M U N I
M E D
Disorders of osmolarity and ionic balance

Compartments of body water
• Intracellular fluid (ICF, approx. • Extracellular fluid

• Intracellular fluid (ICF, approx. 2/3)

- er
• Extracellular fluid (ECF approx.
1/3)
• Plasma 1/3) **Example 18 Transfield (ECF — approx.**
• Lymph has a composition corresponding
• Lymph has a composition corresponding
• to interstitial fluid
• fusions in pathological conditions) ellular fluid (ECF — approx.

Ima

Istritium

Istritial fluid

Istritual fluid (CSF, eye fluid,

Istritual fluid (CSF, eye fluid,

Istritual fluid (CSF, eye fluid,

Istritual particular actually acts as xtracellular fluid (ECF – approx.

(3)

• Plasma

• Interstitium

• Lymph has a composition corresponding

to interstitial fluid

• Transcelullar fluid (CSF, eye fluid,

effusions in pathological conditions)

• Primary uri racellular fluid (ECF – approx.

)

Plasma

Interstitium

• Lymph has a composition corresponding

to interstitial fluid

Transcelullar fluid (CSF, eye fluid,

effusions in pathological conditions)

• Primary urine actuall ellular fluid (ECF – approx.

sma

sma

sma

sma

sma

sma

to interstitial fluid

smallar fluid (CSF, eye fluid,

sions in pathological conditions)

Primary urine actually acts as

transcellular fluid as well
	- Plasma
	- Interstitium
		-
	- -

Composition of ICF and ECF
nore proteins, K⁺, Mg²⁺, fosfáty (H₂PO₄⁻/HPO₄²⁺); Ca²⁺ is located in specialized comp
la⁺, Ca²⁺, Cl⁻, HCO₃⁻ (alkalic environment) ICF: more proteins, K⁺, Mg²⁺, fosfáty (H₂PO₄⁻/HPO₄²⁻); Ca²⁺ is located in sp $\operatorname{Ind}\, \mathsf{ECF}$
²⁻); Ca²⁺ is located in specialized compartments
interstitial and transcelullar fluid

ECT: Na⁺, Ca²⁺, Cl⁻, HCO₃⁻ (alkalic environment)

tion of ICF and ECF
 g^{2+} , fosfáty (H₂PO₄⁻/HPO₄²); Ca²⁺ is located in specializ

(alkalic environment)

re proteins compared to interstitial and transcelullar f

15 mosmol/I – a portion of proteins + phosph **COMPOSITION OF ICF and ECF**
nore proteins, K⁺, Mg²⁺, fosfáty (H₂PO₄^{-/}HPO₄²); Ca²⁺ is located in specialized compartments
Na⁺, Ca²⁺, Cl⁻, HCO₃⁻ (alkalic environment)
plasma contains more proteins

Osmolarity and osmolality

- **Osmolarity and osmolality**

 Osmolarity concentration of osmotically active particles (per a unit of volume)

 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the same

osmolarity as 2 Fig. 1 molder it and dependent of osmolality

Fig. 1 molarity - concentration of osmotically active particles (per a unit of

olume)

• 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the sa **/**
 and 1 mol of Cl- and has thus the same
 and 1 mol of Cl- and has thus the same
 unit af mass
 iluted water solutions molarity and osmolality
molarity – concentration of osmotically active particles (p
nme)
1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and P
osmolarity as 2 mols of glucose
molality – similar, but calc **Osmolarity and osmolality**

• Osmolarity – concentration of osmotically active particles (per a unit of

volume)

• 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the same

• Osmolality – **SMOLATITY AND OSMOLALITY**

smolarity – concentration of osmotically active particles (per a unit of

olume)

• 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the same

smolality – simila
	-
- -
-
- Osmolarity and osmolality

 Osmolarity concentration of osmotically active particl

 Osmolarity concentration of osmotically active particl

 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻
 COMPUT CONTIVE CONTICATE:

• Cosmolarity – concentration of osmotically active particles (per a unit of

• 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the same

• 1 mol of NaCl disoci • Estimation of overall body osmolarity based on plasma solutes: 2Na⁺ + 2 K⁺ + urea + glucose smolarity – concentration of osmotically active particles (per a unit of

• 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the sa

smolarity as 2 mols of glucose
 smolality – similar, bu smolarity – concentration of osmotically active particles (per a unit of

• 1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the same

smolarity as 2 mols of glucose
 smolality – similar, b nolarity – concentration of osmotically active particles (per a unit of

ume)

1 mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the same

osmolarity as 2 mols of glucose

molality – similar **• 1** mol of NaCl disociates into na 1 mol of Na⁺ and 1 mol of Cl⁻ and has thus the sam osmolairly as 2 mols of glucose

• no smolarity as 2 mols of glucose

• In practice, both values are similar in highly diluted wa
	-
	- the principle of elecroneutrality : CI a and other anions are evened up by HCO_3^- and
	-

- Tonicity (effective osmolarity)
• Osmolarity of solutes, which don't pass through a
membrane and generate thus osmotic pressure (i.e.
they are osmotically active) Fonicity (effective osmolarity)
• Osmolarity of solutes, which don't pass through a
membrane and generate thus osmotic pressure (i.e.
• Substances that passes membranes: • Micity (effective osmolarity)

smolarity of solutes, which don't pass through a

sembrane and generate thus osmotic pressure (i.e

uey are osmotically active)

ubstances that passes membranes:

• Blood gases – non-polar
 • Drama – polarically (effective osmolarity)

smolarity of solutes, which don't pass through a

eembrane and generate thus osmotic pressure (i.e.

ubstances that passes membranes:

• Blood gases – non-polar

• Ethanol
 City (effective osmolarity)

blarity of solutes, which don't pass through a

brane and generate thus osmotic pressure (i.e.

are osmotically active)

cances that passes membranes:

cod gases – non-polar

hanol

ea – pol
- Substances that passes membranes:
	-
	- Ethanol
	- -
		- most membranes and capillary wall: σ<0.1
		-
- Cells contain many osmotically active anions and they must expend energy for 3Na+ /2K+ ATP-ase, which maintains the same tonicity at both sides of
the membrane

Regulation of osmolarity and circulating
volume volume

- Regulation of osmolarity and circulating
volume
• RAAS (esp. angiotensin II/III and aldosterone) increases circulating
volume and maintains osmolarity (\uparrow Na⁺ and water), +
vasoconstriction vegulation of osmolarity and circulating
Clume
RAAS (esp. angiotensin II/III and aldosterone) – increases circulating
volume and maintains osmolarity (↑ Na+ and water), +
vasoconstriction
ADH (V2 receptors) – decreases os volume and maintains osmolarity (\uparrow Na⁺ and water), + vasoconstriction
- Regulation of osmolarity and circulating

volume

 RAAS (esp. angiotensin II/III and aldosterone) increases circulating

volume and maintains osmolarity (\uparrow Na⁺ and water), +

 ADH (V2 receptors) decreases osmo reabsorption in kidney collecting ducts (\uparrow water), + vasoconstriction (egulation of osmolarity and ci

olume

RAAS (esp. angiotensin II/III and aldosterone)

volume and maintains osmolarity (↑ Na⁺ and

vasoconstriction

ADH (V2 receptors) – decreases osmolarity by

reabsorption in kidney c
- Natriuretic peptides decrease circulating volume (\downarrow Na⁺ and water), + vasodilation

Natriuretic peptides
• ANP – stored in granules of atrial

- Natriuretic peptides
• ANP stored in granules of atrial
• ANP stored in granules of atrial
• ANP mainly ventricular cardiomyocytes atriuretic peptides
ANP – stored in granules of atrial
cardiomyocytes – "rapid reaction
substance" in \uparrow venous return
BNP – mainly ventricular cardiomyocytes
(and brain), no storage, long elimination substance" in ↑ venous return
- **Solution 1998**
 ANP stored in granules of atrial

cardiomyocytes "rapid reaction

substance" in \uparrow venous return

 BNP mainly ventricular cardiomyocytes

(and brain), no storage, long elimination

halftime (and brain), no storage, long elimination
halftime – chronic heart failure (marker) Anaptive diagram and the three characteristics and the three chronic substance

" chronic means of a trial

cardiomyocytes – "rapid reaction

substance" in \uparrow venous return

BNP – mainly ventricular cardiomyocytes

(and
- vasodilation, no natriuretic effects
- ANP stored in granules of atrial

cardiomyocytes "rapid reaction

substance" in \uparrow venous return

 BNP mainly ventricular cardiomyocytes

(and brain), no storage, long elimination

halftime chronic heart fai of the ANP gene, paracrine action in the kidneys

- Antidiuretic hormone

 Produced in nucleus supraopticus (SON) and

expressed from posterior pituitary (both Antidiuretic hormone

• Produced in nucleus supraopticus (SON) and

mucleus paraventricularis (PVN) together with

oxytocin, released from posterior pituitary (both

hormones also act as neurotransmitters linked to

social Nucleus paraventricularis (PVN) together with nucleus appropriate (SON) and produced in nucleus suprapricularis (PVN) together with
produced in nucleus suprapricularis (PVN) together with
oxytocin, released from posterior oxytocin, released from posterior pituitary (both hormones also act as neurotransmitters linked to social behaviour)
- Hypothalamic "osmostat" and ADH
	- reacts to 1% deviation from baseline
	- ADH production is supressed by
		- lowering of osmolarity, alcohol, cold environment
- Osmotic and volume balance is regulated mostly using the V2 receptors

- - damage of >85% ADH-
neurons of PVN and SON $\text{posterior pituitary} = \downarrow \text{ADH}$
- (b) renal DI
	- caused by mutations in genes for ADH-receptors (V2) or aquaporin-2 = \uparrow ADH \uparrow
	- diuresis up to 20l/day ($\downarrow\downarrow$ urine osmolarity/ \uparrow plasma osmolarity)
	- hypernatremia (Na >145mmol/l)
	- sensation of thirst and fluid intake may compensate D
		- But low fluid intake or low thirst sensation (hypodipsia, adipsia) dehydration threatens

SIADH

- S | A D H
• Euvolemic/hypervolemic cancer patients have a high intracelular volume, while
extracelular volume may be normal or mildly increased because of **"syndrome of**
in appropriate water untake in the distal tubule S | A D H
Euvolemic/hypervolemic cancer patients have a high intracelular volume, while
extracelular volume may be normal or mildly increased because of **"syndrome of
inappropriate antidiuretic hormone (SIADH)**".
ADH pr inappropriate antidiuretic hormone (SIADH)".
- ADH promotes water uptake in the distal tubule by binding V2 receptor. $SLADH$
Euvolemic/hypervolemic cancer patients have a high intracelular volume, while
extracelular volume may be normal or mildly increased because of **"syndrome of**
inappropriate antidiuretic hormone (SIABH)".
ADH promotes water intake, humans tend to spontaneously continue drinking even in low osmolarity).
- SIADH often develops in the tumours of lungs, pleura, brain or thymus (e.g. 10% to 45% of patients suffering from small-cell lung carcinoma have symptoms of SIADH.
- Iatrogenic causes: cytostatic drugs

Hyper- and hypovolemia vper- and hypovolemic

ypervolemia

• systemic edema

• pulmonary edema

• hypertension

• hypertension

• thypertension

• tenal fa vper- and hypovolemia

vpervolemia

• systemic edema

• pulmonary edema

• hypertension

• hypertension

• hypertension

• renal failu

• renal failu

• renal failu

• Hypervolemia

-
-
- hypertension

• Hypovolemia

-
- hypotension, shock
- e mich and the set of skin turgor and the set of skin turgor and the set of skin turgor and failure (prerenal;

The set of skin turgor and failure (prerenal;

The set of skin is a set of set of set of set of set of set of e
 Figure 1998
 • loss of skin turgor

• hypotension, shock

• renal failure (prerenal;

urea:kreatinin > 100:1 mid

povolemia

loss of skin turgor

hypotension, shock

renal failure (prerenal;

urea:kreatinin > 100:1

Allangers of the shock

renal;

intera:kreatinin > 100:1

Tonicity disorders and CNS
• similarly to other cells, neurons and glia swell in hypotonic solution (danger of cerebral ed

- similarly to other cells, neurons and glia swell in hypotonic solution (danger of cerebral edema) and shrink in hypertonic solution (danger of demyelination)
- Fonic if y disorders and glia swell in hypotonic solution (danger of cerebral edema)

 similarly to other cells, neurons and glia swell in hypotonic solution (danger of cerebral edema)

 in chronic conditions, neurons ar retention or increased removal of osmotically active solutes
- opposite direction, which threatens by opposite disorder

Disorders of volume and tonicity - causes Disorders of volume and tor
• Hypoosmolar hyperhydration
• Psychogenic polydipsia, SIADH, glucose solutions \rightarrow Glc me
• Isoosmolar hyperhydration Disorders of volume and tonicity - causes
ypoosmolar hyperhydration
• Psychogenic polydipsia, SIADH, glucose solutions → Glc metabolizsation
oosmolar hyperhydration
• Heart failure, kidney failure, iatrogenic – isotonic i Disorders of volume and to

• Hypoosmolar hyperhydration

• Psychogenic polydipsia, SIADH, glucose solutions \rightarrow Glc

• Isoosmolar hyperhydration

• Hyperosmolar hyperhydration

• Hyperosmolar hyperhydration

• Wideouthiu Disorders of volume and tonicity – causes
ypoosmolar hyperhydration
• Psychogenic polydipsia, SIADH, glucose solutions → Glc metabolizsation
poosmolar hyperhydration
• Heart failure, kidney failure, iatrogenic – isotonic Disorders of volume and tonicity - causes
ypoosmolar hyperhydration
• Psychogenic polydipsia, SIADH, glucose solutions -> Glc metabolizsation
posmolar hyperhydration
• Heart failure, kidney failure, iatrogenic – isotonic i • Hypoosmolar hyperhydration
• Hypoosmolar hyperhydration
• Psychogenic polydipsia, SIADH, glucose solutions → Glc me
• Isoosmolar hyperhydration
• Heart failure, kidney failure, iatrogenic – isotonic ion soluti
• Hyperos UISOFUCETS OF VOTUTTIE dTIU LOTTICILY - CdUSES

ypoosmolar hyperhydration

• Psychogenic polydipsia, SIADH, glucose solutions \rightarrow Glc metabolizsation

• Heart failure, kidney failure, iatrogenic – isotonic ion solutions

- -
- -
- Hyperosmolar hyperhydration
	-
-
- Hypoosmolar hyperhydration

 Psychogenic polydipsia, SIADH, glucose solutions \rightarrow Glc

 Isoosmolar hyperhydration

 Heart failure, kidney failure, iatrogenic isotonic ion sol

 Hyperosmolar hyperhydration

 Kidn
- - Bleeding, burns, ascites, severe (secretion) diarrhea
- Hyperosmolar dehydration
	- Low water intake, diabetes insipidus, diabetes mellitus, osmotic diuretics (manitol), diarrhea

exchanging solutes X a Y in opposite direction (which makes X an intracellular and Y an extracellular solute). D corresponds with secondary active gradient of Y). Finally, E is a cotransporter, where Y and Z, which are transferred along with their electrochemical gradient, are accompanied by X,

Potassium

- POTASSİUM
• The most abundant intracellular cation (98% intracellulary)
• Most willingly passes cellular membrane
• Concentration gradient is maintained by Na+/K+ ATPase
-
-
- The most abundant intracellular cation (98% intracellulary)
• Most willingly passes cellular membrane
• Concentration gradient is maintained by Na+/K+ ATPase
• The extra/intracellular distribution is regulated by hormone POTASSIUM
• The most abundant intracellular cation (98% intracellulary)
• Most willingly passes cellular membrane
• Concentration gradient is maintained by Na+/K+ ATPase
• The extra/intracellular distribution is regulated • The most abundant intracellular cation (98% intracellulary)
• Most willingly passes cellular membrane
• Concentration gradient is maintained by Na+/K+ ATPase
• The extra/intracellular distribution is regulated by hormone Callentian Maria Callentian Solar
The most abundant intracellular cation (98% intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra/intracellular distributi • The most abundant intracellular cation (98% intracellulary)
• Most willingly passes cellular membrane
• Concentration gradient is maintained by Na+/K+ ATPase
• The extra/intracellular distribution is regulated by hormone • The most abundant intracellular cation (98% intracellulary)
• Most willingly passes cellular membrane
• Concentration gradient is maintained by Na+/K+ ATPase
• The extra/intracellular distribution is regulated by hormone
-
- are proarrhythmogenic

- Potassium and ABB
• Transcellular exchange of K⁺/H⁺, or eventually the K⁺ + HCO₃·syn
system allowing the binding/release of H⁺ ions, while maintaining • Transcellular exchange of K⁺/H⁺, or eventually the K⁺ + HCO₃⁻ symport, act as a kind of buffer system allowing the binding/release of H⁺ ions, while maintaining electroneutrality
	- In practice, higher H⁺ in the circulation is linked to K⁺ transfer from the cells and vice versa
	-
	- **OTASSIUM ANDE**
• Transcellular exchange of K*/H*, or eventually the K* + HCO₃⁻ symport, act as a kind of buffer
• system allowing the binding/release of H* ions, while maintaining electroneutrality
• In practice, hig **OTASSIUM ANDE**
• Transcellular exchange of K*/H*, or eventually the K* + HCO₃ symport, act as a kind of buffer
• system allowing the binding/release of H* ions, while maintaining electroneutrality
• In practice, higher Competibility and the system allowing the strategy and the system allowing the binding/release of H⁺ ions, while maintaining electron
is practice, higher H⁺ in the circulation is linked to K⁺ transfer from the ce
An ally the K⁺ + HCO₃⁻ symport, act as a kind of buffer
ons, while maintaining electroneutrality
hked to K⁺ transfer from the cells and vice versa
steronism may lead into metabolic alkalosis
excretion; following the occur due to K⁺ transfer inside cells (and posthypercapnic alkalosis with HCO_3^- excretion) **Example of K⁺/H⁺, or eventually the K⁺ + HCO₃⁻ symport, act as a kind of buffer the binding/release of H⁺ ions, while maintaining electroneutrality er H⁺ in the circulation is linked to K⁺ transfer from t**

- Potassium and the membrane potential
• Positively charged, intracellular ion: \uparrow concentration \rightarrow lowering of membrane polarity (more than corresponds Sium and the membrane potential
• Positively charged, intracellular ion: ↑ concentration →
lowering of membrane polarity (more than corresponds
with its change in ECF – analogy of a small and a large
hasin connected by a ium and the membrane potential
Positively charged, intracellular ion: \uparrow concentration \rightarrow
lowering of membrane polarity (more than corresponds
with its change in ECF – analogy of a small and a large
basin connected b ium and the membrane potential
Positively charged, intracellular ion: \uparrow concentration \rightarrow
lowering of membrane polarity (more than corresponds
with its change in ECF – analogy of a small and a large
basin connected b ium and the membrane potential
Positively charged, intracellular ion: \uparrow concentrat
lowering of membrane polarity (more than corres
with its change in ECF – analogy of a small and a la
basin connected by a hose)
Various Sium and the membrane potential

• Positively charged, intracellular ion: ↑ concentration →

lowering of membrane polarity (more than corresponds

with its change in ECF – analogy of a small and a large

basin connected For a and the membrane potential

• Positively charged, intracellular ion: ↑ concentration →

lowering of membrane polarity (more than corresponds

with its change in ECF – analogy of a small and a large

basin connecte ium and the membrane potential

Positively charged, intracellular ion: \uparrow concentra

lowering of membrane polarity (more than corre

with its change in ECF – analogy of a small and a

basin connected by a hose)

Variou ositively charged, intracellular ion: \uparrow concentration \rightarrow
wering of membrane polarity (more than corresponds
ith its change in ECF – analogy of a small and a large
asin connected by a hose)
arious functionally differ wering of membrane polarity (more than corresponds

ith its change in ECF – analogy of a small and a large

asin connected by a hose)

arious functionally different K⁺ channels

y various mechanisms, potassium increases
	- Various functionally different K⁺ channels
	- permeability of K⁺ channels
		- direct binding
		- competion with Mg^{2+} that closes the K⁺ channels
		-

Effect on sodium channels
• Mild hyperkalemia – easier excitation Effect on sodium channels
• Mild hyperkalemia – easier excitation
• Severe hyperkalemia – block of a portion of Na⁺ channel
• Slower conduction
• Finally the threshold voltage "runs away" from baseline voltage and the de Fect on sodium channels

Fect on sodium channels

ild hyperkalemia – easier excitation

• Slower conduction

• Finally the threshold voltage "runs away" from baseline vo

possible

ild hypokalemia – hyperpolarization

-
- Severe hyperkalemia block of a portion of Na⁺ channel
	-
- Fffect on sodium channels
• Mild hyperkalemia easier excitation
• Severe hyperkalemia block of a portion of Na+ channel
• Slower conduction
• Finally the threshold voltage "runs away" from baseline voltage and the dep fect on sodium channels

ild hyperkalemia – easier excitation

vere hyperkalemia – block of a portion of Na⁺ channel

• Slower conduction

• Finally the threshold voltage "runs away" from baseline voltage and the depola possible **Effect on sodium channels**

• Mild hyperkalemia – easier excitation

• Severe hyperkalemia – block of a portion of Na⁺ channel

• Slower conduction

• Finally the threshold voltage "runs away" from baseline voltage and
-
-

Potassium — main effects on ECG
Hyperkalemia
• Peaked T wave (dif. dg. hyperacute phase of MI) **Otassium – main effects or**
 yperkalemia

• Peaked T wave (dif. dg. hyperacute phase of MI)

• Wide QRS (may merge into sinusoid wave with T)

• Widening, flattening and event. disappearing of the P wave (t

remains fo

• Hyperkalemia

-
-
-
- **Peaked T wave (dif. dg. hyperacute phase of MI)**
• Peaked T wave (dif. dg. hyperacute phase of MI)
• Wide QRS (may merge into sinusoid wave with T)
• Widening, flattening and event. disappearing of the P wave (but sinu **Otassium – Main effects on ECG**
yperkalemia
• Peaked Twave (dif. dg. hyperacute phase of MI)
• Wide QRS (may merge into sinusoid wave with T)
• Widening, flattening and event. disappearing of the P wave (but sinus rhythm **Otassium — main effects on ECG**

yperkalemia

• Peaked T wave (dif. dg. hyperacute phase of MI)

• Wide QRS (may merge into sinusoid wave with T)

• Widening, flattening and event. disappearing of the P wave (but sinus r **• Pathologic U wave (delayed repolarization)**, lengthening of QT (QU) interval **example repolarization •** Property into sinusoid wave with T) • Wide QRS (may merge into sinusoid wave with T) • Widening, flattening and **y perkalemia**
• Peaked T wave (dif. dg. hyperacute phase of MI)
• Widen QRS (may merge into sinusoid wave with T)
• Widening, flattening and event. disappearing of the P wave (but sinus rhythm
• Figher excitability at th
-

• Hypokalemia

-
-
-
-
-
-

Changes of ECG in hyper-/hypokalemia

Periodic muscle paralysis in hypo- and
hyperkalemia hyperkalemia Periodic muscle paralysis in hypo- and
hyperkalemia
• heterogeneous group of diseases characteristic by transient attacks of
• muscle weakness (hours to weeks depending on type)
• usually a hereditary disease Periodic muscle paralysis in hypo- and
hyperkalemia
• heterogeneous group of diseases characteristic by transient attack:
muscle weakness (hours to weeks depending on type)
• usually a hereditary disease
• often caused by

- muscle weakness (hours to weeks depending on type)
- usually a hereditary disease
-
- secondary periodic paralysis may occur in changes of K⁺ levels in both Solid Transacte paralysis in Fiy potential
pheterogeneous group of diseases characteristic by transient attacks of
muscle weakness (hours to weeks depending on type)
usually a hereditary disease
often caused by channelopat • heterogeneous group of diseases characteristic by transient attacks

muscle weakness (hours to weeks depending on type)

• usually a hereditary disease

• often caused by channelopathies (Na, K and Ca)

• secondary peri
- mediated either by hyperpolarization or by continuous depolarization of the muscle cell, which is followed by Na⁺ channel deactivation
- triggering factors: K⁺ or sugar intake, decrease of K⁺, cold environment, muscular effort alternating with resting periods

Calcium

-
- Calcium
• Ion that is necessary for muscle contraction
• Intracellulary, it is present in very low concentration (making high grad
between cytoplasm and cell) Calcium
• Ion that is necessary for muscle contraction
• Intracellulary, it is present in very low concentration (making high gradient
• Letween cytoplasm and cell)
• In cardiomyocyte and skeletal muscle, it is also presen B and C is a measury for muscle contraction
 I and I and I are cessary for muscle contraction
 I and I and I and I and I and I and I and
-
- Calcium
• Ion that is necessary for muscle contraction
• Intracellulary, it is present in very low concentration (making high gradient
• Letween cytoplasm and cell)
• In cardiomyocyte and skeletal muscle, it is also presen • Cardiomyocyte (and smooth muscle contraction
• Intracellulary, it is present in very low concentration (making high gradient
• between cytoplasm and cell)
• In cardiomyocyte and skeletal muscle, it is also present in sar necessary for phase 2 (plateau), pacemaker function and conduction through Cial Cial Mondon Intracellulary, it is present in very low conce

Intracellulary, it is present in very low conce

between cytoplasm and cell)

In cardiomyocyte and skeletal muscle, it is a

Cardiomyocyte (and smooth muscl • Ion that is necessary for muscle contraction

• Intracellulary, it is present in very low concentration (making high gradient

between cytoplasm and cell)

• In cardiomyocyte and skeletal muscle, it is also present in s lon that is necessary for muscle contraction
Intracellulary, it is present in very low concentration (making high gradie
between cytoplasm and cell)
In cardiomyocyte and skeletal muscle, it is also present in sarcoplasmic
-

Calcium and the membrane potential
Extracellular ion – membrane potential gets into more negative values
• More than expected based on the concentration, because Ca²⁺ binds to

-
- **Calcium and the membrane potential
• Extracellular ion membrane potential gets into more negative values
• More than expected based on the concentration, because** Ca^{2+} **binds to
• During the action potential** Ca^{2+} **a is a set of than expected based on the concentration** or enegative values

• More than expected based on the concentration, because Ca²⁺ binds to

• More than expected based on the concentration, because Ca²⁺ binds t **Example 18 and the membrane potential**

tracellular ion – membrane potential gets into more negative values

• More than expected based on the concentration, because Ca^{2+} binds to

• More than expected based on the co
- **Cium and the membrane potential**
acellular ion membrane potential gets into more negative values
More than expected based on the concentration, because Ga^{2+} binds to
phospholipid bilayers and tends to concentrate in • During the action potential, Ca^{2+} activate potassium (and chloride) channels, which Calcium and the membrane potential exists the mergative values

Extracellular ion – membrane potential gets into more negative values

• More than expected based on the concentration, because Ca^{2+} binds to

phospholipi **Example 11**
 Example 10
 Example 10 is the membrain of the membrain potential

tracellular ion – membrane potential gets into more negative values

• More than expected based on the concentration, because Ca^{2+} binds to
 • phospholipid bilayers and te Calcillarian – membrane potential gets into more

• Extracellular ion – membrane potential gets into more

• More than expected based on the concentration, b

phospholipid bilayers and tends to concentrate in

• During th
	-
	-
	-
- -
- tracellular ion membrane potential gets into more negative values

 More than expected based on the concentration, because Ca²⁺ binds to

phospholipid bilayers and tends to concentrate in their proximity

uring the a • More than expected based on the concentration, because Ca²⁺ binds to
• More than expected based on the concentration, because Ca²⁺ binds to
phospholipid bilayers and tends to concentrate in their proximity
uring t Note than expected based on the concentration
phospholipid bilayers and tends to concentrate i
ng the action potential, Ca²⁺ activate potassium (
tens the phase 2 \rightarrow repolarization leads into the
the proces is imposta

ECG in calcium levels changes

- Calcium and tetany

siologically, neurons have lower difference

Experiment in the students of the students of the students of the

mpared to myocytes • Physiologically, neurons have lower difference between resting and threshold membrane potential Normal Ca2+ compared to myocytes
- When Ca^{2+} decreases, membrane potential locally $\mathbf{v}_{\text{hypercalcemia}\rightarrow}$ shifts to more positive values, which leads into neuronal and muscular depolarizations
- Skeletal muscle cell has a short refractory period
and the contraction starts after its end new activation may thus occur during the contraction
- This leads into the summation of muscle contractions
- Tetany also occurs in alkalosis, when ionized $Ca²⁺$ decreases ($Ca²⁺$ competes with H⁺ for protein binding), or in $\sqrt{Mg^{2+}}$, when Ca²⁺ decreases in the ECF (both locally and systemically \downarrow PTH) **EXECT THEORY CONSULTERED THE CONSULTERED AND SIGNAL STATE OF THE METATRO SERVICE ON THE METATRO SERVICE ON THE METATRO SERVICE ON THE METATRO SERVICE ON THE METATRO STATE (Search Ca²⁺ decreases (Ca²⁺ decreases (Ca^{2+**}
- In hypercalcemia, excitability decreases with \uparrow Mg²⁺)

- Chlorine and ABB
troneutrality principle: positive charge in
ma = negative charge **Chlorine and ABB**
• Electroneutrality principle: positive charge in
plasma = negative charge
• Cationic side: Na⁺, K⁺, Ca²⁺, Mg²⁺
• Relative fixed, rather long-term regulation plasma = negative charge
- Cationic side: Na^+ , K^+ , Ca^{2+} , Mg^{2+}
	- Relative fixed, rather long-term regulation
- Anionic side: Cl⁻, HCO₃⁻, proteins, fixed acids $\begin{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix}$
	- Strong link to AB
- Chlorine itself is fully ionized in the water solution and does not act as either donor or acceptor of H+
	- but HCO₃ and fixed acids (part of anion gap) do

Hyper- a hypochloremia

ot a problem itself, Na⁺ and HCO₃-levels are key

- Is not a problem itself, Na⁺ and HCO_3^- levels are key
- If the changes of CI⁻ levels are accompanied by corresponding adequate changes of Na⁺ in the same Hyper- a hypochloremia

Is not a problem itself, Na⁺ and HCO₃⁻ levels are key

If the changes of CI-levels are accompanied by corresponding adequ

direction \rightarrow osmolarity disorder

• E.g. loss of net water, DI × S **•** Is not a problem itself, Na⁺ and HCO₃⁻ levels are key
• If the changes of CI⁻ levels are accompanied by corresponding adequalized
in \rightarrow osmolarity disorder
• E.g. loss of net water, DI × SIADH
• HCO₃⁻ an **Hyper- a hypochloremia**

not a problem itself, Na⁺ and HCO₃⁻ levels are key

the changes of Cl⁻ levels are accompanied by corresponding adequate cha

rection \rightarrow osmolarity disorder

• E.g. loss of net water, Dl • Is not a problem itself, Na⁺ and HCO₃· levels are key
• If the changes of Cl⁻ levels are accompanied by corresponding adequ
direction \rightarrow osmolarity disorder
• E.g. loss of net water, DI × SIADH
• HCO₃⁻ and a not a problem itself, Na⁺ and HCO₃" levels are key

the changes of Cl⁻ levels are accompanied by corresponding adequate changes of Na⁺ in the same

• E₈. loss of net water, DN × SIADH

• HCO₃ and anion gap do
	-
	- $HCO₃$ and anion gap do not change and $HCO₃$ and $HCO₄$
- On contrary "pure" change of CI⁻ (without Na⁺) is always accompanied with changes of other anions
- , metabolic alkalosis
	- , Bartter syndrome in low renal Na+ /K+ /2Cl- cotransporter aktivity
- , metabolic acidosis
	- and Cl⁻, Cl⁻ thus increases more rapidly than Na⁺))

JM1

Snímek 32

JM1 Jan Máchal; 29.05.2024

Secondary "pure" hyper- and hypochloremia
vens up"HCO₃- or anion gap changes (electroneutrality principle) y "pure" hyper- and hypochloremia
Tor anion gap changes (electroneutrality principle)
osis –HCO₃ losses Secondary "pure" hyper- and hypochlo
evens up"HCO₃- or anion gap changes (electroneutrality
perchloremia
• Renal tubular acidosis –HCO₃- losses
• Hyperparathyreosis – losses of the phosphate anion
ypochloremia
• Posth

- "evens up"HCO₃ or anion gap changes (electroneutrality principle)
- Hyperchloremia
	- Renal tubular acidosis $-HCO_3^-$ losses
	-
- Hypochloremia
- Secondary "pure" hyper- and hypochloremia

evens up"HCO₃⁻ or anion gap changes (electroneutrality principle)

yperchloremia

 Renal tubular acidosis –HCO₃⁻ losses

 Hyperparathyreosis losses of the phosphate a $(\bigwedge^{n} HCO_{3}^{-})$) evens up"HCO₃⁻ or anion gap changes (electroneutrality principle)

• Renal tubular acidosis –HCO₃⁻ losses

• Hyperparathyreosis – losses of the phosphate anion

ypochloremia

• Posthypercapnic alkalosis following t
	- $HCO₃$ losses