints, and the destructive nature of many an-
alytical procedures, trade-offs currently exist between spatial and
temporal analyses of microbiome function. The sensitivity of many
existing analytical methods can limit their application to relatively
large sample volumes, and for this reason, many ’omic approaches

rarely sample microorganisms in the environment on the most rele-
vant spatial or time scales.

Microorganisms exist and interact across micron-scale physi-
cal and chemical gradients, but common approaches to micro-
biome sampling do not capture important biological, physical,
and chemical heterogeneity that is key to understanding interspe-
cies interactions and the true environment that microbes are re-
sponding to. For example, when soil cores are homogenized to study
microbial composition or activity and its relationship with soil phys-
icochemical properties, at a human scale, this is equivalent to sam-
pling an area of around 1,000 km2 (128). If microbial ecologists were
to study the biological, physical, and chemical properties of the soil
microbial ecosystem at the same relative scale at which plant ecolo-
gists survey these ecosystems, they would need to survey areas of
100 �m2, the size of soil microaggregates (128). One question is
whether we need information at this scale. It appears that we might;
microbe-mineral interactions at this scale are critical determinants of
the storage of carbon and the retention of nutrients in our soils, and
spectroscopic measurements at this scale have led to a paradigm shift
in the theories of soil organic matter transformation (22). The tech-
nological barriers to studying microbiomes at the appropriate scale
are immense but not insurmountable.

Discoveries at the macroscale will always be important and
could be evaluated at the nano- or microscale by using targeted
and potentially nondestructive approaches that are more amena-
ble to higher spatial and temporal resolution and higher through-
put. For example, infrared (IR) imaging involves the label-free
detection of functional groups associated with macromolecules
through acquisition of spectra that originate from vibrational fre-
quencies characteristic of specific chemical bonds as they respond
to IR light of various wavelengths. Fourier transform IR (FTIR)
spectromicroscopy, a nondestructive means to monitor chemical

FIG 3 Cross-disciplinary innovations needed to advance functional understanding of Earth’s microbiomes. HTP, high throughput; STXM, scanning trans-
mission X-ray microscopy; CMOS, complementary metal-oxide semiconductor; microCT, microcomputed tomography; TnSeq, transposon sequencing; Nano-
SIMS, nanoscale secondary ion mass spectrometry; NanoSIP, nanometer-scale stable isotope probing. Credits: The STXM image was adapted with permission
from Remusat et al. (133), and the global ocean model depiction was adapted and reproduced with permission from Follows et al. (161).
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signatures associated with microbial growth and metabolism,
when combined with high-energy light sources (e.g., as generated
by synchrotrons), can be deployed at or below the single-cell scale.
Further developments applying nanotechnology to IR imaging many
allow finer spatial resolution even without the need for synchrotron
light sources (129). Although the chemical resolution of approaches
like FTIR spectromicroscopy is comparatively low, as a nondestruc-
tive method, they may be coupled with destructive methods with
greater chemical resolution, for example, mass spectrometry imaging
based on laser or ion beam ablation (130, 131).

PHYSICAL AND CHEMICAL CHARACTERIZATION OF
MICROBIAL HABITATS

A detailed understanding of microbial interactions with their host
or environment requires knowledge of the physical and chemical
conditions that microbes experience directly. For example, with
the exception of some aquatic environments, nearly all microbial eco-
systems are associated with porous media that impact cell movement
in addition to water flow and chemical diffusion (e.g., soil particles,
mucous membranes, root mucilage, oral biofilms) and understand-
ing the physical constraints on nutrient transport and communica-
tion requires physical characterization at the nanometer-micrometer
scale. Approaches such as X-ray computed tomography allow de-
tailed resolution of the physical structure of an environment at the
scale of the microorganism (nanometer-micrometer) and above by
the use of intact samples but currently provide limited chemical in-
formation (132). Although detailed chemical information can be ob-
tained by methods that require thin sectioning like X-ray fluores-
cence, near-edge X-ray absorption fine-structure spectroscopy (133),
or nanoscale secondary ion mass spectrometry (134), their destruc-
tive nature prohibits our ability to monitor the dynamics inherent to
microbial systems.

At the micrometer-centimeter scale, electrochemical and opti-
cal probes have been productively used to profile gradients in pH,
redox, and oxygen; however, these probes and their associated
equipment are intrusive to the ecosystem and often expensive,
limiting their application to only a few point measurements or
limited time series, and their fragile nature makes them best suited
for laboratory use. New applications of low-cost, low-power,
silicon-based sensor arrays (e.g., charge-coupled device or com-
plementary metal-oxide semiconductor) have the potential to de-
liver field- or lab-deployable sensor networks to monitor both the
variability of environments’ physical (e.g., temperature or mois-
ture) and chemical properties and the activity of microorganisms
(e.g., nutrient transformation or respiration). Autonomous sen-
sor networks of this form could expand the monitored scale from
centimeters to kilometers, allowing microbial information to be
utilized at scales relevant to gaining knowledge to understand,
predict, and possibly mitigate some impacts of disturbance, such
as climate change. These networks would clearly have broad ap-
plicability in water and environmental quality monitoring, agri-
culture, and many areas of industry.

TECHNOLOGIES FOR ROBUST, PORTABLE, GENOME-CENTRIC
ANALYSES OF MICROBIOMES

The types of global monitoring and data integration required to
develop a predictive understanding of Earth’s microbiomes also
require significant advances in DNA sequencing. Further reduc-
tions in cost and turnaround time, as well as improved data inte-
gration across DNA sequencing platforms and unit mobility,

could allow real-time “field” studies so researchers reliably distin-
guish members of different microbiomes and can readily observe
their dynamics. Continued transformative improvements in DNA
sequencing technologies could provide systems to facilitate more
robust genome-centric analyses in a manner that would allow
rapid data turnaround in field-deployable units. Such approaches,
if integrated with appropriate user interfaces and standardized com-
puting platforms, could make DNA sequencing-based analysis of mi-
crobiomes as routine as a blood test or a water nitrate measurement.
However, simply acquiring more sequence data does not represent a
panacea. New technologies that increase sequence throughput and
mobility must be accompanied by parallel advances in bioinformatics
and statistics, first to ensure data quality and comparability but also to
synthesize this information into biologically meaningful formats,
driving the adoption of, and accessibility to, quantitative genome-
centric microbiome information.

BUILDING THE FRAMEWORK FOR MASSIVELY PARALLEL
GENOME-CENTRIC QUANTITATIVE MICROBIOME ANALYSIS

De novo assembly of microbiome sequence data represents a mas-
sive computational burden that currently requires supercomput-
ing facilities, and the population variation within genomes that is
common to microbiomes can inhibit complete assembly. Ad-
vanced technologies that deliver long sequence reads will un-
doubtedly help with both of these issues; however, as we expand
our investigation of microbiomes, there is a need for high-quality
reference catalogs of microbial genomes. The need is not simply
for more sequence information, but rather for a supporting and
extensive catalog of reference genomes for which functional roles
have been elucidated. Currently, the microbial gene or genome cat-
alogs represent a minute fraction of known microbial diversity, with
the entries heavily biased toward a few species and environments. Just
like the targeted broadening of diversity within our human genome
catalogs, initial efforts to expand microbial genome and gene catalogs
have begun (135, 136). Catalogs to date have focused mostly on bac-
teria and archaea because of their lower genome complexity; how-
ever, critical components of most microbiomes (viruses, fungi, and
other microeukaryotes) have not received the same attention. While
many important microbial targets for sequencing may not be imme-
diately culturable, approaches based on single-cell sorting and subse-
quent sequencing (108, 137) will be important components in build-
ing out these global microbiome references. A coordinated effort to
produce and share such reference catalogs would substantially en-
hance the predictive value of metagenomic sequence information,
while also potentially reducing the computational burden that is re-
quired for de novo analyses. Each of these advances drives toward a
future where the computation and prediction of the functional im-
portance of microbiome composition will be directly determined on
handheld devices, enabling rapid and accurate source tracking and
monitoring of microorganisms from our hospitals to our farms and
oceans.

Despite transformations in our ability to decode microbial nu-
cleic acids, analysis of the composition of a microbiome remains
fraught with biases—that are largely ignored. The extreme bias
introduced through cultivation of microorganisms was noted and
drove the adoption of cultivation-independent approaches; how-
ever, DNA extraction alone can introduce greater variance in de-
tected microbial abundance than the variables whose impact we
wish to understand (138, 139); such observations must lead to
standardization of protocols (100). However, given the variation
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within and between systems under study (e.g., soils, intestines,
water, air, insects, plants, and even computer keyboards and cell
phones), a universal nucleic acid extraction method, while re-
searchworthy, may be unrealistic. Following nucleic acid extrac-
tion, all subsequent steps (e.g., purification, amplification, library
preparation, sequencing, data analysis) introduce more unquan-
tified uncertainty and bias that prohibit truly quantitative analy-
ses. In the likely absence of a universally appropriate and accepted
protocol, bias must be quantified, for example, by using universal
standards added to samples at appropriate stages of processing.
These standards would be validated by dedicated organizations
such as the National Institute of Standards and Technology and
supplied as components of commercial extraction kits or individ-
ually. Such a set of standards would allow the community to em-
ulate others such as the Microarray Quality Control Consortium
(140) in standardizing data generated across protocols and plat-
forms while encouraging market diversity. It will be critical to
publicly share experimental metadata and quality information
alongside primary data in formats that can be easily queried and
included in statistical models.

DEVELOPING AND INTEGRATING TOOLS FOR ROBUST
HYPOTHESIS TESTING

The complexity of most naturally occurring microbiomes and our
inability to cultivate the majority of microorganisms naturally led
to the widespread use of cultivation-independent methods to de-
termine composition and predict function. To date, the majority
of microbiome studies infer causation from correlation, particu-
larly when more diverse microbiomes are the subject of investiga-
tion. Microbiomes, as well as being complicated, are also typically
complex, with many organisms combining in a nonlinear manner
to form an integrated network with emergent properties. As a
result, we often lack the ability to test (i) predictions of keystone
microbial species, (ii) assumptions of high functional redun-
dancy, and (iii) the belief that microbial communities are highly
resilient to disturbance. In model organisms, we can study com-
plex genetic and metabolic networks through precise manipula-
tion of the components. For each node in these networks (e.g.,
genes), we can subtract or silence, add or enhance, either individ-
ually or in combination, and observe the response of subnetworks
or the entire network to these precise manipulations. This allows
accurate testing of the roles of individual components in addition
to their importance in the system context. Unfortunately, our
ability to perform similar analysis for complex networks of micro-
organisms is limited.

What if we could specifically remove or inhibit a given organ-
ism, a group of organisms, or specific functions shared across
many organisms and observe the response of the system as a
whole? This would transition the era of microbiome study away
from correlation and toward the knowledge needed to attribute
causation, improve prediction, and enable precise manipulation.

Building defined microbial communities using tens to hun-
dreds of isolated organisms is a valuable means to test the roles of
individuals in low-complexity systems. However, this may be akin
to building a genome de novo from a subset of genes to determine
how the whole system functions, yet even this approach leads to
surprises (115). To systematically evaluate functional roles in com-
plex coevolved microbiome networks, subtracting organisms, ob-
serving the system’s function, and subsequently replacing organisms
(or mutant variants) in a manner analogous to gene deletion and

complementation would precisely define the roles of individuals and
their key functions. To accomplish this full cycle will require tools that
precisely inhibit specific microorganisms, an ability to cultivate (or
selectively capture) more microorganisms, and the ability to rapidly
develop comprehensive mutant libraries in addition to all of the
aforementioned tools for monitoring the environment and the mi-
crobiome’s composition and function.

Several opportunities exist for the manipulation of a micro-
biome and its constituent parts in well-studied model or labora-
tory systems. Beginning at the population level, new technologies
allow the high-throughput disruption of genes and the monitor-
ing of their contributions to microbial fitness. High-density trans-
poson mutagenesis coupled with high-throughput sequencing
(transposon sequencing [141], for example, and its barcoded de-
rivative random bar code transposon site sequencing [142]) al-
lows high-throughput fitness profiling of populations of mutants
cultivated under selecting conditions. These approaches have re-
vealed the essential roles of genes with no previously known func-
tion (143), steadily increasing our view of gene essentiality (144).
Alteration of individual genes, species, or functional groups in a
complex microbial community could be achieved via sequence-
specific gene editing or deletion with CRISPR/Cas9 delivered by
phage or conjugative elements (145, 146) and the use of contrac-
tile nanotubes that can target bacteria with strain-specific activity
(147). In addition, as our understanding of metabolic networks in
microbiomes advances, manipulation of specific members or
functional groups may be achieved through the addition or re-
moval of substrates based on thermodynamic or kinetics-based
model predictions.

The properties of the physical environment are also potentially
critical determinants regulating individual fitness within micro-
biomes (11, 148). Consequently, the design and construction of syn-
thetic systems with controlled physical properties such as permeabil-
ity, porosity, and roughness based on natural systems will be
extremely valuable in determining the key factors regulating micro-
biome assembly, development, stability, and activity (149–151).

Next-generation mathematical models are required to repre-
sent the complexity of microbiomes, scaling perhaps from the fun-
damentals of microbial electron transport (152) and the thermody-
namics of microbial redox reactions (153), to genome-scale
metabolic models of individuals and populations (154, 155), to mi-
crobial community function at the ecosystem (e.g., gut, soil, ocean)
(156–160), and ultimately to the Earth system scale (161–163). To be
useful, these models should embed the properties of microbial phys-
iology and evolution into the physical, chemical, and biological het-
erogeneities characteristic of the intended length, time, and spatial
scales of communities. Fully coupled models, such as those represent-
ing the microbial, environmental, and host aspects of the system (e.g.,
plant rhizosphere or animal intestinal tract) would allow dynamic
feedbacks to be evaluated and would enlighten our understanding of
the emergent phenomena (164).

THE POTENTIAL FOR TRANSFORMATIONAL DISCOVERIES
UNDER A UMI

Advancing microbiome science will require the cooperation, co-
ordination, and collaboration of scientists and engineers from
many disciplines—just like our natural ecosystems, diversity pro-
motes productivity and stability. By extension, such efforts would
likely require diversity in funding and, ideally, coordination of
federal agencies, private industry partners, and philanthropic do-
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nors. For this reason, we, as a community of scientists, are one of
several groups that support calls for a unified microbiome initia-
tive (UMI) (4, 165, 166) and agree with calls for such an initiative
to be built upon local leadership (103). In considering the poten-
tial value of a UMI, it is clear that improved knowledge of the
activities of microbial communities can positively impact our
health and that of our planet and importantly inform decision
making on social and economic issues (Fig. 4).

POTENTIAL BENEFITS OF A UMI TO GROWING
BIOECONOMIES

There are many examples of the profound effect of biotechnology
on the medical, agricultural, and industrial economic sectors. In
2012, revenues from genetically modified organisms were ~2.5%
of the United States gross domestic product, and the resulting
United States National Bioeconomy Blueprint called for research
and innovation to create a new bioeconomy (167). The UMI could
provide knowledge to develop new microbial community appli-
cations, including designer communities for crop plants, animals,
pollinator species, or rain clouds that could improve agricultural

output, help mitigate the ecological and economic impact of
drought, and in the case of livestock microbiomes, greatly reduce
the greenhouse gas contribution of agricultural practices. The
knowledge derived from UMI activity can also spur the develop-
ment of sustainable methods to produce valuable bio-based fuels
and commodities, improve the recovery of valuable subsurface
fuels and chemicals, enable the manufacture of new bio-inspired
materials, and catalyze the development of new industries that
generate high-value products from renewable waste while less-
ening society’s reliance on fossil fuels. Achieving this goal re-
quires an understanding of biological systems and the creation
of resultant biotechnologies to benefit humankind, enhance
the biosphere, and enable economic growth. UMI-enabled dis-
coveries can have a substantial positive societal and economic
impact.

GLOBAL ETHICAL, LEGAL, AND SOCIAL ISSUES ASSOCIATED
WITH A UMI AND THE POTENTIAL FOR INNOVATION

The public benefit of a UMI can be enhanced by a coordinated set
of transdisciplinary, transcontinental research activities. For

FIG 4 The potential impact of a unified microbiome initiative to understand and responsibly harness the activities of microbial communities.
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example, the ability to address drought resistance in crops or
remediation of contaminated waters or soils needs attention by
international scientific, ethical, and political experts. Recent
successful examples of transcontinental research initiatives in-
clude the Human Genome Project and the International Stem
Cell Initiative. Similar cooperation on the UMI could galvanize
private and public funders from around the globe to collabo-
rate on setting science priorities; provide training for scientists,
legal, ethics and policy experts; harmonize international trade
and intellectual property issues; and develop a suite of local,
regional, and even global funding instruments to maximize
societal benefits.

Given the wide-ranging potential impacts of the global micro-
biome, the pursuit of UMI-based discoveries and solutions must
incorporate ethical and societal implications of these discoveries
and their applications and consider the current biotechnology
regulatory environment. However, because it has implications for
human, animal, and crop health, as well as the environment more
broadly, microbiome research poses novel challenges for existing
regulatory frameworks (168). The gaps in current regulation
mean that meeting these challenges at a pace that keeps up with
microbiome science will likely require innovation in the imple-
mentation of ethical and societal implications in the scientific pro-
cess.

Microbiome research and applications present unique chal-
lenges to the existing global regulatory systems (169) because tra-
ditional risk structures—the risk-benefit analyses used for tradi-
tional biotechnology products such as protein therapeutics— do
not apply and because microbial communities have the potential
to evolve and interact with ecological networks that cross national
borders. In addition, applications of findings from microbiome
research can occupy niches that are not clearly in the jurisdiction
of any particular government agency. In the United States, for
example, regulation by the Food and Drug Administration is
product based and focuses on the safety of products for humans
and animals, but probiotics and prebiotics do not fit into regu-
lated categories. The U.S. Department of Agriculture focuses on
food safety and animal and plant health but not environmental
impacts of interventions that target animal or plant microbiomes.
The Environmental Protection Agency regulates pollutants and
toxins through the Clean Air Act and the Clean Water Act and
animals, plants, and other species through the Endangered Species
Act. However, these strategies do not apply to regulation or over-
sight of modification of naturally occurring microbial species.
Recognizing that science advances may require new regulatory
policies, the U.S. Government recently released a memorandum
(170) to initiate a process to update the Coordinated Framework
for the Regulation of Biotechnology, last revised in 1992. The aim
is to coordinate and modernize the federal regulatory framework
and systems that govern the vastly altered landscape of biotech-
nology products, including the Food and Drug Administra-
tion, the Environmental Protection Agency, and the U.S. De-
partment of Agriculture, while attempting to reduce barriers to
innovation.

Recent ethics and policy discussions regarding synthetic biol-
ogy (171), genome editing (172), and approaches such as those
using CRISPR-Cas systems to modify and drive the evolution of
mosquito populations in the wild (173) point similarly to a need
for professional self-regulation and for individual scientists to
become aware of, identify, and incorporate ethical and societal

considerations into actual practice (174). National-level dis-
cussions that continue to rely on the concepts of biohazard
containment and risk management will likely be insufficient
tools for future UMI-based research, since this work will likely
provide new definitions of what is “normal,” “healthy,” or “dis-
eased” (175).

On the other hand, a UMI provides rich opportunities to test
innovations in integrating ethical and societal considerations into
microbiome research, with the input of a wide range of scientific
disciplines and stakeholders. One goal of such innovation could
be to use research ethics consultation (176) and stakeholder en-
gagement (177) to identify how aims and benefits of microbiome
research, and thus the underlying values, can be brought into
alignment with needs of relevant communities. Engaging the pub-
lic in microbiome research through crowdsourcing (e.g., the
American Gut Human Food Project) and citizen science (178,
179) could enhance trust in the research by transforming “the
public” into stakeholders and encourage broader discussion about
ethical responsibilities that would extend beyond the professional
scientific community (4). It would be irresponsible to proceed
with mass manipulation of microbiomes without having the
structures and knowledge in place to evaluate the potential con-
sequences.

CONCLUDING POINTS

As was the case in other game-changing scientific initiatives (the
Human Genome Project, the development of the Internet, the
exploration of space), achieving the goals of the UMI requires
combined expertise and technologies spanning numerous do-
mains. The resultant discoveries and enabling technologies can
provide the underpinning knowledge to develop applications
within or across human and animal health, food production and
safety, and the environment—all contributing to robust and
sustainable bioeconomies while preserving the intrinsic value
and biodiversity of our ecosystems. These applications have the
potential to transform many scientific disciplines, to impact
scholars in the social sciences and elsewhere, to spawn new
economic opportunities, and to benefit the lives of citizens
around the globe.
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