Fyziologický ústav, Lékařská fakulta Masarykovy univerzity1 Physiological demonstration Continual blood pressure measurement Baroreflex sensitivity (spring semester 2024) Blood pressure blood pressure is in the entire cardiovascular system ̶ Arterial pressure – the driving force for blood flow through blood vessels (mainly through brain – cerebral perfusion pressure CPP = MAP-ICP) – basic vital function variable other pressures and their significance ̶ Atrial and ventricular pressures – cardiac function variables ̶ Pulmonary pressure (<20 mmHg) – increased pressure is a sign of pulmonary hypertension (primary – of endothelial origin, secondary – a consequence of lung diseases or left heart failure) ̶ Central venous pressure (0-8 mmHg) monitoring of right heart function and intravascular filling (venous return, hydration) ̶ Capilary pressure (15 – 30 mmHg) – assessment of tissue blood supply, risk of edema Blood pressure measurement in the heart https://www.wikiskripta.eu/ w/Pravostrann%C3%A1_srd e%C4%8Dn%C3%AD_katet rizace ̶ Right access – catether with pressure sensor through v. subclavia/jugularis/femoralis ̶ Vena cava → right atrium → right ventricle → a. pulmonaris → Pulmonary Capillary Wedge Pressure (equal to pressure in left atrium) ̶ Left access – catether through a. radialis/brachialis/femoralis ̶ Aorta → left ventricle Swan-Ganz catether Arterial blood pressure is a continual variable 𝑴𝑨𝑷 = 𝑪𝑶 ∙ 𝑹 = 𝑺𝑽 ∙ 𝑯𝑹 ∙ 𝑹Constant component Pulsation component 𝑷𝑷 = 𝑺𝑽 𝑪 Variables determining arterial pressure: • CO – cardiac output • SV – stroke volume • HR – heart rate • R – resistance • C – compliance PP MAP SBP DBP ̶ Methods of continual blood pressure measurement ̶ Invasive – arterial catether ̶ Non-invasive – photoplethysmography (Peňáz´s method) Invazivní metoda měření arteriálního tlaku ̶ In patients with critical threat to vital functions (ICU) ̶ critical hypotension, vasopressor administration ̶ Brain perfusion monitoring (CPP = MAP-ICP) ̶ Advantages ̶ accurate ̶ Collection of arterial blood for analysis of ABR, iont balance, etc. (needle-less acces) ̶ disadvantages ̶ infection ̶ bleeding Principle of non-invasive continual blood pressure measurement ̶ Photoplethysmographic/Peňáz/volume-clamp method Arterial lumen (finger volume) Pressure in the cuff Control systemConstant finger volume Pressure in the finger cuff Before application of control system Control system: Correction of the pressure in the finger cuff according to the arterial lumen changes. Aim: maintaining of constant arterial lumen through pressure changes in the cuff. Tlak v manžetě pak kopíruje arteriální tlak application of control system Neinvazivní kontinuální měření krevního tlaku ̶ advantages ̶ non-invasive (safer, painless),continuous recording (evaluation of short-term variability, detection of beat-to-beat values, research, monitoring) ̶ disadvantages ̶ Long-term pressure of the finger with the cuff affects the results, it is not accurate for part of the population, calibration with the arm cuff is necessary 150/90 127/92SBP DBP Extrasystoles supraventricular ventricular Orthostatic hypotension diagnosis ̶ Tilt-table test If there is such a significant drop in blood pressure when patient is tilting that syncope occurs, the test is positive Valsalva manuever ̶ Phase I: exhalation against a closed glottis. Transiently, the intrathoracic pressure rises and so does the pressure on the arteries in the chest. There will be a transient increase in pressure. ̶ Phase II. Exhalation continues against the closed glottis. High intrathoracic pressure compresses the vena cava. Venous return decreases and thus cardiac filling, cardiac output, and blood pressure decreases. The baroreflex responds to this by accelerating the heart rate. ̶ Phase III. Release of intrathoracic pressure and free breathing. Blood pressure drops temporarily because the pressure in the chest on the thoracic arteries decreases. ̶ Phase IV. A drop in intrathoracic pressure will restore venous return. Increased cardiac filling and systolic volumes will increase blood pressure and pulse amplitude. The baroreflex responds to an increase in blood pressure and reduces the heart rate. This phase is used to assess baroreflex sensitivity. ̶ Note The Valsalva maneuver with its bradycardic part is used as the first method to stop supraventricular tachycardia. Baroreflex ̶ Fast regulation of arterial blood pressure by changes of heart rate and peripheral vascular resistance Baroreflex sensitivity (BRS) ̶ Evaluation of cardiac baroreflex function through SBP and heart rate (cardiac cycle) changes ̶ BRS: change of cardiac cycle caused by SBP change by 1 mmHg [ms/mmHg] RR interval BRS: slope of line RR SBP R ECG SBP BP DBP Standard (oxford) method of BRS evaluation ̶ Application of phenylephrine (vasoconstrictor) – increase of SBP ̶ RR prolongation is measured normal BRS RR SBP RR SBP decreased BRS Decreased BRS ̶ Physiologically ̶ psychic stress – increased sympathetic activity ̶ Physical exercise – increased sympathetic activity ̶ In old age ̶ Pathologically ̶ hypertension – decreased baroreceptor sensitivity (atherosclerosis, increased arterial stiffness) ̶ diabetes – neuropathy of autonomic nervous system ̶ Chronic depression (neurogenic) ̶ Heart insufficiency/failure – heart do not response ̶ Transplanted heart - denervation ̶ Myocardial infarction – heart do not response Cardiovascular signal variability ̶ Cardiovascular signals ̶ Easy to measure EGG: RR intervals, heart rate - HR (1/RR) Blood pressure: systolic (SBP), diastolic (DBP), mean (MAP), pulse pressure (PP) ̶ Difficult to measure directly (bioimpedance method), can be evaluated indirectly from blood pressure wave (Windkessel model) Stroke volume (SV), cardiac output (CO), total peripheral resistance (TPR) ̶ Very difficult to measure directly (invasive measurement) Blood flow and pressure in various places of vessels Signal: time series ̶ Beat to beat (for example 5 minutes) • RR interval: 805, 820, 815, 817, 822, 816,….. ms • Hear rate: 70, 73, 68, 65, 67, 71,….. bpm • Systolic blood pressure: 115, 117, 120, 116, 121, 119,….. mmHg SBP [mmHg] RR [ms] 700 800 900 110 120 130 20 40 60 80 100 120 s RR interval R ECG SBP Blood pressure DBP Metody frekvenční domény - spektrální analýza Spectrum Signal in frequency domain Time series Signal in time domain Signal is decomposed in individual frequenciesamplituda čas (s) 504030200 10 0.50.40.30.20 0.1 amplituda frekvence (Hz) Metody frekvenční domény - spektrální analýza Spectrum Signal in frequency domain Time series Signal in time domain Signal is decomposed in individual frequenciesamplituda čas (s) 504030200 10 0.50.40.30.20 0.1 amplituda frekvence (Hz) Metody frekvenční domény - spektrální analýza Spektrum Signál ve frekvenční doméně Časová řada Signál v časové doméně Rozložení signálu na jednotlivé frekvence amplituda čas (s) 504030200 10 0.50.40.30.20 0.1 amplituda frekvence (Hz) How the spectrum is formed? amplitude time (s) frequency (Hz) T=50 s T=10 s T=3 s a=0.5 a=0.3 a=0.2 period T amplitude a frequency f = 1/T f = 1/3 = 0.33 Hz f = 1/10 = 0.1 Hz f = 1/50 = 0.02 Hz 0.5 0.2 0.3 + + = + + = 0.5 0.2 0.3 0.330.02 0.1 f = 0,02 Hzf = 0,1 Hzf = 0,33 Hz Spectrum Frequency domainTime domain Blood pressure signal (270 s) time (s) Bloodpressure (mmHg) Krevnítlak(mmHg) Sitting, paced breathing Standing, paced breathing Meyer waves (10 s rhythm) respiration sequentions of SBP, DBP and RR intervals time (s) BP (mmHg) Sitting, paced breathing Standing, paced breathing RR(ms) BP (mmHg)RR(ms) Spectra of SBP and IBI SBP Sitting, paced breathing Standing, paced breathing 0,1 Hz Sympathetic activity Respiratory frequency vagal activity IBI ↓symp. act., ↑vagal act. ↑ symp. act., ↓vagal act. frequency (Hz) SBPIBI Coherence a BRS coherence: synchronization between signals (correlation on particular frequency) frequency (Hz) Sitting, paced breathing Standing, paced breathing coherence BRS (ms/mmHg) coherence BRS (ms/mmHg) 0,1 Hz baroreflex Respiratory frequency Physiological significance – frequency bands High frequency (HF) Intrathoracal pressure changes influencing blood pressure Very low frequency (VLF) Low frequency (LF) Slow hormonal changes, RAS, changes of vascular tonus Respiratory sinus arrhythmia baroreflex band: baroreflex Systolicblood pressure 0.50.40.30 0.1 0.2 0 0,04 0,08 0,12 0 0,0 0,2 SpectrumSBP(n.u.) Variability source: respiration Variability source: High frequency (HF) Intrathoracic pressure changes influencing blood pressure Very low frequency (VLF) Low frequency (LF) Respiratory sinus arrhythmia baroreflex band: baroreflex Systolicblood pressure Heartrate 0.50.40.30 0.1 0.2 0 0,04 0,08 0,12 0 0,0 0,2 SpectrumSBP(n.u.)SpectrumHR(n.u.) parasympathetic activity Sympathetic activity Time lag < 1 s Time lag > 6 s Slow oscillations Fast oscillations High frequency (HF)Very low frequency (VLF) Low frequency (LF) band: Systolicblood pressure Heartrate 0.40.30 0.1 0.2 0 0,04 0,08 0,12 0 0,0 0,2 SpectrumSBP(n.u.)SpectrumHR(n.u.) parasympathetic activity Sympathetic activity Time lag < 1 s Time lag > 6 s Slow oscillations fast oscillations baroreflex Mechanical transfer CNS (n. vagus) Thoracic pressure changes Changes of TPR (sympathetic nerves) ??? Variability – for exam ̶ The variability of cardiovascular rhythms provides information about the regulation of the cardiovascular system ̶ Evaluated parameters (time series): ̶ beat-to-beat heart rate (or RR intervals) - easy to measure (ECG) ̶ systolic pressure sequence (slightly more difficult measurement, Peňáz method) ̶ The main methods of evaluating the variability of a single signal ̶ Variations to standard deviations (sometimes used in the clinic and some devices have them implemented) ̶ Spectral analysis ̶ The main methods of evaluating the relationship between two signals ̶ Baroreflex sensitivity (definition: change in RR induced by a 1 mmHg change in SBP) Variability – for exam ̶ Heart rate variability – autonomic nervous system activity analysis ̶ high – good regulation of heart ̶ low – increased cardiovascular risk ̶ Baroreflex sensitivity (BRS) ̶ sufitient (> 4 mmHg) – baroreflex aktivity probably OK ̶ low (< 3 mmHg) – increased cardiovascular risk in hypertension, heart failure, diabetes, in stress ̶ Predictors of sudden cardiac death: near-zero HRV and BRS values ̶ Spectra HR and SBP ̶ Frequency bands (VLF, LF a HF) HF (0.15-0,5Hz): parasympathetic activity, respiration (in HR – respiratory sinus arhytmia) LF (around 0,1 Hz): sympathetic/parasym. activity, baroreflex VLF (< 0,03): low changes in vascular system (hormones, TPR, RAS,…) Non-invasie blood pressure measurement Auscultatory SBP (141) Auscultatory DBP (78) Pressure in the arm cuff Oscilations in the arm cuff Oscilometric SBP (145) Oscilometric MAP (106) Oscilometric DBP (80) 200 0 Non-invasie blood pressure measurement - advantages/disadvantages, measurement errors Good luck in exam if you focus too much on the problem, you may miss the solution