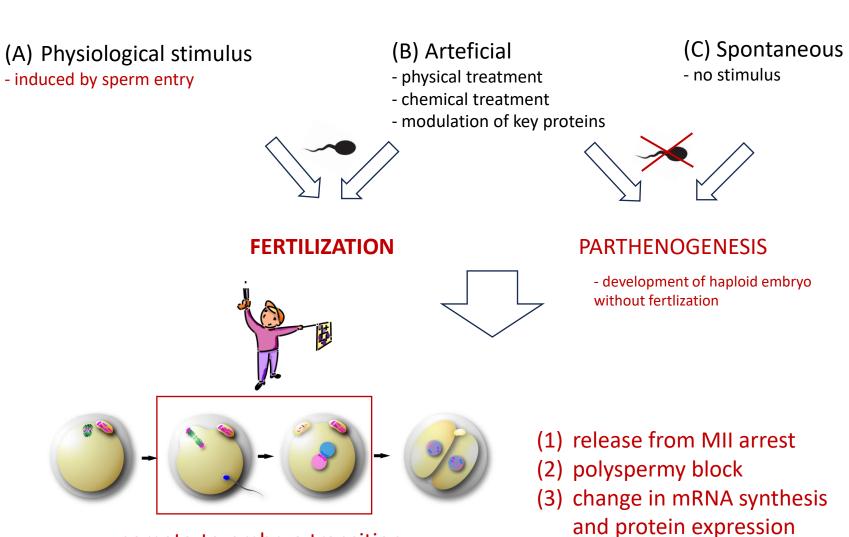
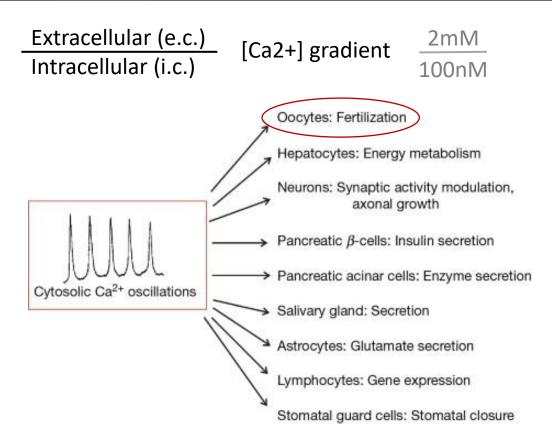

MUNI MED


Embryology II PREIMPLANTATION DEVELOPMENT

spring 2025


Egg activation and parthenogenesis

Zuzana Holubcová Department of Histology and Embryology zholub@med.muni.cz

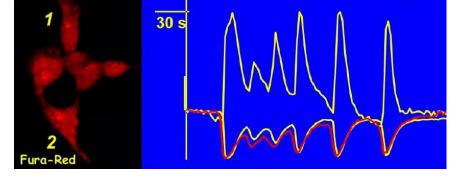


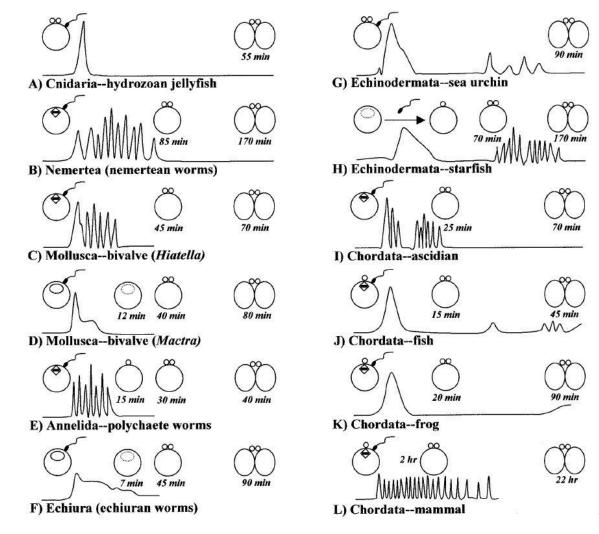
Egg activation

gamete-to-embryo transition

Calcium signalling

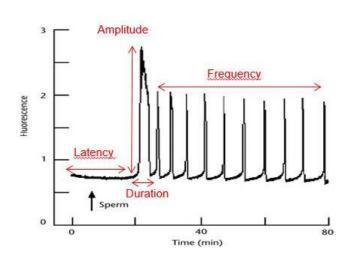
Ca2+ signalling "toolkit"

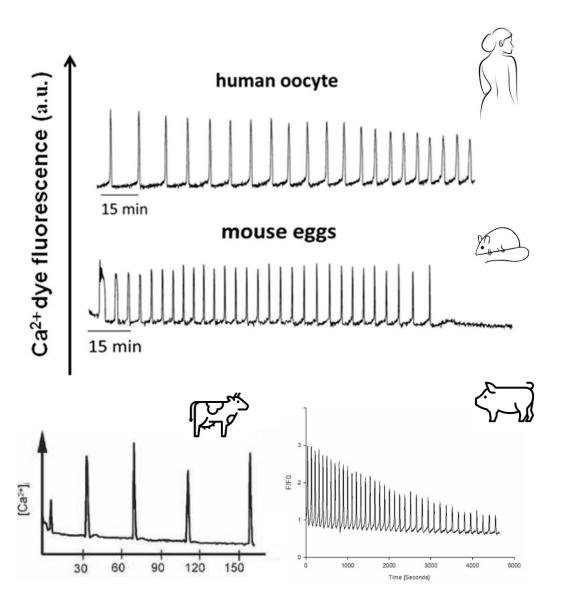

- Ca2+ mobilizing signals
- i.c. stores ER, Mt, lysosomes
- Ca2+ influx channels
- pumps and exchanges removing Ca2+ from cytoplasm


downstream effectors of Ca2+ signalling pathway

Ca2+ oscillations

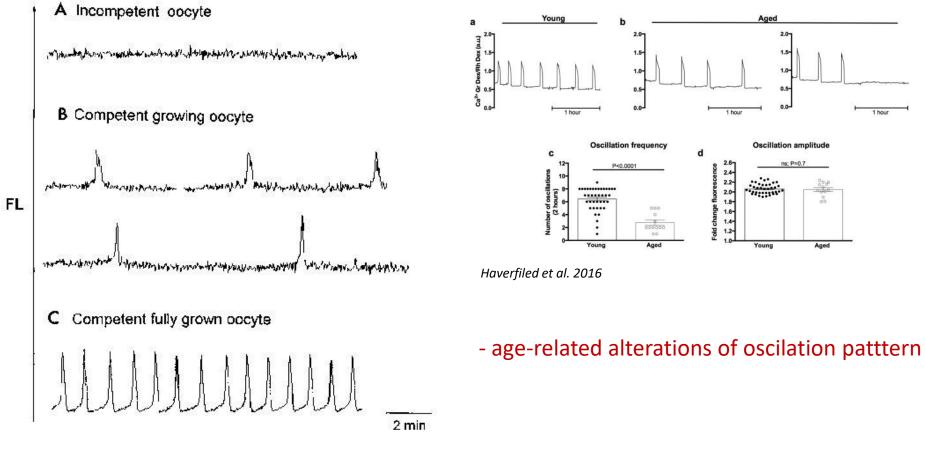
- series of measurable Ca2+ spikes
- periodic increase and fall of cytosolic [Ca2+]


- universal hallmark of egg activation in all sexually reproducing animal species (and flowering plants)



Stricker at al. 1999

Calcium signalling at fertilization


- in mammals, species-specific differences in latency, duration, frequency and amplitude of Ca2+ oscillations

Calcium signalling at fertilization

- Ca2+ oscillation pattern related to egg/embryo developmental competence

Calcium signalling at fertilization

- Ca2+ oscillations triggered by fertilizing sperm OC- lasts several hours until PN formation MI MI 45 mn 6 h - first Ca2+ wave begins at sperm entry site and propagades radially to opposite pole F \rightarrow GCs exocytosis \rightarrow release from MII arrest \rightarrow cytoplasmic movements \rightarrow PN formation -directional -faster. nondirectional Ca2+ oscillations triggered Ca²⁺Oscillation also by ICSI and sperm extract injection Soluble factor \rightarrow role of soluble spermdelivered oocyte activation factor (SOAF)

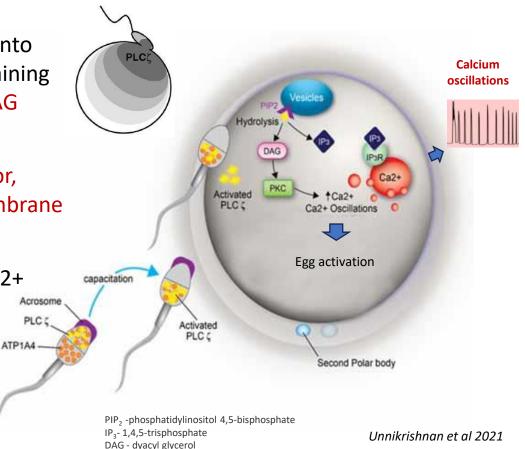
Quest for SOAF

1913	1990	1996	1998/99	2002	2007	2010	2015	2020
			Sperm I	nas a major ro	, ole during ferti	ilization and e	arly embryo de	evelopment ¹
		Inject	ion of sperm cy	tosolic extrac	t into the oocy	yte and observ	ation of Ca+2 o	oscillations ²
	1			The l	PT zone of the	sperm is capa	able of activati	ng oocytes ³
			roposed a SOAF		1 1 1 1 1	1 1 1 1 1 1		1 1 1 1
				However, stu	dies in human	oocytes failed	l in demonstra is a	ting that GP real SOAF
	1	, 1 1 1 1					as SOAF, its i al independent	
					A Xenopus but there	citrate syntha are no scientif mam	ase was propos fic reports of it imalian oocyte	ed as SOAI ts function i activation
		1 1 1 1			8	20110.000 - CARDON	d form of the e	
							late emerge, PA f PLCζ as a un	

PLC zeta (PLCζ)

- testis-specific isoform of phosfolipase C
- delivered to the oocyte by fertilizing sperm
- localized to post-acrosomal region of sperm head where gamete fusion starts
- after sperm penetration, PLCζ diffuses into the ooplasm, binds to i.c. vesicles containing PIP2 and hydrolyses PIP2 to IP3 and DAG
- generated IP3 then binds to IP3 receptor,
 which forms a Ca2+ channel in ER membrane
- the openning of the channel release Ca2+ from i.c. store to cytosol initiating Ca2+ oscillations

Development 129, 3533-3544 (2002) Printed in Great Britain © The Company of Biologists Limited 2002 DEV7973


Saunders et al 2002

PLCζ: a sperm-specific trigger of Ca²⁺ oscillations in eggs and embryo

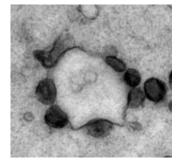
development

Christopher M. Saunders¹, Mark G. Larman², John Parrington³, Llewellyn J. Cox¹, Jillian Royse¹, Lynda M. Blayney¹, Karl Swann² and F. Anthony Lai^{1,*}

¹Cell Signalling Laboratory, Wales Heart Research Institute, University of Wales College of Medicine, Cardiff CF14 4XN, UK ²Department of Anatomy and Developmental Biology, University College, London WC1E 6BT, UK ³Department of Physiology, University College, London WC1E 6BT, UK ⁴Author for correspondence (e-mail: lati@cf.ac.uk)

Calcium signaling homeostasis

elevation of i.c. [Ca2+]

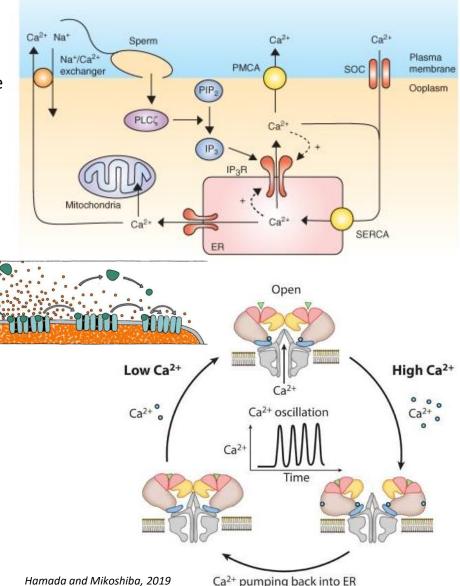

\leftarrow Ca2+ release from ER stores

IP3-mediated Ca2+ release and subsequentCa2+- mediated Ca2+ release through a Ca2+ sensitiveIP3 receptor channel (allosterically modulated by Zn)

\leftarrow Ca2+ influx accross plasma membrane

SOCE (store operated Ca²⁺ entry)

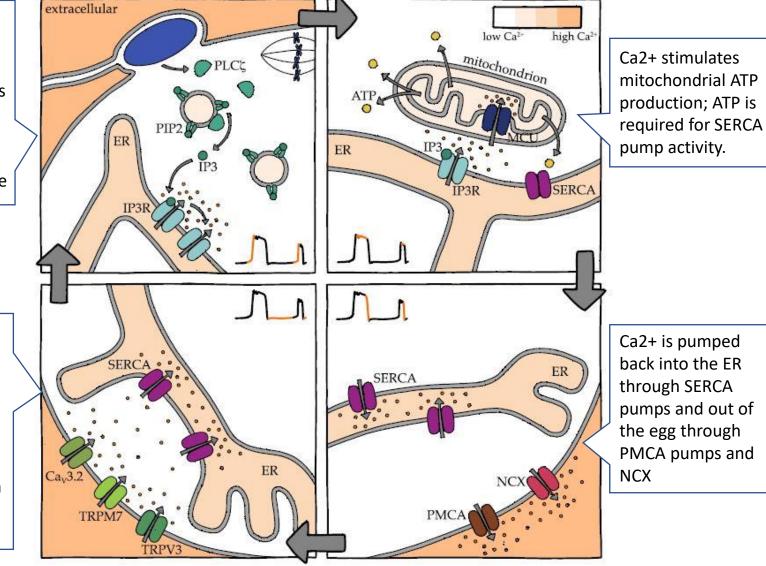
SER-Mt "necklace" complexes


return to baseline level of i.c. [Ca2+]

\leftarrow removal from the cell

PMCA (plasma membrane Ca²⁺ pump) NCX (Na/Ca²⁺ exchanger)

← uptake into i.c. Stores


SERCA (sarcoendoplasmic reticulum Ca²⁺ATPase)

Cycle of Ca2+ transient generation

Sperm PLCζ acts on PIP2 in intracellular vesicles to generate IP3, which stimulates IP3R-mediated Ca2+ release and subsequent Ca2+induced Ca2+ release

Ca2+ flows into the cytoplasm through TRMP7, CaV3.2 and TRPV3 channels and is then available for SERCA pumps to replenish ER Ca2+ stores in preparation for the next Ca2+ release event

Calcium signaling effectors

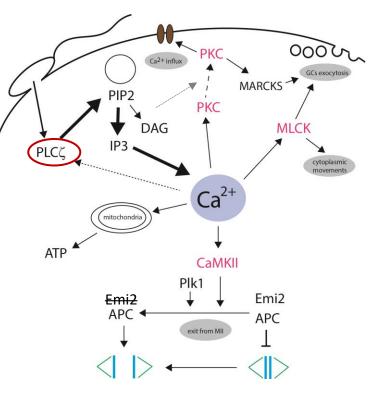
- \uparrow [Ca²⁺] \rightarrow modulation of activity of Ca²⁺-sensitive enzymes

CaMKII (calmodulin-dependent protein kinase II)

- phosphorylates Emi2 promoting its interaction with Plk1
- Plk1-induced phosphorylation of Emi2 leads to its ubiquitination and destruction by proteasome
- degradation of Emi2 releases a brake on the APC
- APC activity degrades cycB

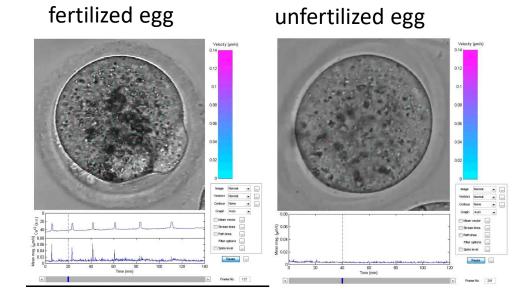
exit form MII arrest

PKC (protein kinase C)


- DAG-induced relocation to plasma membrane
- regulation of Ca2+ influx
- phosphorylation of myristoylated alanine-rich C kinase
 substrate (MARCKS) → actin reorganization GCs exocytosis

TCA enzymes

- → activation of mitochondrial metabolism → \uparrow ATP supply → maintainance of Ca2+ waves
- MLCK (myosin light chain kinase)
 - \rightarrow exocytosis of CGs \rightarrow polyspermy block
 - \rightarrow cytoplasmic movements

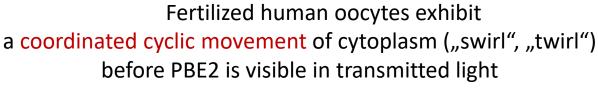

PLCζ

- positive feedback loop

Activation-induced cytoplasmic movements

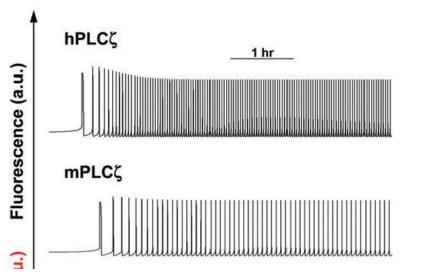
- rhythmic cytoplasmic movement triggered by Ca2+ oscilations
- actomyosin-mediated spasms detectable by particle image vector analysis
- non-invasive prediction of embryo viability?

ARTICLE


Received 18 Feb 2011 Accepted 7 Jun 2011 Published 9 Aug 2011

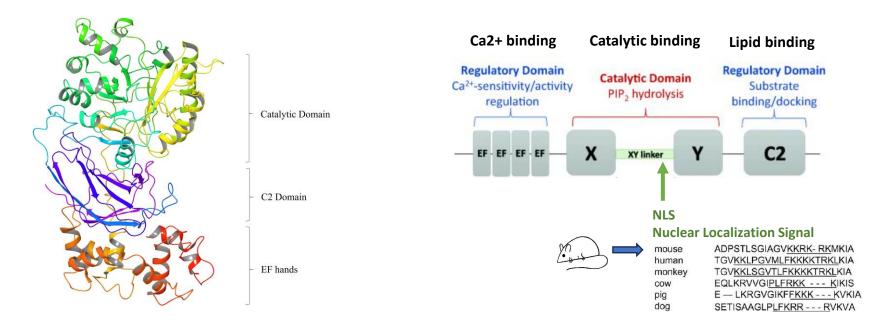
embryo viability

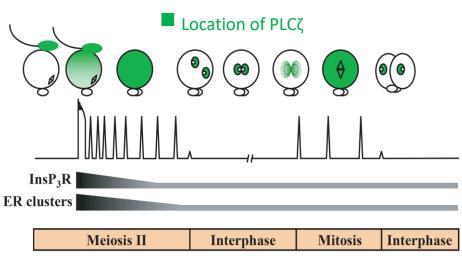
Anna Ajduk', Tagbo Ilozue¹, Shane Windsor², Yuansong Yu³, K. Bianka Seres¹⁴, Richard J. Bomphrey², Brian D. Tom⁶, Karl Swann³, Adrian Thomas², Chris Graham² & Magdalena Zernicka-Goetz¹


Ajduk et al 2011

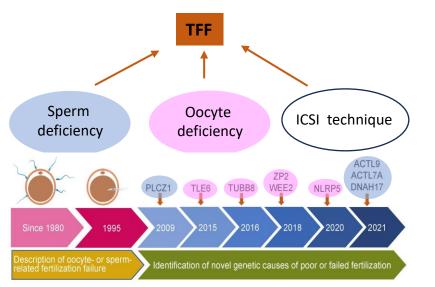
$PLC\zeta$ activity

- **PLC**^ζ active only in oocytes
- existence of oocyte-specific activator?

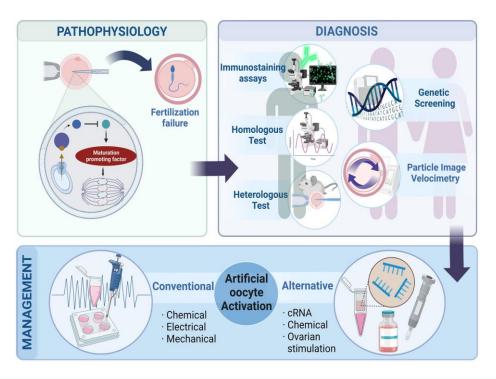

 human PLCζ has higher Ca2+ signalling potency than mouse PLCζ



$PLC\zeta$ activity



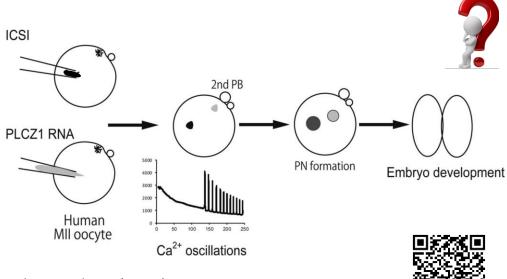
- in mouse, Ca2+ oscillations temporarily ceases with PLC ζ being sequestered into newly formed pronuclei
- single Ca²⁺ peak observed shortly before every mitotic division
- sinusoidal fluctuations disappear progressively in arrested human embryos
- mitosis can be stopped using Ca2+ chelators

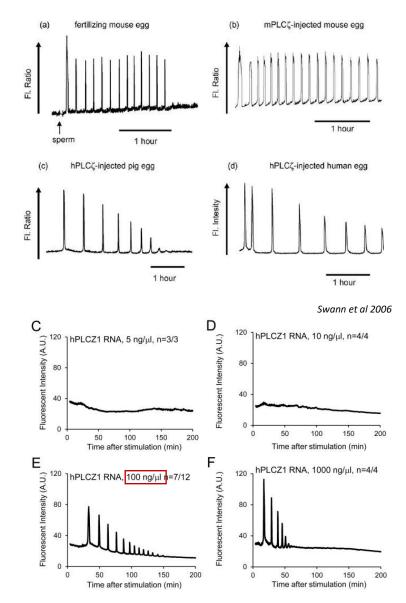


Total fertilization failure (TFF)

- unexpected low fertilization efficiency (<25% FR)
- normal spermiogram and apparently normal oocyte morphology
- oocyte activation deficiency (OAD)
- failure of sperm chromatin decondensation
- conventional IVF failure can be bypassed by ICSI
- rare (1-3%) in ICSI cycles
- recurrence 30-50%
- premature termination of treatment
- distressful for patients and personell

PLCζ

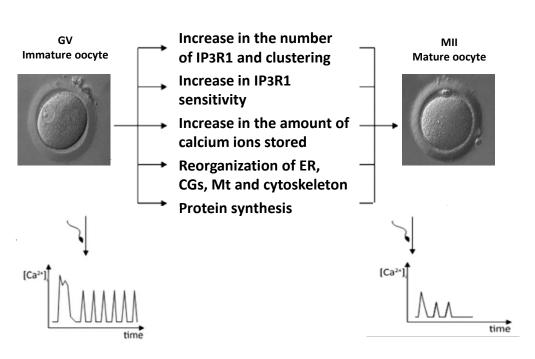

- mutation/impaired expression of PLCζ is related to recurrent fertilization failure and male/idiopathic infertility
- PLC **ζ** deficiency in sperm correlates with altered Ca2+ oscillation pattern
- diagnostical screening for PLCζ genetic profile and/or immunostaining pattern in infertile patients for tailored treatment and informed consulting


Ramadan et al 2012

• PLC**ζ**

- injection of mouse/human PLCζ cRNA/protein induces Ca2+ oscillation similar to those seen during fertilization and triggers parthenogenesis
- rescue by (co)injection of PLCζ along with defective sperm?

Nokimos et al 2013 (mouse) McCarter et al, ESHRE 2024, conference abstract (human)



- deficiency in PLC $\zeta\text{-triggered}$ activation signalling cascade

- activation capacity and Ca2+ oscillation adversely affected by

- incomplete/aberrant cytoplasmic maturation
- oocyte in vitro maturation
- cryopreservation
- reproductive aging
- in vitro postovulatory aging

sER+ oocytes

- abnormal disribution of IP3 receptors at SER

- release more Ca2+ over a period of time?

• ICSI technique

Aspiration

Human Reproduction Vol.16, No.2 pp. 306-312, 2001

Embryo development and chromosomal anomalies after ICSI: effect of the injection procedure*

John C.M.Dumoulin^{1,3}, Edith Coonen¹, Marijke Bras¹, J.Marij Bergers-Janssen¹, Rosie C.M.Ignoul-Vanvuchelen¹, Lucie C.P.van Wissen¹, Joep P.M.Geraedts² and Johannes L.H.Evers¹

FERTILITY AND STERILITY® VOL. 73, NO. 1, JANUARY 2000 Copyright ©1999 American Society for Reproductive Medicine

Puncture

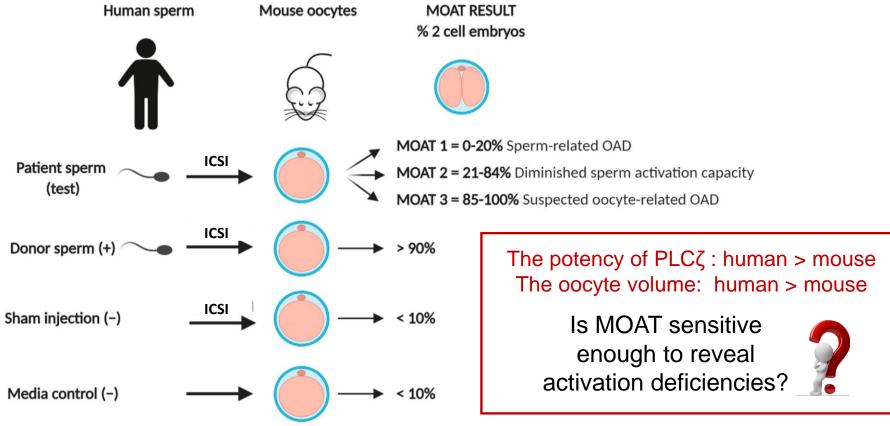
Human Reproduction vol.11 no.3 pp.540-547, 1996

Two essential steps for a successful intracytoplasmic sperm injection: injection of immobilized spermatozoa after rupture of the oolema

P.Vanderzwalmen¹, G.Bertin, B.Lejeune, M.Nijs, B.Vandamme and R.Schoysman

Deposition

Sperm deposition site during ICSI affects fertilization and development

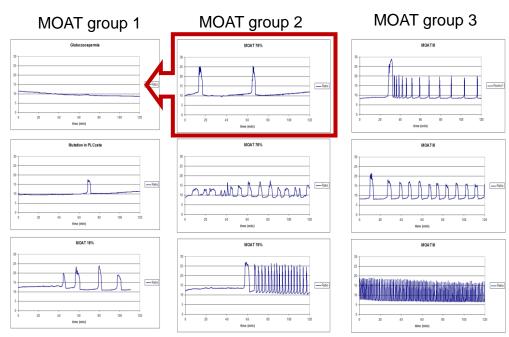

Marlena Blake, B.Sc., John Garrisi, Ph.D., Giles Tomkin, and Jacques Cohen, Ph.D.

The Institute for Reproductive Medicine and Science of Saint Barnabas, West Orange, New Jersey

Diagnosis of activation problems

Mouse oocyte activation test (MOAT)

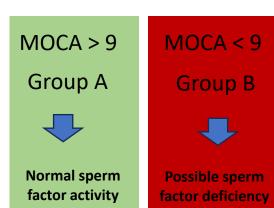
- heterologous ICSI assay (human sperm + mouse egg)
- evaluation of fertilization outcome



Björn Heindryckx

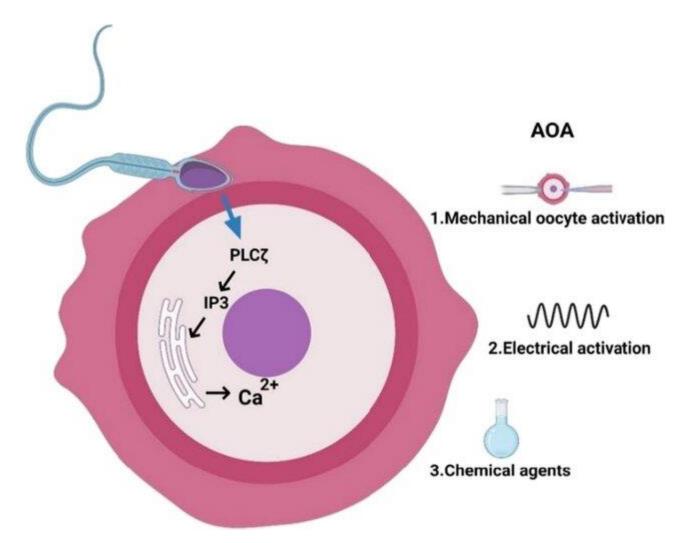
Diagnosis of activation problems

- Mouse oocyte calcium analysis (MOCA)
 - heterologous ICSI assay (human sperm + mouse egg)
 - measurement of Ca2+ oscillations amplitude and frequency



Courtesy of B. Heindryckx

- Human oocyte activation test (HOCA)
 - homologous ICSI assay (human sperm + human egg)
 - analysis of Ca2+ oscillations

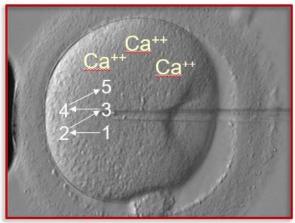

Björn Heindryckx

- more sensitive than MOAT but can't be directly extrapolated to human model

Interpretation of results:

Artificial oocyte activation (AOA)

Artificial oocyte activation (AOA)


- Mechanical activation
 - hypo/hypertonic solution
 - hydrostatic pressure
 - modified ICSI technique

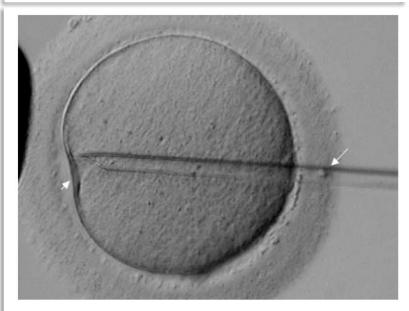
FERTILITY AND STERILITY® VOL. 78, NO. 3, SEPTEMBER 200.

Use of a modified intracytoplasmic sperm injection technique to overcome spermborne and oocyte-borne oocyte activation failures

Jan Tesarik, M.D., Ph.D.,^{a,b} Laura Rienzi, B.Sc.,^c Filippo Ubaldi, M.D.,^c Carmen Mendoza, Ph.D.,^a and Ermanno Greco, M.D.^c

MAR&Gen Molecular Assisted Reproduction and Genetics, Granada, Spain; Laboratoire d'Eylau, Paris, France; and Centre for Reproductive Medicine, European Hospital, Rome, Italy

21% degeneration rate!


Human Reproduction Vol.19, No.8 pp. 1837–1841, 2004 Advance Access publication May 27, 2004

Complete oocyte activation failure after ICSI can be overcome by a modified injection technique

Thomas Ebner

T.Ebner^{1,2}, M.Moser¹, M.Sommergruber¹, K.Jesacher¹ and G.Tews¹ ¹Women's General Hospital, IVF-Unit, Lederergasse 47, A-4010 Linz, Austria

Figure 2. Culmination of the aspiration phase. During aspiration, the opposite membrane responds with a slight invagination (small arrow). The large arrow $(10 \,\mu\text{m})$ indicates the spermatozoon.

- ~50% FR

BUT no improvement if used as a routine technique!

Artificial oocyte activation (AOA)

• Electrostimulation

- direct current voltage causes rearrangement of cell membrane proteins leading to the formation of pores allowing for the influx of Ca²⁺ ions

- ms/µs/ns pulses

 \checkmark Single pulse of 1.5 kV/cm for 100 μs

Editors' Supposition

nanosecond pulsed electric fields (nsPEFs)
 10 ns stimulation

Fertility and Sterility® Vol. 94, No. 3, August 2010

The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure

Volkan Baltaci, M.D.,^a Özge Üner Ayvaz, Ph.D.,^b Evrim Ünsal, Ph.D.,^b Yasemin Aktaş, M.Sc.,^b Aysun Baltacı, M.D.,^b Feriba Turhan, M.Sc.,^b Sarp Özcan, M.D.,^b and Murat Sönmezer, M.D.^c

^a Faculty of Medicine, Department of Medical Genetics, Ufuk University; ^bGen Art Woman Health and Reproductive Biotechnology Center; and ^c Ankara University School of Medicine, Department of Obstetrics and Gynecology, Ankara University Center for Research on Human Reproduction, Ankara, Turkey

Fertilization and embryo grade results after ICSI with piezoelectric activation or conventional ICSI for patients having one previous TFF experience (group I).						
	Group IA Piezo (+) (n = 123)	Group IB Piezo (-) (n = 88)	P value			
Oocytes fertilized, n	76	10				
Fertilization rate, %	62	12	0.001			
Grade 1-2 embryos, n (%)	28 (37)	2 (20)	0.01			
Grade 3-4 embryos, n (%)	48 (63)	8 (80)	0.01			

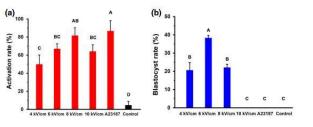
- risk of large pore opening leading to cell death !

PHYSICAL REVIEW APPLIED 11, 024001 (2019)

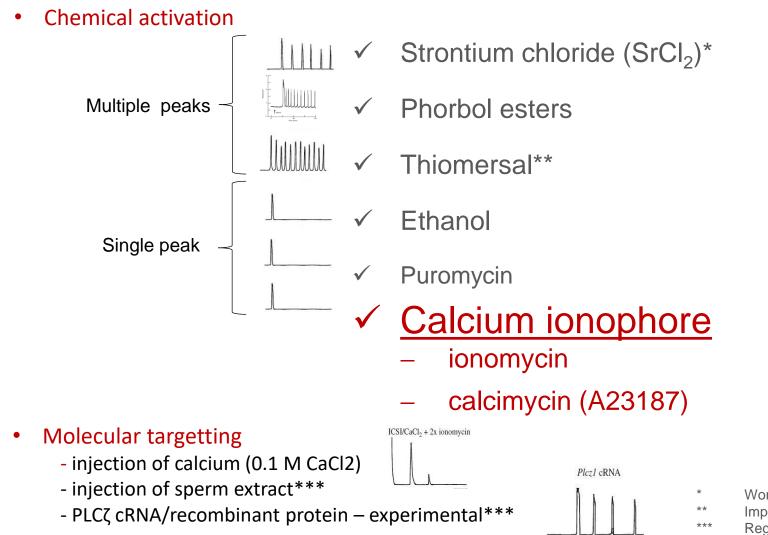
Communicating with Mouse Oocytes via Regulating Calcium Oscillation Patterns by Nanosecond Pulsed Electric Fields

Jiahui Liu, ¹ Qun Lu,² Rong Liang,² Jinsong Guo, ³ Kaile Wang, ¹ Feihong Dong,¹ Jianliu Wang,^{4,*} Jue Zhang,^{1,1,4} and Jing Fang,^{1,3} Academy for Advanced Interdisciplinary Studies, Peding University, Beijing 100051, People's Republic of China ² Conter of Reproductive Medicine, Peding University, People's Hospital, Beijing 100044, People's Republic ⁴ College of Engineering, Peding University, People Republic of China

⁴Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China


(Received 26 February 2018; revised manuscript received 7 November 2018; published 1 February 2019)

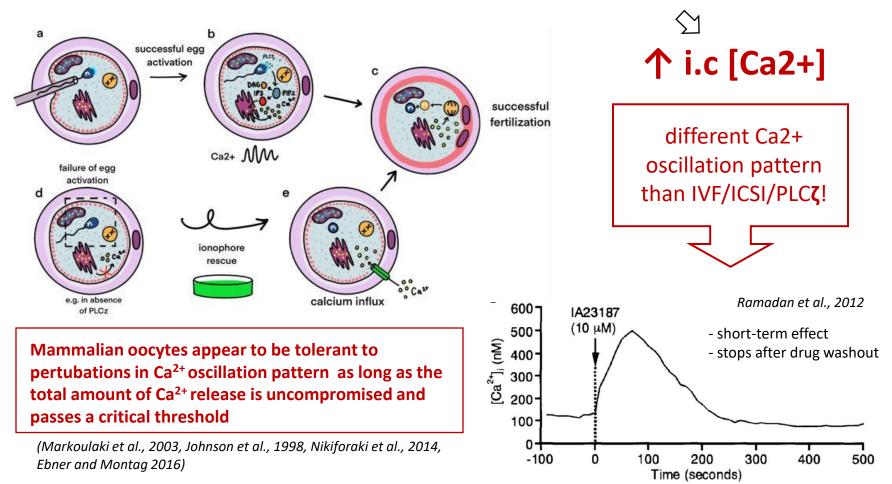
Ooyste activation deficiency is considered to be the principal factor underlying fertilization fulure after intracyolpaties percent injection (CGs.), and consequencity exhibits a lack of cytosolic calcium (Cgs.²¹) and consequencity exhibits a lack of cytosolic calcium intracellular Cgs²¹ transcript in ooyste. Traditional artificial activation methods are unaually proposed to induce an intracellular Cgs²¹ transcript in ooyste. Rower, these current methods effect cancend plaid electric fields (mFPF) with a 18-m dramalian oxyste activation or there still exists controversy concerning their activation methods are required in order to the structure of plasma excepts. In this order the structure of the structure of the structure of the structure of the structure excepts in the structure method science cancels on the structure of the structure


DOI: 10.1103/PhysRevApplied.11.024001

- stimulate Ca2+ eflux from ER and spontaneous Ca2+ oscillations while maintaining plasma membrane integrity

high activation rate
 not tested in humans

Artificial oocyte activation (AOA)


Work only in rhodents! Impairs spindle Regulatory issues

Artificial oocyte activation (AOA)

Calcium ionophores

- highly selection ion carriers that form stable complex with Ca2+ and pass through the cell membrane

- causes transient release of Ca2+ from i.c. stores and enhance Ca2+ influx

Reference

Artificial oocyte activation (AOA)

508 CultActiv

KIOM AA DMSC

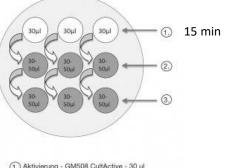
GM 508CULT-ac

CACT-XXXX

VY ARA

RLEA

GM508


REF 4 GM

LOT CAD

(Nikiforaki et al 2016)

- Calcium ionophore treatment

- occasional clinical use in specific cases
- nonstandartized
- supplementation of culture media with chemical compounds OR commertially available ready-to-use medium GM508 CultActive containing calcimycin

- ionomycin appears to be more efficient than calcimycin in both mouse and human eggs

ICSI Moaz et al. (2006) Twofold exposure to 10 umol/ Abnormal sperm morphology ionomycin for 10 min at 1 h Amorphous heads (n = 18)36.7 82.7 0.0008 and 1.5 h following ICSI 39.3 0.005 Tapered heads (n = 23)81.7 Bent necks (n = 15)49.4 48.2 NS Heindryckx et al. (2008) Injection of 0.1 mol/l CaCl₂ Previously failed or low 14 (0-22) 75 < 0.001 together with spermatozoa fertilization after during ICSI, followed 30 min conventional ICSI (n = 30)later by a 2-fold exposure to 10 µmol/l ionomycin for 10 min, 30 min apart Nasr-Esfahani et al. (2008) Single exposure to 10 uM Severe teratozoospermia with 0 57.8 S ionomycin for 10 min a split AOA cycle (n = 78)14.3 (1-33) 58.3 S 47 (34-65) 63.4 S 85.8 (66-100) 77.9 NS Single exposure to 5 uM Borges et al. (2009a) ICSI with spermatozoa from: calcimycin for 30 min, TESE NOA (n = 29)44.0 44.7 NS immediately following iCSI TESE OA (n = 24)65.2 55.0 NS PESE OA (n = 49)65.8 67.0 NS Single exposure to 5 µM Borges et al. (2009b) ICSI with spermatozoa from: calcimycin for 30 min Ejaculated (n = 46)76.2 69.4 NS immediately following ICSI 48.9 NS Epididymal (n = 41)66.6 Testicular (n = 70)56.1 50.6 NS Single exposure to 10 µmol/l Montag et al. (2012) ICSI with previous: calcimycin for 15 min Failed fertilization (n = 27)< 0.05 0 41.6 immediately following iCSI Low fertilization (n = 38)19.3 (0-29) 44.4 < 0.001 Very low fertilization (n = 24)36.8 (30-50) 56.1 < 0.001 Vanden Meerschaut et al. Injection of 0.1 mol/l CaCl₂ Suspected oocyte-related (2012)together with spermatozoa activation failure with a split during ICSI, followed 30 min AOA cycle and ICSI with later by a 2-fold exposure to previous: 10 umol/l ionomycin for Failed fertilization (n = 5)25.0 72.7 <0.001 10 min, 30 min apart Low fertilization (n = 7)60.4 75.0 NS Ebner et al. (2012) Single exposure to a ready-to-Azoo- or cryptozoospermia 34.7 56.9 < 0.001 use calcimycin solution for (n = 66)15 min immediately following ICSI Vanden Meerschaurt et al 2014

Table 1 Overview of the calcium ionophore AOA protocols used in human assisted reproduction treatment.

Cases

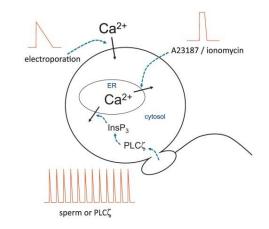
Fertilization rate (%)

Conventional

AOA

P-value

AOA protocol


Artificial oocyte activation (AOA)

Indications

- Complete fertilization failure in previous cycle (Ebner & Montag, 2012)
- Less than 30% fertilization rate in previous cycle (Montag et al., 2012)
- Severe male factor (TESE, PESA, globozospermia)
- Developmental problems in previous cycle (Ebner et al., 2015)
 - ✓ Low blastulation rate (<15%)
 - Developmental arrest
 - Developmental delay (-24h)
 - Arrest at 2Pn stage (Darwish & Magdi, 2015)

Contraindication

- SER+ eggs ?
- ✓ Immature eggs?
- not beneficial for all patients!
- experimental, considered as an "adds-on treatment" by ESHRE

Artificial oocyte activation (AOA)

Safety

- no increase in meiosis II segragation errors
- healthy children born from AOA cycles
- appears to be safe BUT lack of data

Table 2Treatment outcome in the study group with a ready-
to-use ionophore (rate in per cent).

Malformation anal atresia	1 (2.9)	
Children born from twin pregnancy	17	
Children born from singleton pregnancy	18	
Live birth per started cycle	28 (27.7)	
Implantation rate	47/185 (25.4)	
Spontaneous abortion	7 (20.0)	
Vanishing twins	3	
Multiple pregnancy	10/35 (28.6)	
Clinical pregnancy	35 (35)	
Ectopic pregnancy	2	
Pregnancy	37 (37)	
Cycles with at least one fertilization	100	
Started cycle	101	

Reproductive BioMedicine Online (2015) 30, 323-324

EDITORIAL

Language skills

were found to be

expected ranges

Motor skills

Cognition

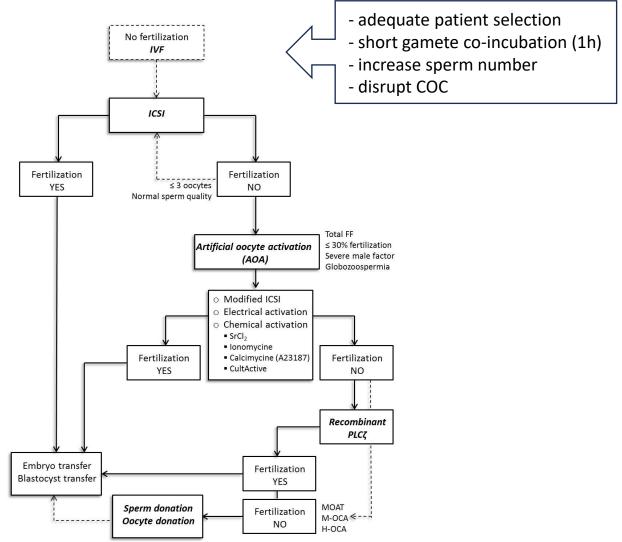
within

A plea for caution and more research in the 'experimental' use of ionophores in ICSI

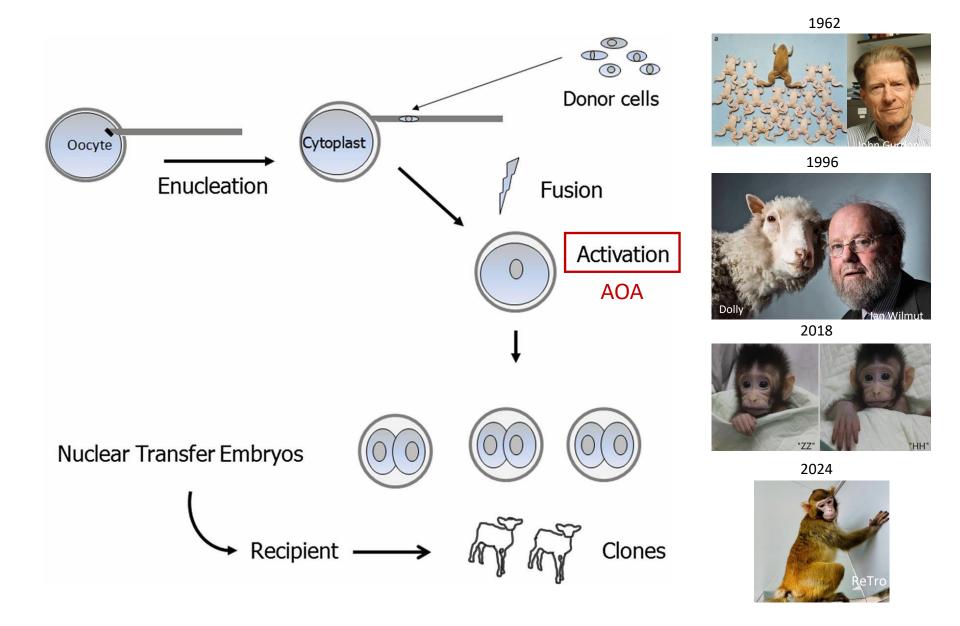
Jonathan van Blerkom, Jacques Cohen, Martin Johnson

Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte

Antonio Capalbo, Ph.D.,^{a.b} Christian S. Ottolini, B.Sc.,^{c.d} Darren K. Griffin, Ph.D.,^d Filippo Maria Ubaldi, M.D., M.Sc.,^{a.b} Alan H. Handyside, Ph.D.,^{c.d.e} and Laura Rienzi, B.Sc., M.Sc.^{a.b}

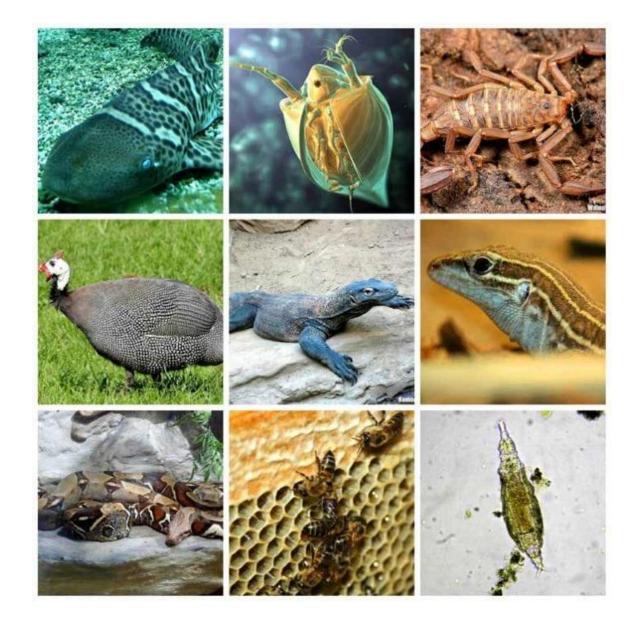

Reproductive BioMedicine Online (2014) 28, 54-63

Neonatal and neurodevelopmental outcome of children aged 3–10 years born following assisted oocyte activation

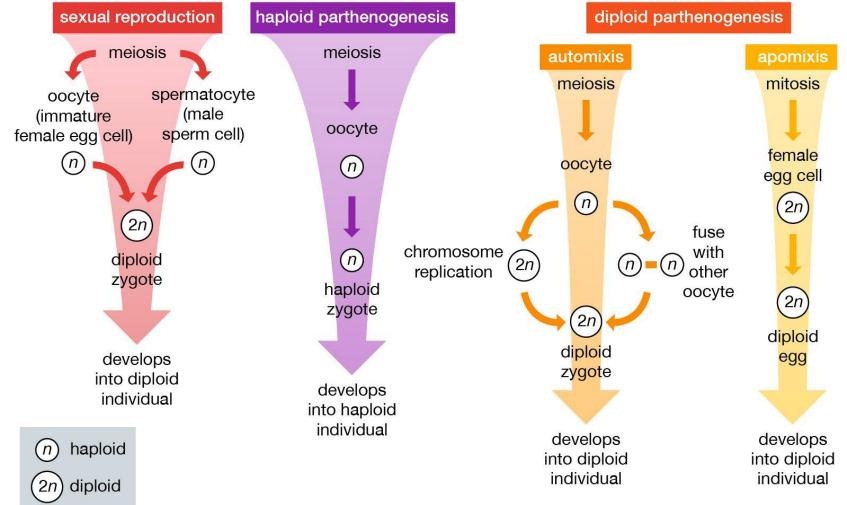

Frauke Vanden Meerschaut ^{a,*}, Evelien D'Haeseleer ^b, Hannelore Gysels ^c, Ylenia Thienpont ^c, Griet Dewitte ^d, Björn Heindryckx ^a, An Oostra ^d, Herbert Roeyers ^c, Kristiane Van Lierde ^b, Petra De Sutter ^a

Ebner et al., RBM 2015

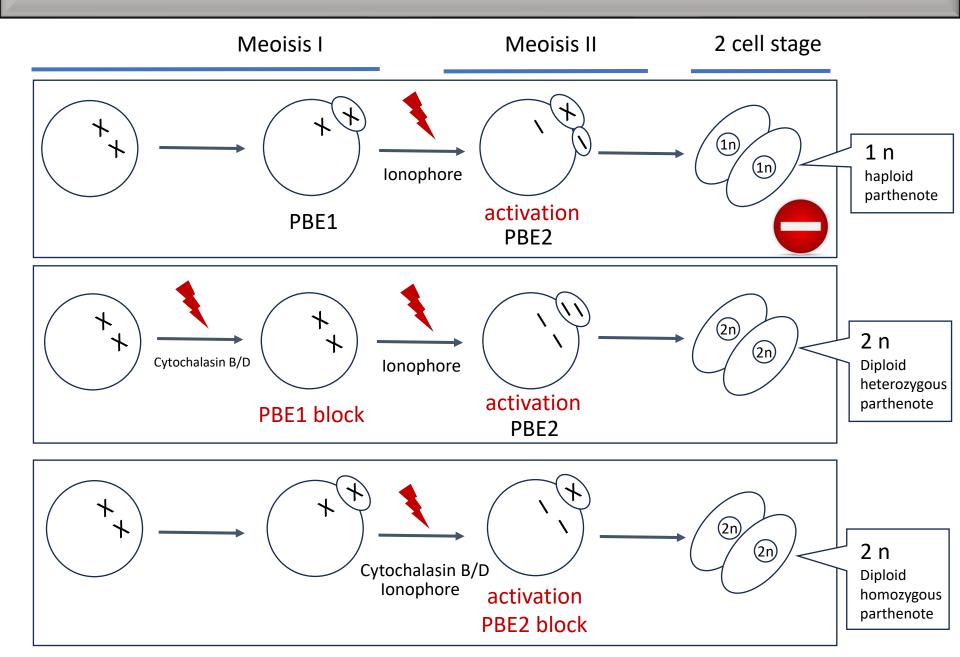
Management of fertilization failure



Egg activation and SCNT


Parthenogenesis

- asexual reproduction"virgin birth"
- an egg can develop
 without being fertilized by
 a sperm
- occasional reproduction manner in lower species
- in mammals, parthenogensis can be induced by AOA
- parthenotes can develop to different stages but not to term
- all female offsprings (XY determination) OR all male offsprings (ZW determination)


Parthenogenesis

The process of sexual reproduction versus several forms of parthenogenesis

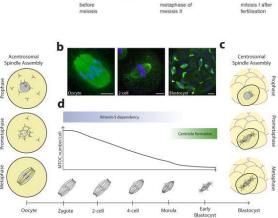
© Encyclopædia Britannica, Inc.

Induction of parthenogenesis in vitro

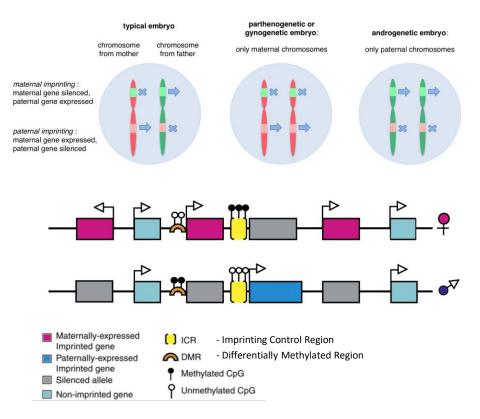
Parthenotes vs. embryos

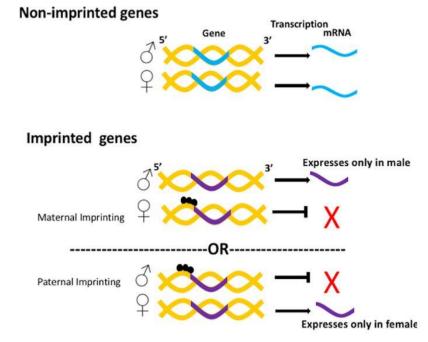
- uniparental origin

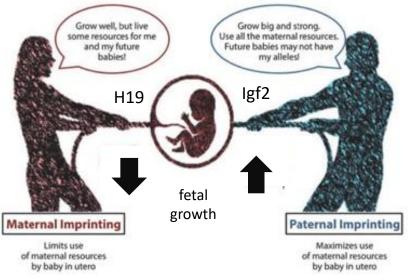
occyte

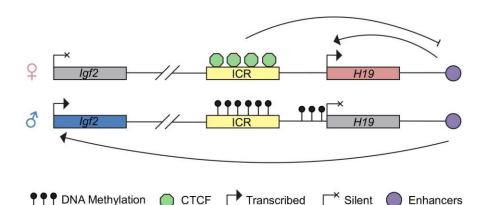

spermatocyte

- genetic instability and aneuploidy in pathenotes


а


Rodents less sensitive to the lack of parental centriole!


Imprinting perturbations

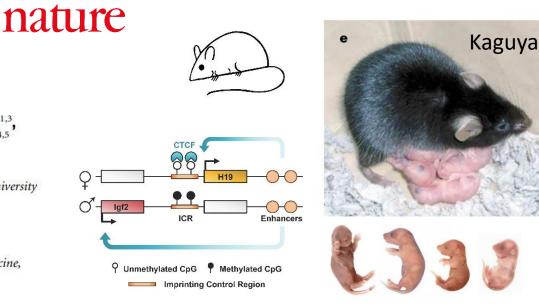


Parental imprinting in mammals

"parental conflict"

imprinting-mediated balance between paternal and maternal genomes is critical for mammalian development

Parthenogenesis in mammals


Kono et al 2004

Birth of parthenogenetic mice that can develop to adulthood

Tomohiro Kono^{1,3}, Yayoi Obata^{1,3}, Quiong Wu^{1,3}, Katsutoshi Niwa^{1,3}, Yukiko Ono¹, Yuji Yamamoto^{2,3}, Eun Sung Park⁴, Jeong-Sun Seo^{4,5} & Hidehiko Ogawa^{1,3}

 ¹Department of BioScience, and ²Department of Applied Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
 ³Bio-oriented Technology Research Advancement Institution (BRAIN), Minato-ku, Tokyo 105-0001, Japan
 ⁴MacroGen Inc, Chongno-Ku, Seoul 110-061, Korea
 ⁵Department of Biochemistry, Seoul National University College of Medicine, Chongno-Ku, Seoul 110-799, Korea

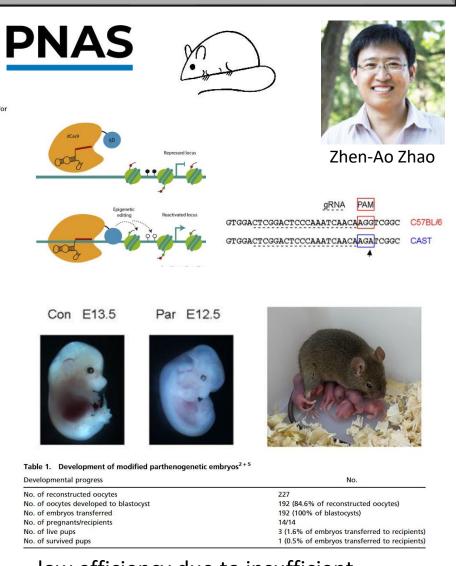
- AOA of oocyte containing two sets of maternal genome reconstructed by series of nuclear transfers
- one allele derived from mouse with deleted H19 gene (loss of maternal imprints)
- the mutated parthenote developed to adulthood with the ability to reproduce

Table 1	Developmen	t of reconstructed	partheno	aenetic embryo	S
10010 1	Doropinon		partitiono		

Developmental progress	Number		
Number of reconstructed eggs	457		
Number of embryos developed to blastocysts	417 (91.2% of reconstructed eggs)		
Number of embryos transferred	371 (89.0% of blastocysts)		
Number pregnants/recipients	24/26		
Number of implantation to recipients	246 (71.7% of embryos transferred to pregnants		
Number of pups	28 (8.2% of embryos transferred to pregnants)		
Dead	18 (5.2% of embryos transferred to pregnants)		
Live	8 (2.3% of embryos transferred to pregnants)		
Survived	2 (0.6% of embryos transferred to pregnants)		

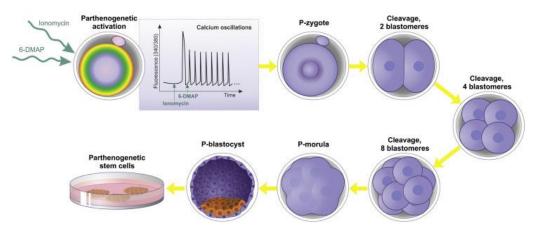
genomic imprinting is a barrier for parthenogenesis in mammals

Parthenogenesis in mammals


Viable offspring derived from single unfertilized mammalian oocytes

Yanchang Wei^{a,b,1},, Cai-Rong Yang^{a,b,c}, and Zhen-Ao Zhao^{a,b,d}

^aCenter for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; ^bShanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; ^cCenter for Reproductive Sciences, University of California, San Francisco, CA 94143; and ^dState Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

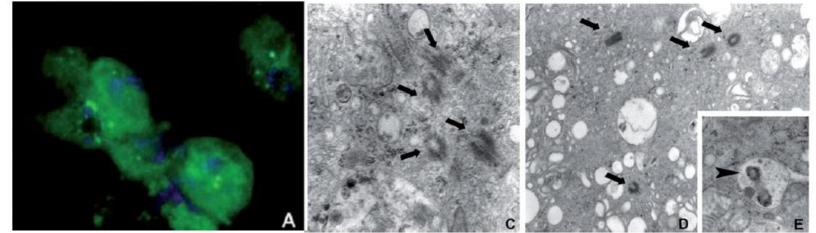

- Targeted epigenetic editing of imprinting control regions

- oocyte injection with single-guide RNAs with protospacer adjacent motif (PAM) sequences matching one allele but not the other
- DNA (de)methylation modification by catalytically inactive 9 (dCas9)-Dnmt3a or dCpf1-Tet1
- transfer of mouse genome-edited parthenogenetic blastocysts to foster mothers
- significantly extended development, and viable full-term offspring

- low efficiency due to insufficient methylation or loss of imprinting

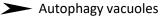
Parthenogenetic stem cells (PESCs)

1n PESCs


- spontaneous diploidisation

2n PESCs

- trophoblast underdeveloped
- little extraembryonic tissue


- abnormal genetic imprinting lost during culture
- study of imprinting and inheritance mechanisms

Brevini et al 2009

Supernumerary centrioles

Parthenogenotes and partheno-embryo chimeras

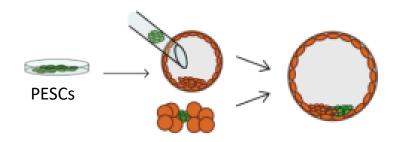
Parthenotes

- developmental arrest
- physiologically unable to develop to term
- reproductively and in vitro aged eggs prone to spontaneous activation and short-term partnogenetic development in ART !

Whole embryo aggregation

Partheno-embryo chimeras

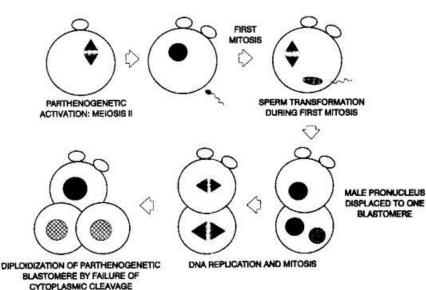
- Generated by

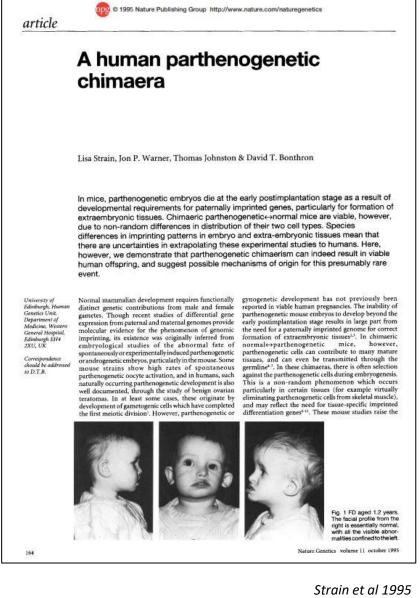

(a) combination of embryo and parthenote blastomeres (b) injection of PESCs to morula/ blastocyst

Blastomere replacement

- can develop to term but delayed development
- parthenote cells fail to contribute to tissues of mesoderm and endodermal origin

nogenotes and partnerio embryo emmere





Parthenogenesis in humans

- rare event but not impossible
- phenotypic male, blood cells XX karyotype
- 46,XY/46,XX mosaic
- complete maternal isodisomy in blood cells and fibroblasts
- Sex reversal, facial asymmetry, mild festures
- Proposed speculative mechanism: diploidisation and spontaneous activation before syngamy

Parthenogenesis in humans

- Implicated in infertility in recurrent miscarriage and pregnancy failure ?
 - reports of ART cases in which cytogenetic analyses of conceptus biopsy samples found match to maternal side exclusively

Table I. Reported cases with PG in the previous literature

Authors, Yr (Ref)	Country	Age (yr)	Gynecologic/Obstetric history	Outcome
Oliveira et al., 2004 (6)	Brazil	29	Left oophorectomy due to ovarian teratoma	Pregnancy
Combelles et al., 2011 (13)	USA	32	Recurrent miscarriages	No pregnancy
Socolov et al., 2015 (14)	African ethnicity	38	Salpingectomy	No pregnancy
Ye et al., 2020 (15)	China	38	Primary infertility with bilateral tubal obstruction	No pregnancy
Jiang et al., 2022 (12)	China	33	Ectopic pregnancy; salpingectomy	Pregnancy
				Hegazy et al 2023

Role in occurrence of idiopathic ovarian teratoma ?

- Slow-growing benign germ cell tumour but can be coverted to malignant
- Composed of derivatives of all 3 germ layers
- Perinatal teratomas believed to originate from mislocalized PGCs but cystic ovarian teratoma mostly found in women of reproductive age

Same sex parent offsprings?

Cell Stem Cell

Article

Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals

Zhi-kun Li,^{1,3,4,4,4} Li-bin Wang,^{1,3,4,8} Le-yun Wang,^{1,3,4,8} Xue-han Sun,^{1,2,4} Ze-hui Ren,^{6,8} Si-nan Ma,^{1,6,8} Yu-long Zhao,^{1,2,8} Chao Lu,^{1,3,4} Gui-hai Feng,^{1,3,4} Tao Liu,⁷ Tian-shi Pan,^{1,4} Qing-tong Shan,^{1,5} Kai Xu,^{1,3,4} Guan-zheng Luo,^{5,4} Qi Zhou,^{1,2,4,4} and Wei Li^{3,2,4,6,4}

¹State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China ²University of Chinese Academy of Sciences, Beijing 100049, China

³Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China

⁴Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China

⁶MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key

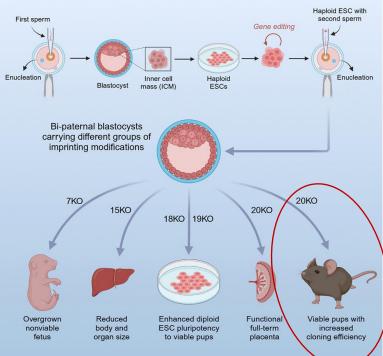
Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

6College of Life Science, Northeast Agricultural University, Harbin 150030, China

⁷Beijing SeqWisdom Biotechnology Co., Ltd., Beijing 100176, China ⁸These authors contributed equally

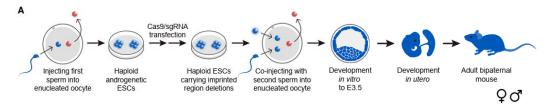
^oThese authors ⁹Lead contact

"Correspondence: lizhikun@ioz.ac.cn (Z.-k.L), luogzh5@mail.sysu.edu.cn (G.-z.L), zhouqi@ioz.ac.cn (Q.Z.), liwei@ioz.ac.cn (W.L) https://doi.org/10.1016/j.stem.2025.01.005 Rewriting reproduction: With stem cells and CRISPR, scientists breed mice with same-sex parents


World First As Mouse With 2 Dads Survives To Adulthood

Imprinting genes have long been a stumbling block for unisexual reproduction in mammals, but scientists have now found a way past it.

Mouse With Two Male Parents Survives to Adulthood


Imprinting modifications in sperm-dervied haploid ESCs

Adult 18KO bipaternal (left) and WT mice

- deletion of 20 imprinted regions + haploid hESC generation +SCNT