MUNI MED

Arterial stiffness.

Oral exam questions

- Arterial elasticity significance
- Arterial pulse, pulse wave

2 Physiology department

MUNI MED

- Mr. Folkow 19th century added physical characteristics to individual sections of the vascular system (aorta – compliance;
- arterioles resistance; veins capacity)

– Basic relationship: blood pressure is a function of SV and PO – Compliance: $\Delta V / \Delta P$

Factors of arterial stiffness changes

A. Vascular Structure

B. Stiffness Pathology

Tunica adventitia

- Collagen deposition
- Increase in fibroblasts

Tunica media

- Collagen deposition
- Elastin degradation
- **RAAS Signaling**
 - AT1R & MR
 - VSMC stiffness
 - Increase in α-SMA & B1-integrin

Tunica intima

- Endothelial dysfunction
- Oxidative stress

- Elastin degradation
- Collagen deposition
- Endothelial dysfunction

MUNI MED

Complications of the higher arterial stiffness

5 Physiology department

MUNI MED

MUNI MED

- Reflected wave increases = augments blood pressure in the aorta
- Physiologically: in young people, the reflected wave mainly affects the diastolic pressure, which increases – and thus contributes to better filling of the coronary circulation and better nutrition of the endocardium

Pulse wave

Pulse wave at different vascular segments

9

MUNT MED

- If the aorta was an long open-ended tube providing a simple resistance to flow (i.e., there was no wave reflection), then:
- The pressure wave in the aortic root would show a single peak for each contraction.

If we connect the network of arteries with all its bifurcations and vascular beds,

then

- ... as this primary wave travels along the arteries it will generate **reflected waves** from each bifurcation and from the peripheral vascular beds.
- ... all these small reflected waves return to the heart, summing to create a reflected wave as shown,

starting even before the end of systole

- Pressure in the aortic root is the sum of the outgoing and reflected wave (the green wave)
- Note: importantly how the reflected wave boosts the coronary artery perfusion pressure - the aortic root pressure - during diastole when over 95% of perfusion of the subendocardium takes place

 In older people, the arteries are stiffer and peripheral resistance is higher, the reflected wave reaches the aorta earlier, still at the time of systole and is absent in diastole – therefore they have high systolic pressure and low diastolic pressure – isolated systolic hypertension

- If the patient arteries
 get stiffer....
- then pulse wave velocity increases, and reflected wave arrives back at the heart sooner.
- Now there is a very different aortic root pressure waveform (green wave).
- As a result of this, there are <u>three</u> important clinical implications.

- First, the central systolic pressure and central pulse pressure is increased.
- An increase in the central pulse pressure that stresses cerebral blood vessels increases stroke risk
- NOTE: this change in central systolic pressure can occur without any changes occurring in peripheral systolic pressure.

Second, there is an increase in left ventricular load (LV load).

700 800 900 1000

Diastole

(msec)

Aortic

150

140

130

120

110

100

۹n

0

100 200 300 400 500 600

Systole

(gHn

- Increase in LV load accelerates increase in LV mass and increases LV hypertrophy
- The area under the pressure-time curve during systole is by definition LV load.
- This increase in LV Load (late systolic "afterload") is shown by the black arrowed region

 Third, the pressure that is perfusing the coronary arteries during the critical diastole period is reduced, increasing the risk of

myocardial ischemias.

 CONCLUSION: Increasing arterial stiffness independently increases the risk of all three major cardiovascular outcomes.

Sex differences in mechanisms of arterial stiffness

	Males	Females
Mechanism	Relevant pathways	
ECM alterations	↑ Collagen↓ Elastin	↑ Collagen
VSMC stiffening	β1-integrin Rho kinase	Unknown
Oxidative stress	Superoxide Mitochondrial-derived ROS NADPH-oxidase	Superoxide eNOS uncoupling via BH(4) reductions
Inflammation	NF-κB T-cell activation	↑ NF-кВ
RAAS signalling	SMC-MR AT1R activation	EC-MR ENaC

ECM - extracellular matrix; VSMC - vascular smooth muscle cell; eNOS - endothelial NOS; NADPH - NAD phosphate oxidase; BH(4) - tetrahydrobiopterin; SMC-MR - smooth muscle cell mineralocorticoid receptor; AT1R - angiotensin II type 1 receptor; EC-MR - endothelial cell mineralocorticoid receptor; ENaC - epithelial sodium channel.

Use in clinical practice

- Non-invasive investigation of arterial stiffness is gradually moving from the position of experiments to clinical practice
- Started thanks to new recommendations of the European
 Hypertensive Society in Milan in 2007 pulse wave velocity
 testing was included among the main diagnostic methods and in
 the process of determining the risk of cardiovascular disease +
 evaluation of the effect of treatment of essential hypertension

- Arterial stiffness expresses damage to their walls by risk factors over a long period of time (years), while blood pressure values fluctuate physiologically and may not reflect the degree of damage to the vascular wall
- Using techniques for measuring the pulse wave velocity, it is possible to calculate the central aortic pressure, which is a stronger prognostic parameter than the pressure measured on the brachial artery and more accurately expresses the load on the heart

- Changes in arterial stiffness are clinically imperceptible
- Methods are a modern trend for determining the risk of

cardiovascular disease -

- risk of developing hypertension
- risk of sudden cardiac death

– Device Sphygmocor – company: AtCor Medical, Australia

18 Define footer - presentation title / department

– Device VaSera, company: Fukuda Denshi, Japan

20 Define footer - presentation title / department

Cardio-ankle vascular index – CAVI - measurement

CAVI measurement

Thank you for your attention

23 Physiology department

MUNI Med

Ultrasound measurement

age		IMT _R (mm)	IMT ₁ (mm)
25-35	Mean	0.39±0.07	0.40±0.07
	V%	18.26	17.37
	CI	0.36 <x<0.42< td=""><td>0.38<x<0.42< td=""></x<0.42<></td></x<0.42<>	0.38 <x<0.42< td=""></x<0.42<>
35-45	Mean	0.43±0.07	0.46±0.09
	V%	15.15	18.59
	CI	0.41 < x < 0.45	0.43 <x<0.49< td=""></x<0.49<>
45-55	Mean	0.47±0.08	0.50 ± 0.11
	V%	17.49	21.18
	CI	0.44 <x<0.50< td=""><td>0.47<x<0.54< td=""></x<0.54<></td></x<0.50<>	0.47 <x<0.54< td=""></x<0.54<>
55-65	Mean	0.52±0.11	0.54±0.11
	V%	21.01	20.89
	CI	0.48 <x<0.56< td=""><td>0.50<x<0.58< td=""></x<0.58<></td></x<0.56<>	0.50 <x<0.58< td=""></x<0.58<>
65-75	Mean	0.55±0.09	0.57±0.09
	V%	16.65	14.60
	CI	0.53 <x<0.59< td=""><td>0.55<x<0.61< td=""></x<0.61<></td></x<0.59<>	0.55 <x<0.61< td=""></x<0.61<>

MUNI

MED

Ultrasound measurement

26 Physiology department

MUNI MED