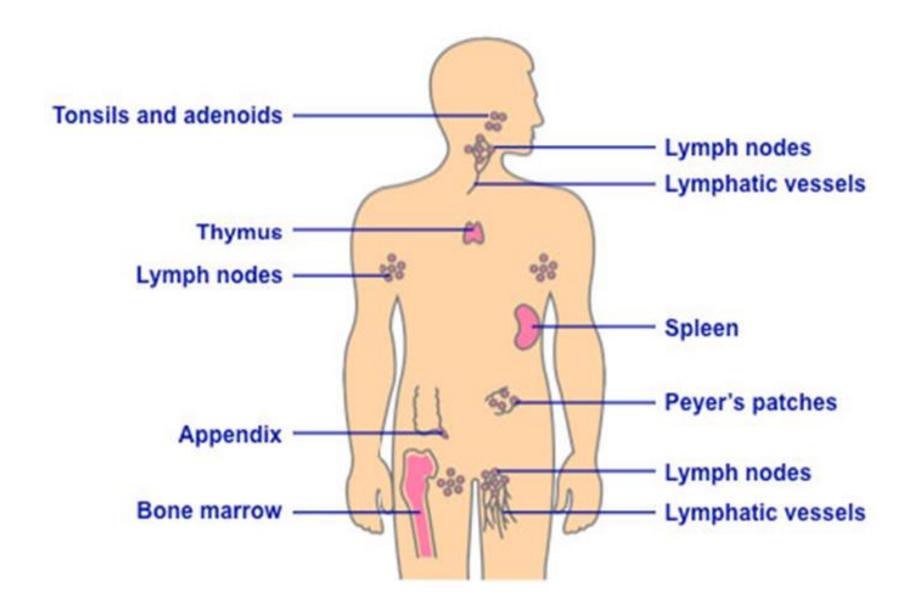
Pathophysiological consequences of immune hypersensitive reactions

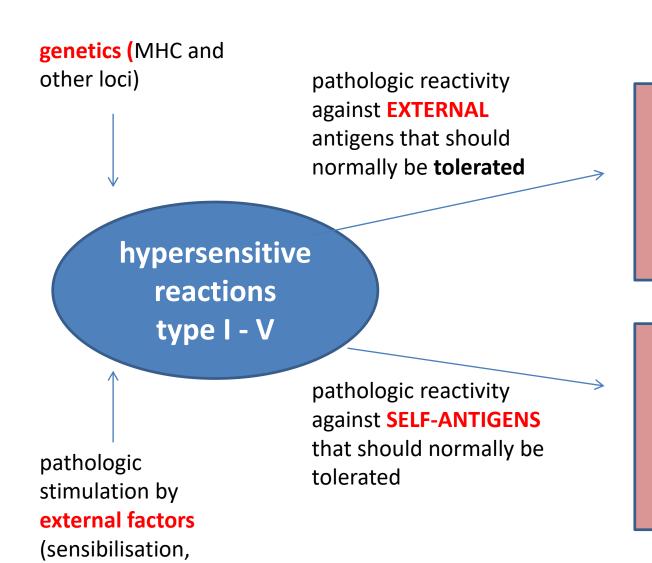
Immune deficiency
Hypersensitivity
Allergy
Autoimmunity



Classification of immune disorders

- immune deficiencies
 - problem of innate (e.g. phagocytosis, complement) or specific immunity (T or B lymphocytes, antibodies)
 - primary, inborn (rare)
 - genetics (for more detail see immunology)
 - secondary, acquired (much more common)
 - e.g. diseases of GIT (malabsorption), kidneys (nephrotic sy), bone marrow (aplasia, leukemias), nutrition (cachexia), tumors, infections (HIV/AIDS),
- hypersensitive reactions solely the case of <u>adaptive immunity!!!</u>
 - reactions directed against environmental antigens
 - allergies
 - other non-lgE hypersensitivities
 - reactions directed against body self-antigens
 - autoimmune diseases

Organs of immune system

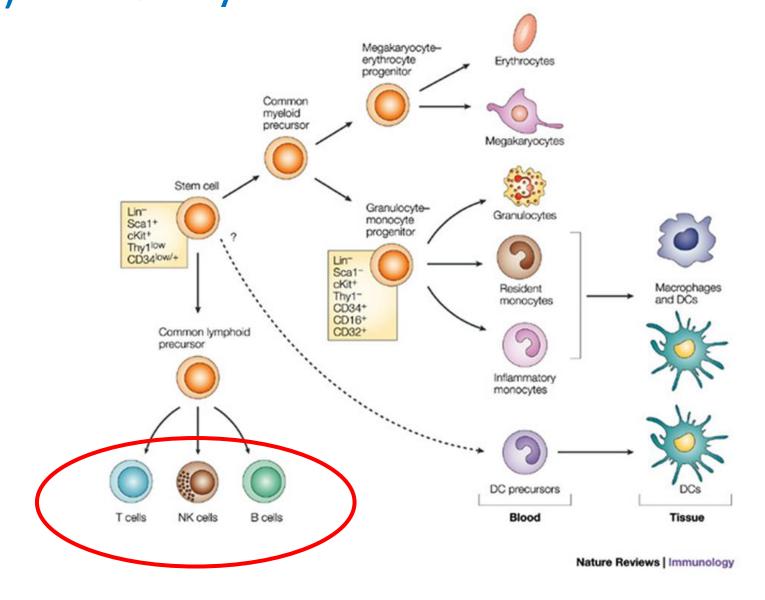

Physiologic use of immune system

vaccination etc.)

genetics (MHC and other loci) immune system (innate and specific immunity) bacteria invasion viruses and parasites recognition fungi of foreign toxins purposeful agent tumor cells immune foreign cells and reaction tissues (incl. transplantation) stimulation by external (environmental) factors (e.g. restoration of initial state infections, hygiene, ATB,

Pathologic activity of immune system

viral infection etc.)


allergy
and other
hypersensitive
reactions against
external antigens

autoimmune diseases

hypersensitive reactions against internal antigens

Immunopathologic reactios are mediated by adaptive (specific) immunity

Hypersensitive reactions (Coombs & Gell)

	Type I	Тур	e II	Type III		Type IV	
lmmune reactant	lgE	lg	j G	lgG	T _H 1 cells	T _H 2 cells	СТL
Antigen	Soluble antigen	Cell- or matrix- associated antigen	Cell-surface receptor	Soluble antigen	Soluble antigen	Soluble antigen	Cell-associated antigen
Effector mechanism	Mast-cell activation	Complement, FcR ⁺ cells (phagocytes, NK cells)	Antibody alters signaling	Complement, phagocytes	Macrophage activation	IgE production, eosinophil activation, mastocytosis	Cytotoxicity
	Ag	platelets + complement	₽	immune complex blood vessel	chemokines, cytokines, cytotoxins	IL-4 deotaxin cytotoxins, inflammatory mediators	(0)
Example of hypersensitivity reaction	Allergic rhinitis, asthma, systemic anaphylaxis	Some drug allergies (e.g. penicillin)	Chronic urticaria (antibody against FCεRIα)	Serum sickness, Arthus reaction	Contact dermatitis, tuberculin reaction	Chronic asthma, chronic allergic rhinitis	Graft rejection

Figure 13-1 Immunobiology, 7ed.

PRINCIPLES OF IMMUNE REACTIVITY (DIVERSITY) AND TOLERANCE (SELF-TOLERANCE)

Immune tolerance vs. autoimmunity and autoimmune diseases

- autoimmunity = immune reactivity against self-antigens
 - original view
 - autoimmunity = unwanted phenomenon ("horror autotoxicus", Paul Ehrlich)

- but it is common in reality (though clinically silent) phenomena
 - existence of auto-reactive clones of T-lymphocytes
- tolerance of self, undamaged cells and tissues must be ensured continually !!! (self-tolerance)
- autoimmune disease
 - detectable morphologic and functional damage

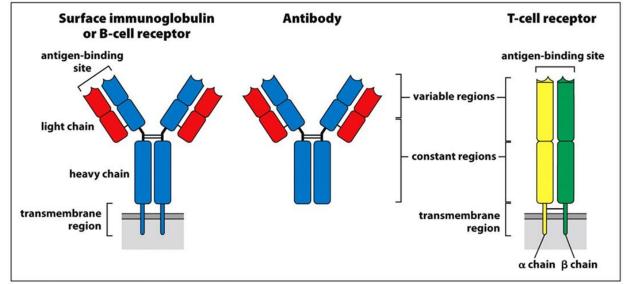
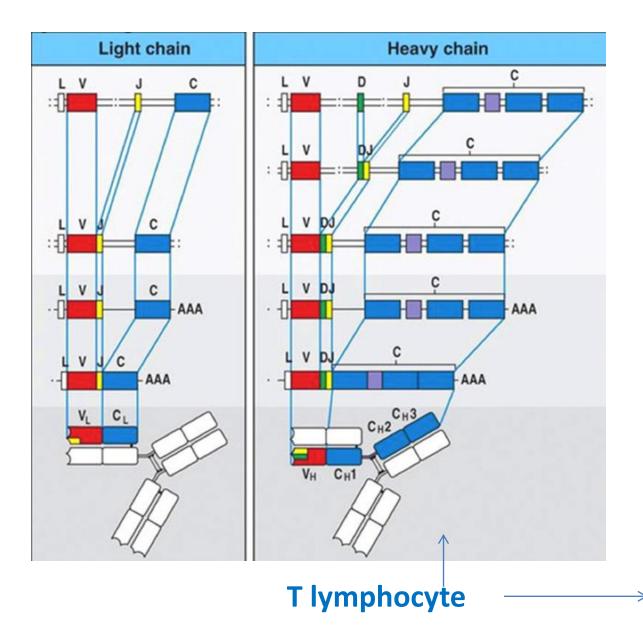
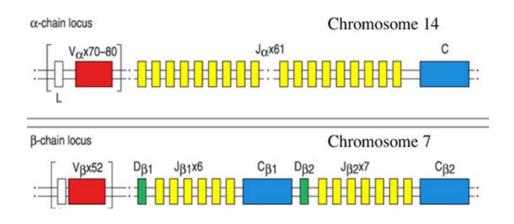
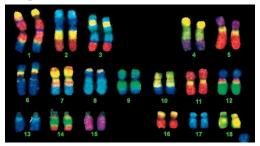



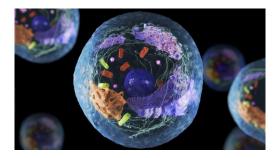
Figure 3.1 The Immune System, 3ed. (© Garland Science 200



Massive diversity of B a T lymphocyte receptors

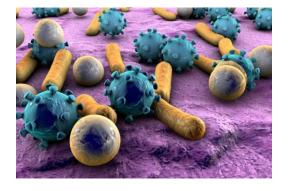
Somatic recombination (maturation) and selection of variants


- **B**-lymphocytes in **b**one marrow
- <u>T</u>-lymphocytes in <u>t</u>hymus recombination leads to the production of vast amount of random variants incl. autoreactive ones (inevitable)



Challenge for our adaptive immune systeam

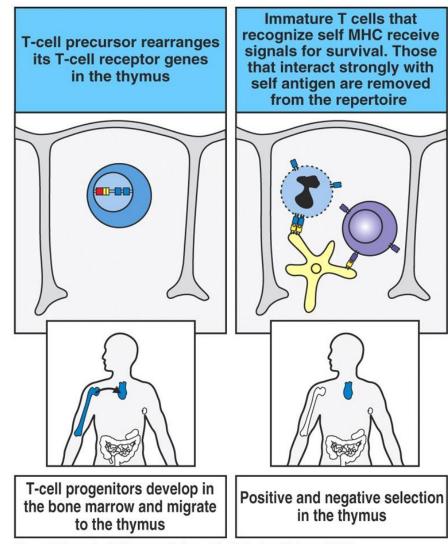
- self
 - lidský genom cca 30,000 genů


- 20,000 proteinů
 - peptidy/antigeny
 - post translační modifikace a splice-varianty
- tisíce typů diferencovaných buněk

komplexita stavby buňky – dělení – regenerace – hojení apod.

non-self

- mikroorganismy
 - miliony až miliardy virů, bakterií aj.



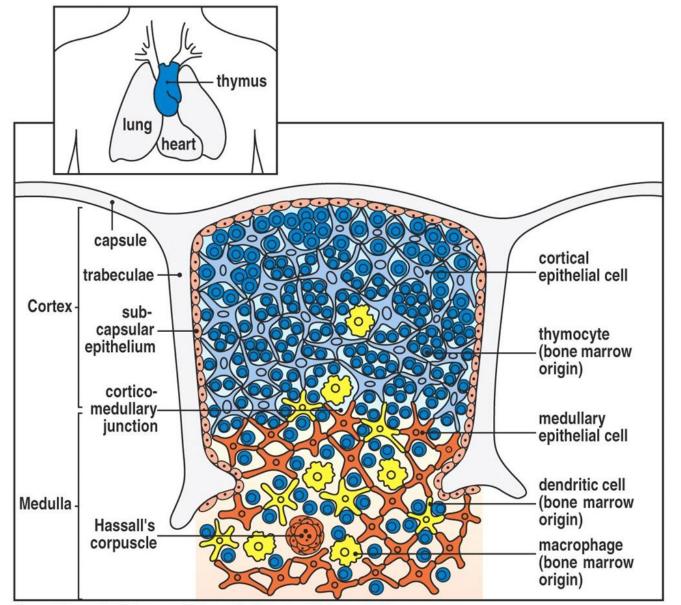
- desetitisíce dalších organizmů
- pozměněné tkáně

Molecular mechanisms of central immune tolerance

- B &T lymphocytes originate in the bone marrow
 - B &T-cell receptor specificities are generated randomly
- Positive and negative selection mechanisms shape the lymphocyte repertoire
 - B cells mature in the bone marrow
 - T cells mature in the thymus
- therefore, majority of anti-self lymphocytes are centrally deleted (apoptosis) or anergic

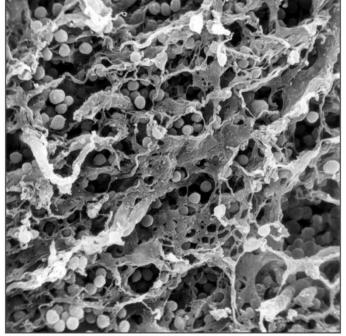
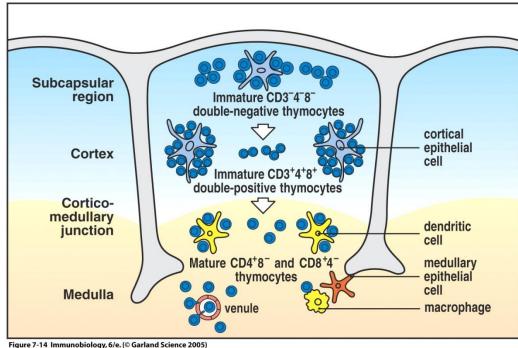


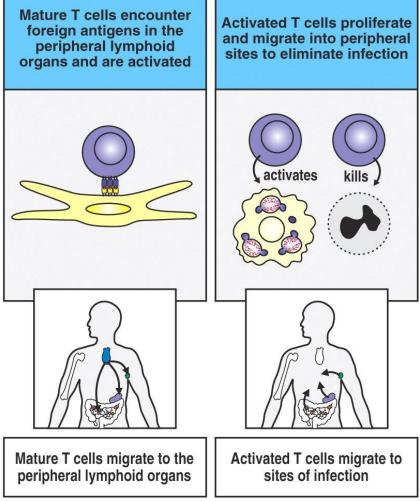
Central and peripheral tolerance of B lymphocytes


- in case of autoreactivity
 - apoptosis
 - receptor editing
- stimulation of B lymphocytes in periphery requires cooperation with (stimuli from) Th lymphocytes, the control of event. T lymphocyte autoreactivity must be, therefore, stricter = existence of specialised organ (thymus)

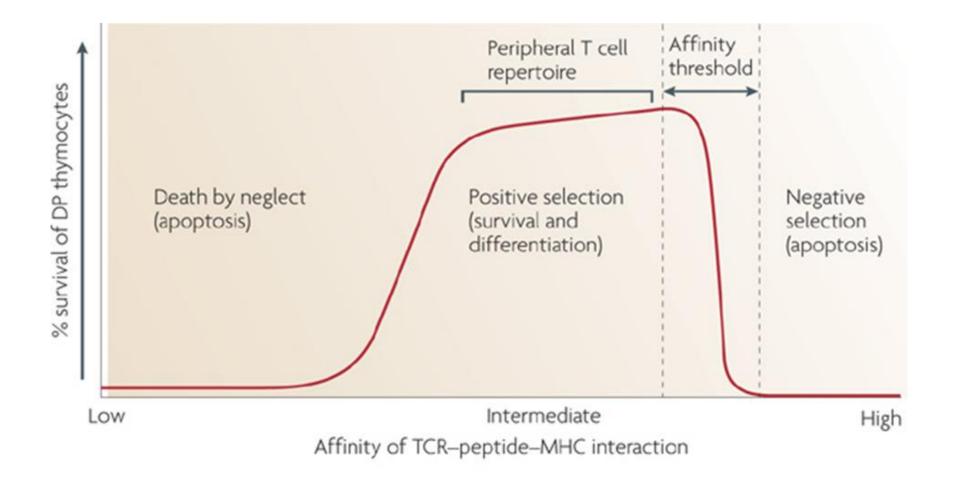
© Elsevier. Abbas et al: Cellular and Molecular Immunology 6e - www.studentconsult.com

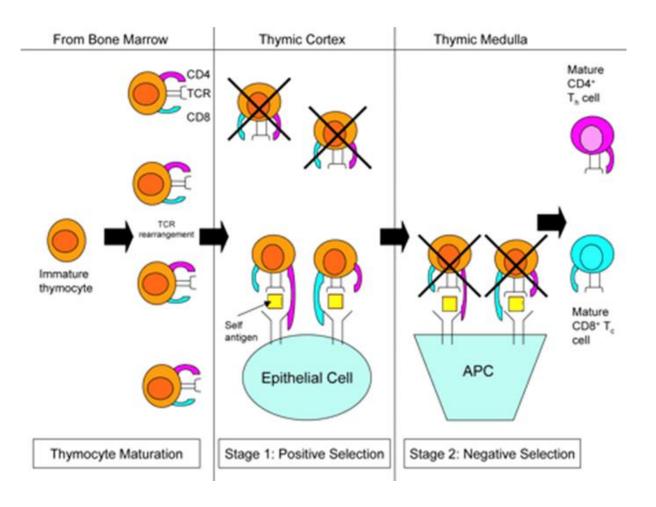
Thymus

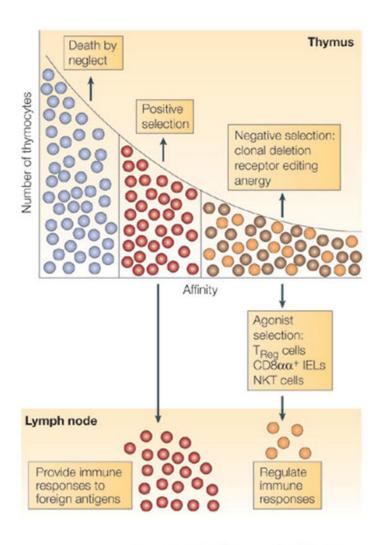

Figure 7-9 Immunobiology, 6/e. (© Garland Science 2005)

In the thymus and after ...



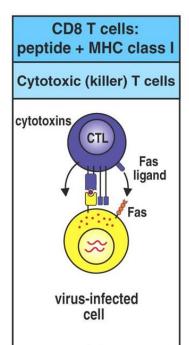


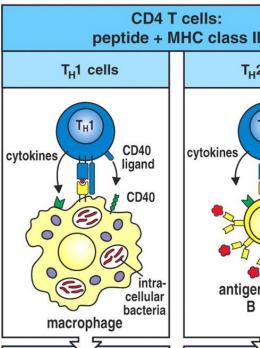
Selection of T cells in the thymus based on the **affinity** of their TCR **for MHC II peptides**


Principles of central tolerance - thymocyte maturation

- Immature thymocytes from the bone marrow undergo T-cell receptor (TCR) rearrangement.
- Stage 1: once immature CD4+8+ thymocytes enter the thymus they undergo MHC restriction, whereby only CD4+8+ thymocytes that interact with MHCpresented antigen on epithelial cells receive a positive survival signal
 - those that do not interact are deleted by apoptosis.
- Stage 2: this stage involves the negative selection of thymocytes that survive stage 1. Thymocytes with too strong an association for self-MHC and self-antigens are deleted by apoptosis, allowing the remaining thymocytes to mature into CD4+ T-helper (Th) cells or CD8+ cytotoxic (Tc) cells

Quantitative perspective




Copyright © 2005 Nature Publishing Group Nature Reviews | Immunology

- The affinity of the T-cell receptor (TCR) for self-peptide— MHC ligands is the crucial parameter that drives developmental outcome in the thymus.
 - Progenitors that have no affinity or very low affinity die by neglect. This is thought to be the fate of most thymocytes.
 - If the TCR has a low affinity for self-peptide—MHC, then the progenitor survives and differentiates, a process that is known as positive selection.
 - If the progenitor has a high affinity for self-peptide—MHC, then several outcomes are possible.
 - First, the progenitor can be selected against, a process that is known as negative selection. The main mechanism of negative selection is clonal deletion, but receptor editing and anergy have also been described.
 - Second, there seem to be mechanisms that select for high-affinity self-reactive cells and result in differentiation into a 'regulatory'-cell phenotype. It is not known what determines whether a T cell is tolerized by negative selection or is selected to become a regulatory T cell.
 - (IEL, intestinal epithelial lymphocyte; NKT cell, natural killer T cell; TReg cell, CD4+CD25+ regulatory T cell).

T lymphocytes leaving thymus can be further functionally specialised into various effector cells

C class II
T _H 2 cells
CD40 ligand CD40 bacterial toxin antigen-specific B cell
- 10 miles

Cytotoxic effector molecules	Others
Perforin Granzymes Granulysin Fas ligand	IFN-γ TNF-β TNF-α

	7
Macrophage- activating effector molecules	Others
IFN-γ GM-CSF TNF-α CD40 ligand Fas ligand	IL-3 TNF-β (IL-2) CXCL2 (GROβ)

B-cell- activating effector molecules	Others
IL-4 IL-5 IL-15 CD40 ligand	IL-3 GM-CSF IL-10 TGF-β CCL11 (eotaxin) CCL17 (TARC)

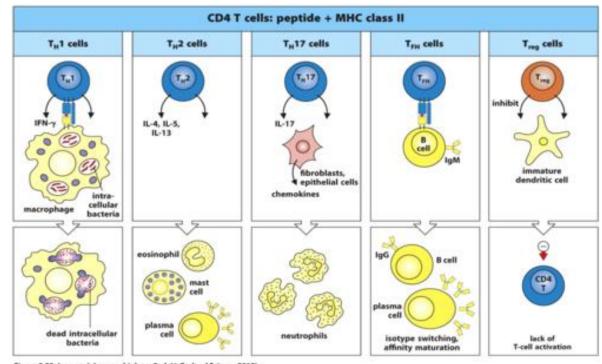


Figure 9.28 Janeway's Immunobiology, Bed. (© Garland Science 2012)

Figure 8-31 Immunobiology, 6/e. (© Garland Science 2005)

The function of T cells (CD4/CD8) differs primarily according to their cytokine profile

Cytokine	T-cell source		Effect of				
Cytokiie	T-cell source		T cells	Macrophages	Hematopoietic cells	Other somatic cells	gene knockout
Interleukin-2 (IL-2)	Naive, T _H 1, some CD8	Stimulates growth and J-chain synthesis	Growth	-	Stimulates NK cell growth	-	↓ T-cell responses IBD
Interferon-γ (IFN-γ)	T _H 1, CTL	Differentiation IgG2a synthesis (mouse)	Inhibits T _H 2 cell growth	Activation, ↑ MHC class I and class II	Activates NK cells	Antiviral ↑ MHC class I and class II	Susceptible to mycobacteria, some viruses
Lymphotoxin (LT, TNF-β)	T _H 1, some CTL	Inhibits	Kills	Activates, induces NO production	Activates neutrophils	Kills fibroblasts and tumor cells	Absence of lymph nodes Disorganized spleen

Figure 8-32 part 1 of 3 Immunobiology, 6/e. (© Garland Science 2005)

Cytokine T-cell source			Effect of				
Cytokine	1-cell source	B cells	T cells	Macrophages	Hematopoietic cells	Other somatic cells	gene knockout
Interleukin-4 (IL-4)	T _H 2	Activation, growth IgG1, IgE ↑ MHC class II induction	Growth, survival	Inhibits macrophage activation	↑ Growth of mast cells	-	No T _H 2
Interleukin-5 (IL-5)	T _H 2	Mouse: Differentiation IgA synthesis	-	-	Eosinophil growth and differentiation	-	Reduced eosinophilia
Interleukin-10 (IL-10)	T _H 2, (human: some T _H 1)	↑ MHC class II	Inhibits T _H 1	Inhibits cytokine release	Co-stimulates mast cell growth	_	IBD

Figure 8-32 part 2 of 3 Immunobiology, 6/e. (© Garland Science 2005)

Cytokine	T-cell source		Effects on				
T-cen source		B cells	T cells	Macrophages	Hematopoietic cells	Other somatic cells	gene knockout
Interleukin-3 (IL-3)	T _H 1, T _H 2, some CTL	-	-	-	Growth factor for progenitor hematopoietic cells (multi-CSF)	-	-
Tumor necrosis factor- α (TNF- α)	T _H 1, someT _H 2, some CTL	ı	-	Activates, induces NO production	1	Activates microvascular endothelium	Resistance to Gram -ve sepsis
Granulocyte- macrophage colony-stimulating factor (GM-CSF)	T _H 1, some T _H 2, some CTL	Differentiation	Inhibits growth ?	Activation Differentiation to dendritic cells	↑ Production of granulocytes and macrophages (myelopoiesis) and dendritic cells	-	-
Transforming growth factor-β (TGF-β)	CD4 T cells	Inhibits growth IgA switch factor	Inhibits growth, promotes survival	Inhibits activation	Activates neutrophils	Inhibits/ stimulates cell growth	Death at ~10 weeks

Figure 8-32 part 3 of 3 Immunobiology, 6/e. (© Garland Science 2005)

Molecular mechanisms of peripheral immune tolerance

- INDISPENSABLE, CENTRAL ONLY INSUFFICIENT ON ITS OWN!!!
 - it is not possible to express all self-antigens in thymus and ensure the elimination of entire pool of auto-aggressive T lymphocytes
- (1) very low number of self-reactive lymphocytes (surviving the clonal deletion) escape the central mechanisms and leave the thymus
 - autoreactive B & T lymphocytes are normally present in healthy individuals
 - but in order to be activated they need many other signals, mainly from the innate immune cells
 - usually in the presence of infection or tissue damage
- (2) intentional survival of autoreactive T cell differentiated into peripheral Treg to boost immune tolerance
 - CD4+CD25+ (about 5-10% of CD4 cells)
 - their development and maintenance is highly dependent on costimulation and IL-2
 - Treg express CD25, TNFa receptor, CTLA-4, and Foxp3
 - act in tissues to control inflammation via direct effects on effector T cells or DCs
 - suppression is contact and also cytokine dependent (TGF-b/ IL-10)

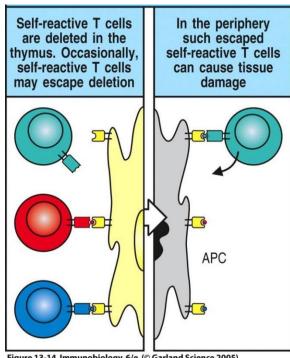
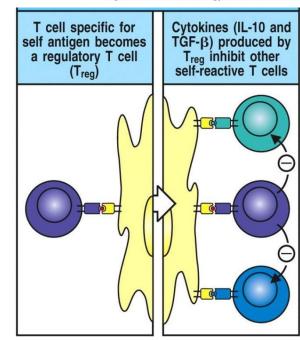
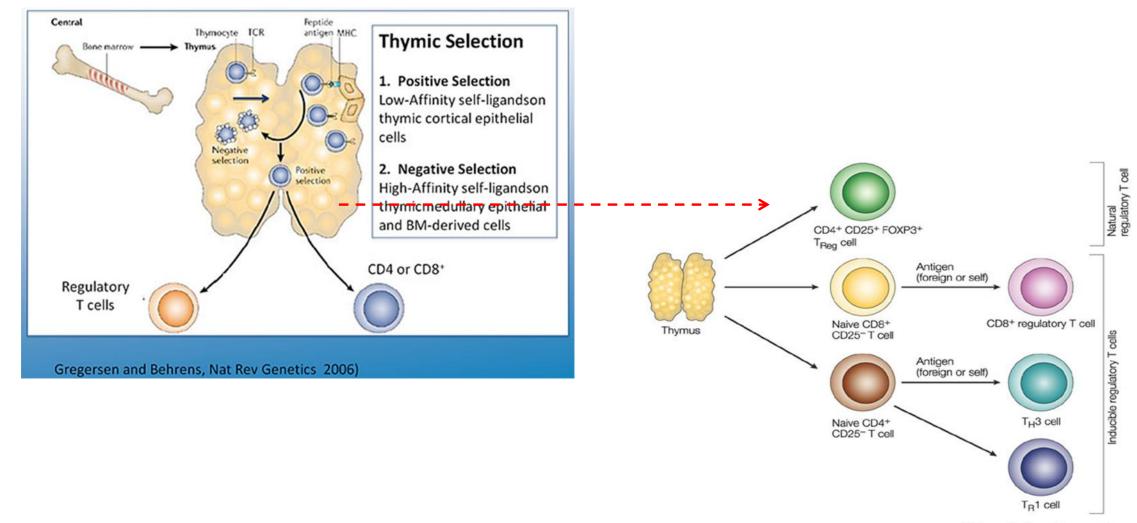




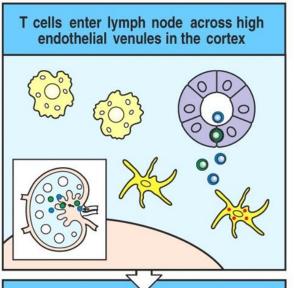
Figure 13-14 Immunobiology, 6/e. (© Garland Science 2005)

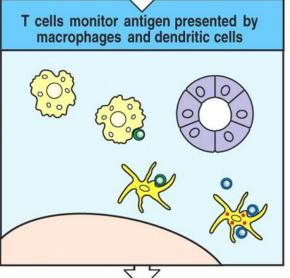
But there are other (CD25-) sub-population of suppressor lymphocytes that are inducible

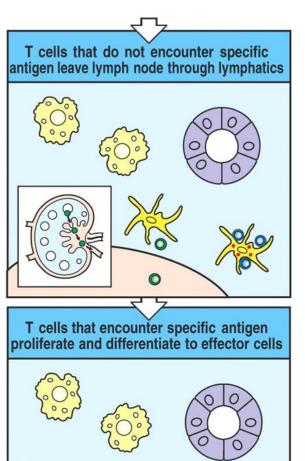
Summary of mechanisms of self-tolerance

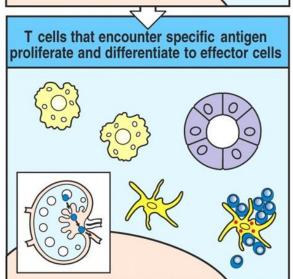
Layers of self-tolerance							
Type of tolerance	Mechanism	Site of action					
Central tolerance	Deletion Editing	Thymus Bone marrow					
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (eg, thyroid, pancreas)					
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissue					
Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissue and sites of inflammation					
Cytokine deviation Cytokine deviation Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion		Secondary lymphoid tissue and sites of inflammation					
Clonal exhaustion	Apoptosis post-activation	Secondary lymphoid tissue and sites of inflammation					

Figure 13-16 Immunobiology, 6/e. (© Garland Science 2005)

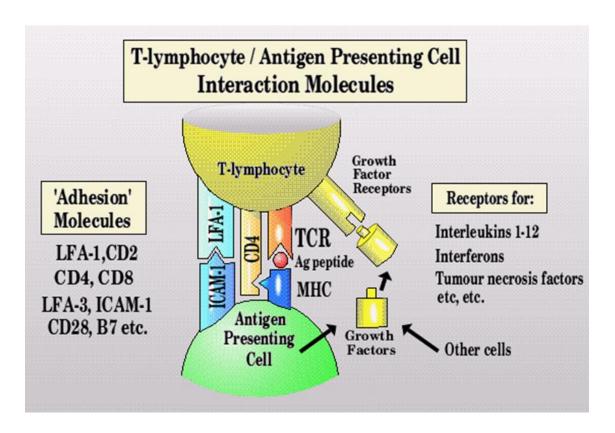





ACTIVATING AND EFFECTOR MECHANISMS OF AUTOIMMUNITY

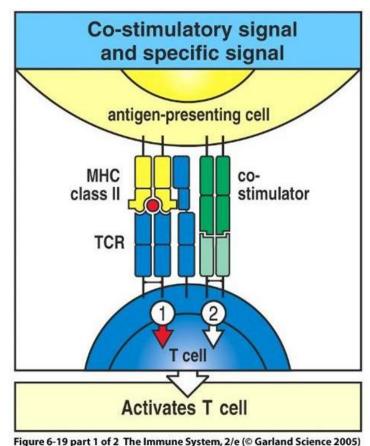


Normal activation of T lymphocytes



- An important part of determining which signalling molecules are present is the local environment within the architecture of the immune system = i.e. the inflammatory environment shapes the activation of both T cells and APCs
- Infections tend to cause inflammation and the release of inflammatory cytokine molecules like interferongamma, and find their way into the immune system via the lymph system to the lymph-nodes. Therefore the lymph-node is specialized for presenting foreign antigens to generate immune responses.

Normal activation of Th lymphocytes

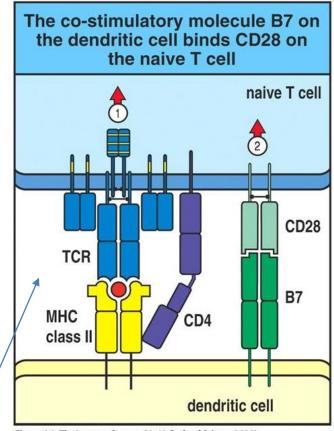
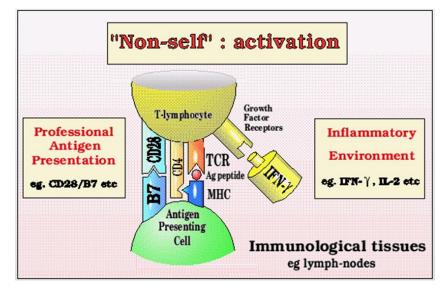

- T-lymphocytes expressing a CD4, a receptor for the MHC-class II molecule
- antigens from the infectious organism or foreign tissue are processed into peptides by APCs (B cells, Mac, and DCs) and these peptides bind to the MHC-II molecules that are recognized by the T-lymphocyte using its antigen receptor

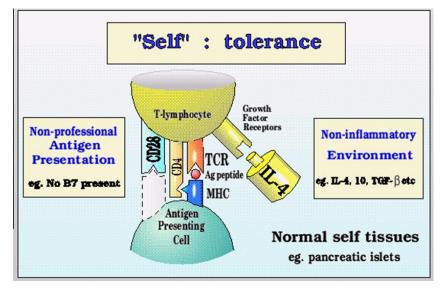
MHC restriction

- A number of other adhesion molecules and growth factors are also used to send signals between the T-lymphocyte and the APCs, and only if all the signals are correct does the Tlymphocyte become activated and aggressive
 - an aggressive response results in the multiplication of that clone of T- lymphocytes, which also develop the ability to kill all further infected cells, using a similar recognition process to that shown above

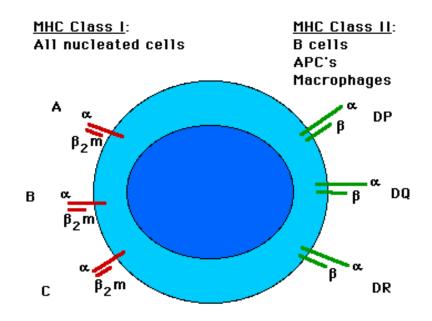
Activation of naive T lymphocytes requires 3 signals

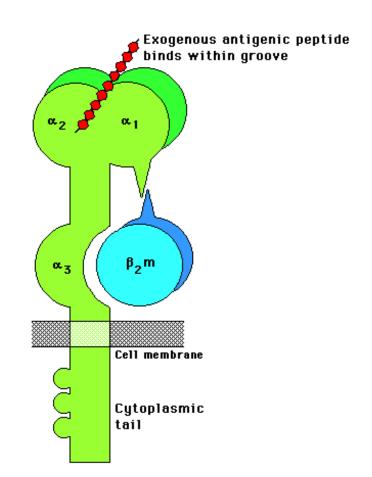
Specific signal alone antigen-presenting cell T cell T cell becomes anergic

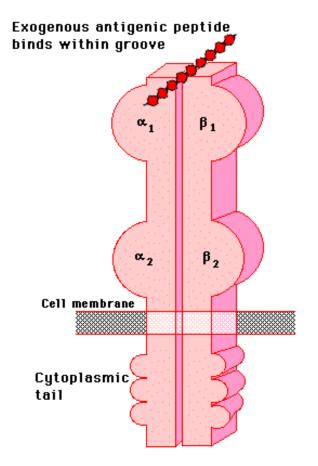



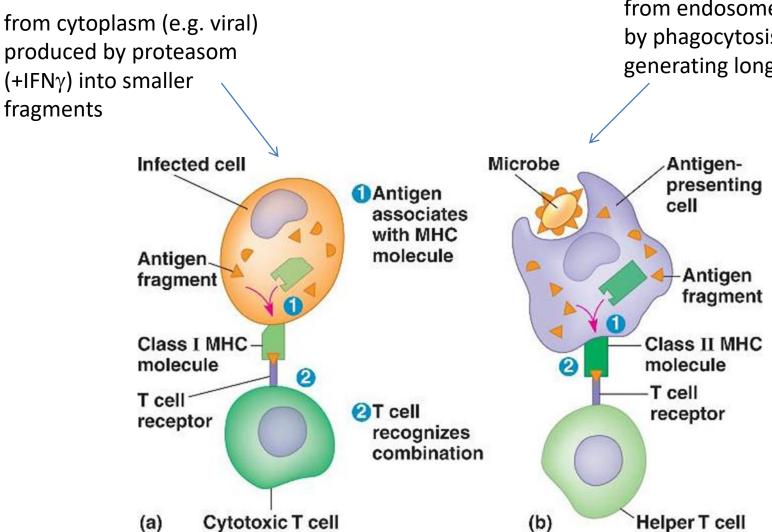

Figure 6-9 The Immune System, 2/e (© Garland Science 2005)

Activation of T lymphocytes therefore crucially depends on "local environment"


- outside the immune system many of the important molecules for signaling aggression are not expressed
- In this situation, although antigen can still be recognized by the T-lymphocyte, the response is not one of aggression, but rather of tolerance
- This non-inflammatory environment can be reinforced by the presence of antiinflammatory cytokines like IL-4 and IL-10, that can either be produced by healthy tissues, or by a population of T-lymphocytes that are protective and tend to yet further suppress any tendency to (self) aggression




Role of MHC in the selection and activation of T lymphocytes


Complex		HLA							
MHC class	п			I	II I				
Region	DP	DQ	DR	C4, C2, BF		В	С	A	
Gene products	DP αβ	DQ αβ	DR αβ	C' proteins TNF-α TNF-β		HLA-B	HLA-C	HLA-A	

Peptide generation and loading on MHC

from endosome (e.g. extracellular antigens ingested by phagocytosis) processed by lysosomal proteases generating longer peptide fragments

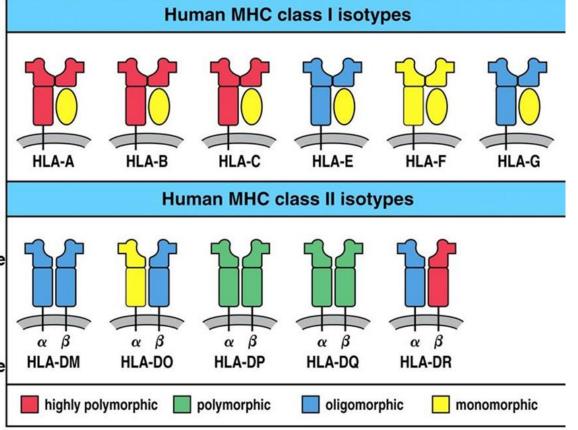
Consequences of HLA polymorphism

- variable spectrum of peptides able to bind to MHC molecules
- variable conformation of bound peptides
- and subsequently variable intensity of the interaction with TCR

HLA antigens

HLA-I A,B, C and HLA-II DP, DQ, DR are extremely polymorphic (= many common alleles in the population), the majority of people are heterozygotes and the expression is co-dominant (i.e. both

alleles are represented on the cell surface)


HLA-A,B,C -present peptide antigens to CD8 Tcells and interact with NK-cells

HLA-E,G -interact with NK-cells

HLA-F -?

HLA-DP,DQ,DR
- present peptide
antigens to CD4
Tcells

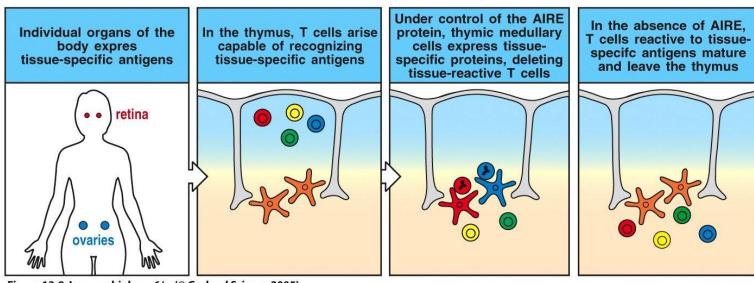
HLA-DM,DO -regulate peptide loading of DP,DQ,DR

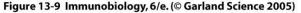
MHC class	HLA locus	Number of allotypes
	Α	506
	В	872
MHC	c	274
class I	E	3
	F	4
	G	10
	DMA	4
	DMB	7
	DOA	3
	DOB	4
	DPA1	15
мнс	DPB1	114
class II	DQA1	25
	DQB1	66
	DRA	2
	DRB1	466
	DRB3	37
	DRB4	7
	DRB5	15

Figure 5.25 The Immune System, 3ed. (© Garland Science 2009)

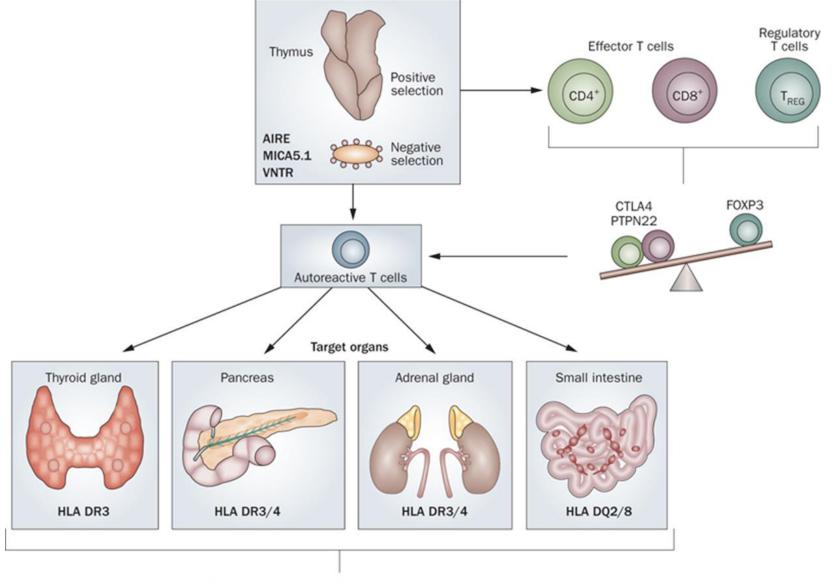
Molecular mechanisms of abnormal B or T cell activation, i.e. autoimmunity

- (1) **genetically** determined failure of central or peripheral selftolerance
- (2) mechanisms related to infection
 - cross-reactivity (molecular and viral mimicry)
 - polyclonal B cell activation by viruses and bacteria
- (3) release of sequestered antigen(s)
 - several sites of "immune privilege" in the body
- (4) haptens becoming immunogenic
- (5) inappropriately high, abnormal MHC expression

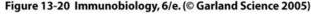

Molecular mechanisms of abnormal B or T cell activation


- (1) **genetically** determined failure of central or peripheral self-tolerance
 - strong or nearly monogenic determination
 - mutated AIRE (APS 1) = insufficient expression of tissue-specific antigens in v thymus
 - mutated FoxP3 (IPEX) = impaired differentiation of Treg
 - mutated Fas = defects of apoptosis (a thus negative selection)
 - moderate to weak genetic predisposition (see further)

Example (1): APS 1 – genetically predisposed failure of negative selection in thymus


- autoimmune polyglandular syndrome type 1 (APS1)
 - autosomal recessive
- defective autoimmune regulator AIRE (AutoImmune REgulator) gene (chromosome 21q22.3)
 - AIRE protein transcription factor expressed in lymphoid organs
- role in the induction of immune tolerance
 - controls expression of important self-antigens by epithelial cells of thymus, esp. those otherwise expressed only in endocrine glands

Endocrinopathies associated with APS 1



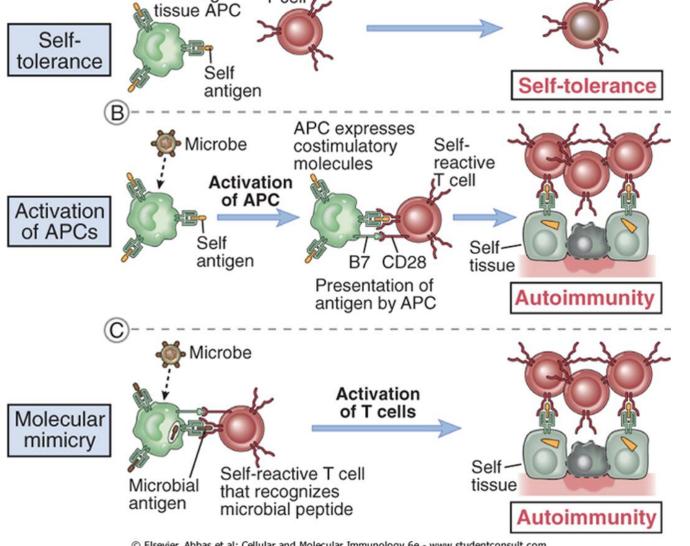
Strength of genetic predisposition to autoimmune diseases

- strong (often monogenic)
 - family of autoimmune polyglandular syndromes
 - defective AIRE = APS 1 (syn. APECED (autoimmune polyendocrinopathy – candidiasis - ectodermal dystrophy), Whitaker syndrome)
 - M. Addison, + hypoparathyreoidism, others
 - heterogenic genetic defects = APS 2 (Schmidt syndrome)
 - M. Addison, hypothyreoidism, T1DM
 - defective FoxP3 = IPEX (immune dysfunction, polyendocrinopathy, and enteropathy, X-linked)
- weaker (polygenic)
 - MHC alleles
 - other non-MHC genes

Associations of HLA serotype with susceptibility to autoimmune disease							
Disease	HLA allele	Relative risk	Sex ratio (♀:♂)				
Ankylosing spondylitis	B27	87.4	0.3				
Acute anterior uveitis	B27	10	< 0.5				
Goodpasture's syndrome	DR2	15.9	~1				
Multiple sclerosis	DR2	4.8	10				
Graves' disease	DR3	3.7	4-5				
Myasthenia gravis	DR3	2.5	~1				
Systemic lupus erythematosus	DR3	5.8	10-20				
Type I insulin-dependent diabetes mellitus	DR3/DR4 heterozygote	~ 25	~1				
Rheumatoid arthritis	DR4	4.2	3				
Pemphigus vulgaris	DR4	14.4	~1				
Hashimoto's thyroiditis	DR5	3.2	4–5				

Examples of non-MHC gene variants enhancing the risk of autoimmune diseases

Gene	Phenotype of mutant or knockout mouse	Mechanism of failure of tolerance	Human disease?
AIRE	Destruction of endocrine organs by antibodies, lymphocytes	Failure of central tolerance	Autoimmune polyendocrine syndrome (APS)
C4	SLE	Defective clearance of immune complexes; failure of B cell tolerance?	SLE
CTLA-4	Lymphoproliferation; T cell infiltrates in multiple organs, especially heart; lethal by 3-4 weeks	Failure of anergy in CD4 ⁺ T cells	CTLA-4 polymorphisms associated with several autoimmune diseases
Fas/FasL	Anti-DNA and other autoantibodies; immune complex nephritis; arthritis; lymphoproliferation	Defective deletion of anergic self- reactive B cells; reduced deletion of mature CD4 ⁺ T cells	Autoimmune lymphoproliferative syndrome (ALPS)
FoxP3	Multi-organ lymphocytic infiltrates, wasting	Deficiency of regulatory T cells	IPEX
IL-2; IL- 2Rα/β	Inflammatory bowel disease; anti- erythrocyte and anti-DNA autoantibodies	Defective development, survival or function of regulatory T cells	None known
SHP-1	Multiple autoantibodies	Failure of negative regulation of B cells	None known
PTPN22	Increased lymphocyte proliferation, antibody production	Reduced inhibition by tyrosine phosphatase?	PTPN22 polymorphisms are associated with several autoimmune diseases



Molecular mechanisms of abnormal B or T cell activation

- (2) mechanisms related to **infection**
 - cross-reactivity (molecular and viral mimicry)
 - viral and non-viral peptides can mimic self-peptides and induce autoimmunity
 - polyclonal B cell activation by viruses and bacteria
 - typical for some bacteria and viruses (e.g. G- bacteria, CMV, EBV) inducing nonspecific polyclonal activation of B-lymphocytes (expressing IgM) in absence of Th-ly ("by-pass oeffect")
 - if B cells reactive to self-peptides are activated, autoimmunity can occur

Example (2): Role of infection in autoimmunity

"Resting"

T cell \$

induction of "proinflammatory" environment, production of stimulators for preexisting autoreactive T lymphocytes

cross-reactivity, random principle

TABLE 20-3 MOLECULAR MIMICRY BETWEEN PROTEINS OF INFECTIOUS ORGANISMS AND HUMAN HOST PROTEINS

Protein*	Residue [†]	Sequence [‡]
Human cytomegalovirus IE2	79	P D P L G R P D E D
HLA-DR molecule	60	V T E L G R P D A E
Poliovirus VP2	70	S T T K E S R G T T
Acetylcholine receptor	176	T V I K E S R G T K
Papilloma virus E2	76	S L H L E S L K D S
Insulin receptor	66	V Y G L E S L K D L
Rabies virus glycoprotein	147	T K E S L V I I S
Insulin receptor	764	N K E S L V I S E
Klebsiella pneumoniae nitrogenase	186	S R Q T D R E D E
HLA-B27 molecule	70	K A Q T D R E D L
Adenovirus 12 E1B	384	L R R G M F R P S Q C N
α-Gliadin	206	L G Q G S F R P S Q Q N
Human immunodeficiency virus p24	160	G V E T T T P S
Human IgG constant region	466	G V E T T T P S
Measles virus P3	13	L E C I R A L K
Corticotropin	18	L E C I R A C K
Measles virus P3	31	E I S D N L G Q E
Myelin basic protein	61	E I S F K L G Q E

^{*}In each pair, the human protein is listed second. The proteins in each pair have been shown to exhibit immunologic cross-reactivity.

SOURCE: Adapted from MBA Oldstone, 1987, Cell 50:819.

[†]Each number indicates the position in the intact protein of the amino-terminal amino acid in the listed sequence.

^{\$}Amino acid residues are indicated by single-letter code. Identical residues are shown in blue.

Molecular mimicry

- sequential or structural identity or similarity of microbe with host tissue
 - auto-aggressive reaction is mediated by the same effector mechanisms used for host defense against pathogen
 - however, often in the terrain of genetic predisposition
 - mainly MHC II alleles
 - but also MHC I e.g. HLA B27

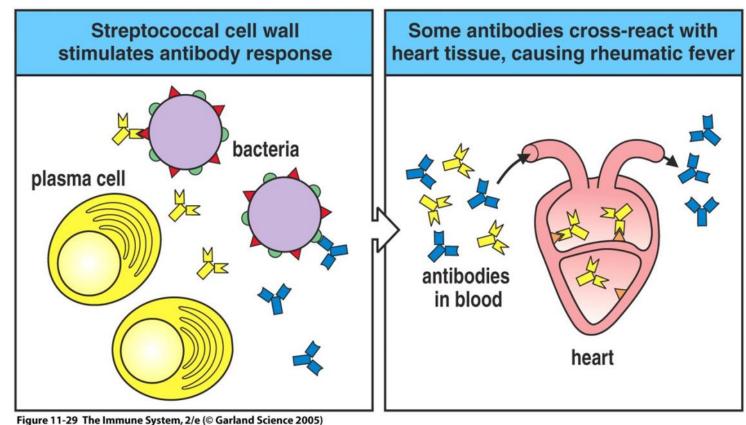
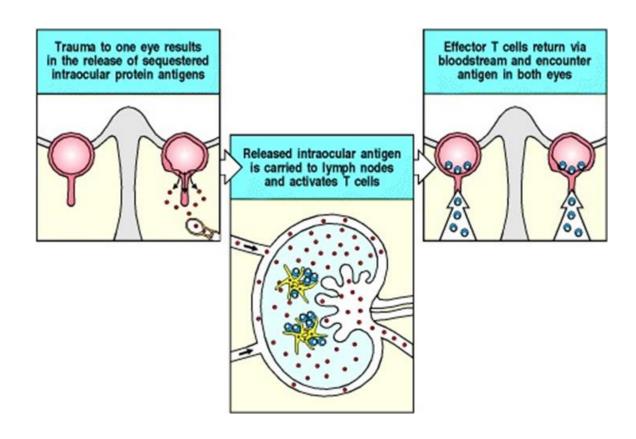

Associations of infection with immune-mediated tissue damage		
Infection	HLA association	Consequence
Group A Streptococcus	?	Rheumatic fever (carditis, polyarthritis)
Chlamydia trachomatis	HLA-B27	Reiter's syndrome (arthritis)
Shigella flexneri, Salmonella typhimurium, Salmonella enteritidis, Yersinia enterocolitica, Campylobacter jejuni	HLA-B27	Reactive arthritis
Borrelia burgdorferi	HLA-DR2, DR4	Chronic arthritis in Lyme disease
Coxsackie A virus, Coxsackie B virus, echoviruses, rubella	HLA-DQ2, HLA-DQ8 DR4	IDDM

Figure 11-30 The Immune System, 2/e (© Garland Science 2005)

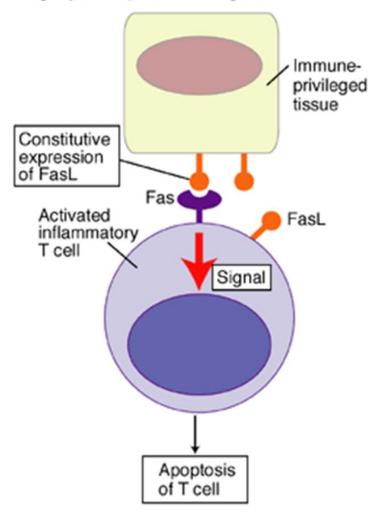
Rheumatic fever (RF) - an example

- Etiology: Streptococci group A (angina, pharyngitis)
- Pathogenesis: Ab X-react w/ connective tissue in susceptible individuals \rightarrow autoimmune reaction (2- 3 wks) \rightarrow inflammation (T cells, macrophages) \rightarrow heart, skin, brain & joints
- Acute RF acute inflammation
 - heart pancarditis
 - skin erythema marginatum
 - CNS chorea minor (Sydenham)
 - migrating polyarthritis
- Chronic RF
 - deformities of heart valves
 - most commonly mitral stenosis


Molecular mechanisms of abnormal B or T cell activation

- (3) release of **sequestered antigen** (several sites of "immune privilege")
 - eye, testes , brain, uterus, ...

Example (3): Loss of immune privilege


- the original idea of "requested antigens"
 - auto-antigens separated from auto-reactive Tlymphocytes by anatomical barriers
- nowadays more of a functional concept of "immune priviledge"
 - anatomic factors
 - absence of lymphatics
 - absence of APCs
 - low expression of MHC I antigens
 - high concentration of anti-inflammatory cytokines
 - high expression of FasL → high activity of apoptosis of T lymph
 - other mechanisms
- examples
 - eye → sympathetic ophthalmia
 - against lens proteins (crystallin)
 - testes → anti-sperm & orchitis
 - brain (BBB) → antibodies in blood can attack myelin basic Protein if blood-brain barrier is breached
 - uterus (placenta) → abortion
 - hair follicles → alopecia

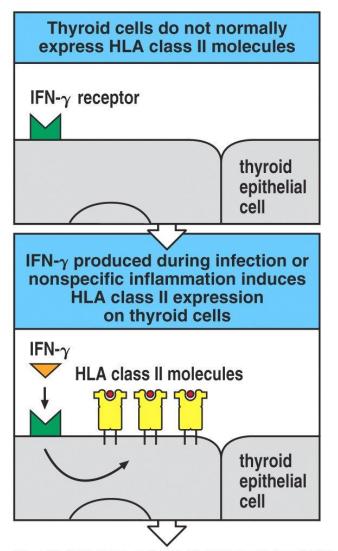
FasL expression may play a role in "immune privilege"

a Immune-privileged site: e.g. eye or reproductive organs

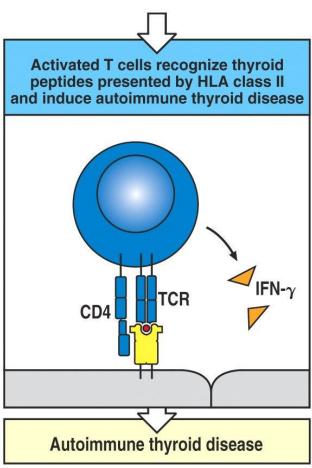
- FasL expression in brain, eye, placenta, and reproductive organs is believed to contribute to immunological privilege
- Aberrant FasL expression may also be an adaptation of tumors to evade immune surveillance

The role of Fas ligand (FasL) in immune privilege

Expert Reviews in Molecular Medicine@2001 Cambridge University Press

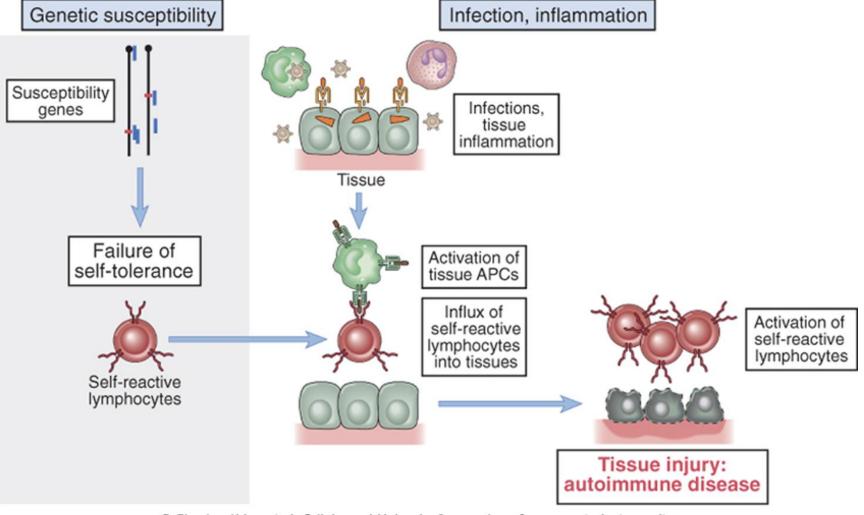

Molecular mechanisms of abnormal B or T cell activation

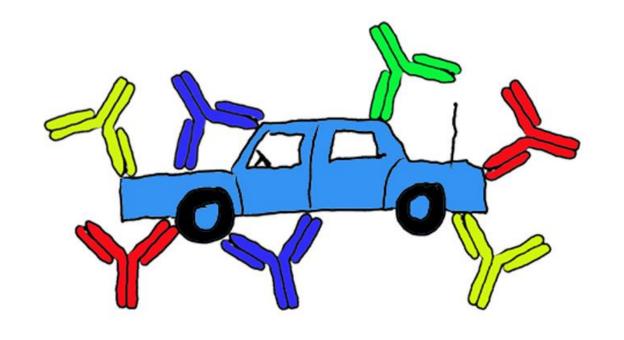
- (5) inappropriately high, abnormal MHC expression
 - $-\,$ e.g. type I diabetes: pancreatic β cells might express abnormally high levels of MHC I and MHC II upon the pathologic stimulation
 - MHC II APC only! this may hypersensitize TH cells to β cell peptides



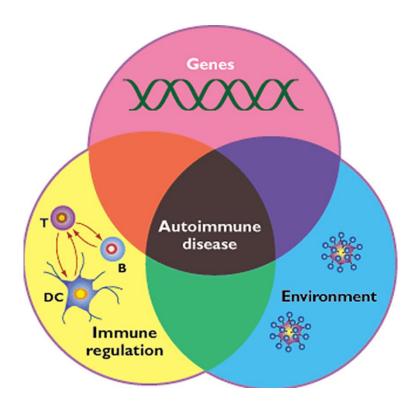
Example (5): abnormally high expression of MHC II. class antigens

- MHC II antigens are normally expressed only on APCs!!!
- due to pathologic activation by proinflammatory cytokines this can change (MHC II are expressed together with tissue-specific Ag)
- auto-reactive T lymphocytes become activated
- examples
 - pancreas
 - β cells normally low MHC I expression, no MHC II
 - β cells in T1DM high expression of MHC I and II
 - upon stimulation by infection?
 - similarly thyroid gland in autoimmune thyroiditis (Hashimoto)



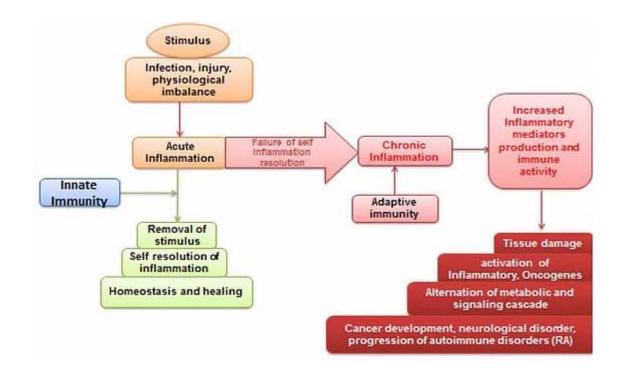


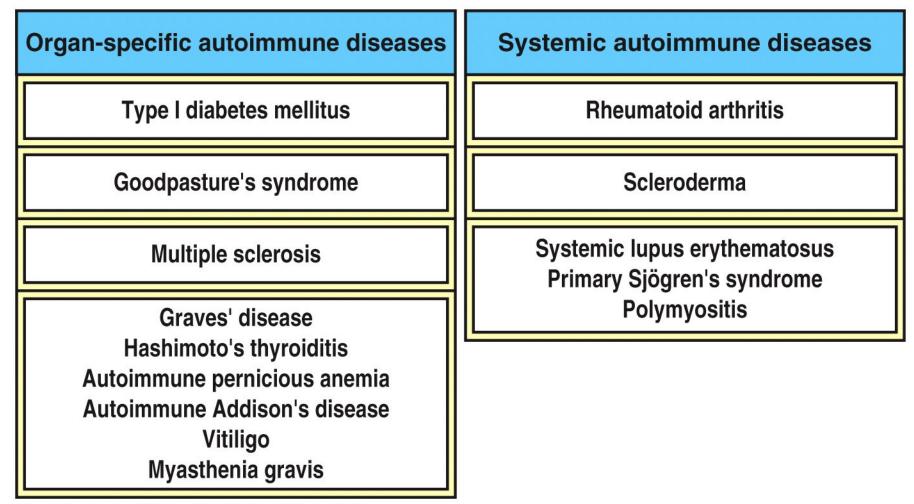
Taken together - the most common postulated mechanism of autoimmunity

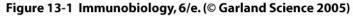


AUTOIMMUNE DISEASES

Autoimmune diseases (AD)


- AD affect ~ 3 5% of population
- Autoimmunity results from a failure or breakdown of the mechanisms normally responsible for maintaining **self-tolerance** in B cells, T cells, or both
 - however, pathologic autoimmune reactivity is very specific and limited to small number of auto-antigens (responsible for tissue and organ damage)
 - majority of overall immune tolerance is preserved
- The major factors that contribute to the development of autoimmunity are
 - genetic susceptibility
 - environmental triggers
 - such as infections, vitamin levels (vit. D), nutrition?, ...
- Autoimmune diseases may be either
 - systemic
 - organ-specific
- Various effector mechanisms are responsible for tissue injury in different autoimmune diseases
 - (A) cell-mediated (hypersensitive reaction type IV)
 - (B) antibody-mediated (hypersensitivity type II, III, V)
- Epitope spreading (progression and exacerbation of the disease):
 - AD initiated against one self-antigen that injure tissues may result in the release and alterations of other tissue antigens, activation of lymphocytes specific for these other antigens


Autoimmunity is one of the causes of chron. inflammation


- chronic inflammation appears as a consequence of
 - persistent infection
 - pathogens escape the immune system
 - intracellular pathogens
 - granulomas
 - abscesses
 - immune system is incapable of clearing infection due to its defect
 - immune deficiency
 - persistent irritation/damage
 - mechanical
 - chemical
 - physical
 - foreign body
 - autoimmunity

Systemic vs. organ-specific AD

(A) Examples of T cell-mediated AD

Disease	Specificity of pathogenic T cells	Human disease	Animal models
Type I (insulin-dependent) diabetes mellitus	Islet cell antigens (insulin, glutamic acid decarboxylase, others)	Yes; specificity of T cells not established	NOD mouse, BB rat, transgenic mouse models
Rheumatoid arthritis	Unknown antigen in joint synovium	Yes; specificity of T cells and role of antibody not established	Collagen-induced arthritis, others
Multiple sclerosis, experimental autoimmune encephalomyelitis	Myelin basic protein, proteolipid protein	Yes; T cells recognize myelin antigens	EAE induced by immunization with CNS myelin antigens; TCR transgenic models
Inflammatory bowel disease (Crohn's, ulcerative colitis)	Unknown	Yes	Colitis induced by depletion of regulatory T cells, knockout of IL-10
Peripheral neuritis	P2 protein of peripheral nerve myelin	Guillain-Barre syndrome	Induced by immunization with peripheral nerve myelin antigens
Autoimmune myocarditis	Myocardial proteins	Yes (post-viral myocarditis); specificity of T cells not established	Induced by immunization with myosin or infection by Coxsackie virus

(B) Examples of AD caused by cell- and tissue- specific antibodies

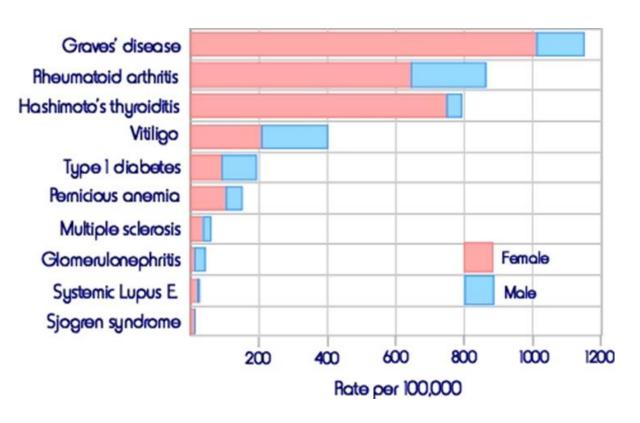
Disease	Target antigen	Mechanisms of disease	Clinicopathologic manifestations
Autoimmune hemolytic anemia	Erythrocyte membrane proteins (Rh blood group antigens, I antigen)	Opsonization and phagocytosis of erythrocytes	Hemolysis, anemia
Autoimmune thrombocytopenic purpura	Platelet membrane proteins (gpllb:llla integrin)	Opsonization and phagocytosis of platelets	Bleeding
Pemphigus vulgaris	Proteins in intercellular junctions of epidermal cells (epidermal cadherin)	Antibody-mediated activation of proteases, disruption of intercellular adhesions	Skin vesicles (bullae)
Vasculitis caused by ANCA	Neutrophil granule proteins, presumably released from activated neutrophils	Neutrophil degranulation and inflammation	Vasculitis
Goodpasture's syndrome	Noncollagenous protein in basement membranes of kidney glomeruli and lung alveoli	Complement- and Fc receptor- mediated inflammation	Nephritis, lung hemorrhage
Acute rheumatic fever	Streptococcal cell wall antigen; antibody cross-reacts with myocardial antigen	Inflammation, macrophage activation	Myocarditis, arthritis
Myasthenia gravis	Acetylcholine receptor	Antibody inhibits acetylcholine binding, down-modulates receptors	Muscle weakness, paralysis
Graves' disease (hyperthyroidism)	TSH receptor	Antibody-mediated stimulation of TSH receptors	Hyperthyroidism
Insulin-resistant diabetes	Insulin receptor	Antibody inhibits binding of insulin	Hyperglycemia, ketoacidosis
Pernicious anemia	Intrinsic factor of gastric parietal cells	Neutralization of intrinsic factor, decreased absorption of vitamin B ₁₂	Abnormal erythropoiesis, anemia

AD according to the type of hypersensitive reaction

Autoimmune disease	Autoantigen	Consequence	
Antibody against cell-surface or matrix antigens (type II)			
Autoimmune hemolytic anemia	Rh blood group antigens, I antigen	Destruction of red blood cells by complement and phagocytes anemia	
Autoimmune thrombocytopenia purpura	Platelet integrin gpllb:Illa	Abnormal bleeding	
Goodpasture's syndrome	Non-collagenous domain of basement membrane collagen type IV	Glomerulonephritis, pulmonary hemorrhage	
Pemphigus vulgaris	Epidermal cadherin	Blistering of skin	
Acute rheumatic fever	Streptococcal cell wall antigens. Antibodies cross-react with cardiac muscle	Arthritis, myocarditis, late scarring of heart valves	
Graves' disease	Thyroid-stimulating hormone receptor	Hyperthyroidism	
Myasthenia gravis	Acetylcholine receptor	Progressive weakness	
Insulin-resistant diabetes	Insulin receptor (antagonist)	Hyperglycemia, ketoacidosis	
Hypoglycemia	Insulin receptor (agonist)	Hypoglycemia	

Figure 11-1 part 1 of 3 The Immune System, 2/e (© Garland Science 2005)

Autoimmune disease	Autoantigen	Consequence	
Immune-complex disease (type III)			
Subacute bacterial endocarditis	Bacterial antigen	Glomerulonephritis	
Mixed essential cryoglobulinemia	Rheumatoid factor IgG complexes (with or without hepatitis C antigens)	Systemic vasculitis	
Systemic lupus erythematosus	DNA, histones, ribosomes, snRNP, scRNP	Glomerulonephritis, vasculitis, arthritis	


Figure 11-1 part 2 of 3 The Immune System, 2/e (© Garland Science 2005)

Autoimmune disease	Autoantigen	Consequence	
T cell-mediated disease (type IV)			
Insulin-dependent diabetes mellitus	Pancreatic β -cell antigen	β-cell destruction	
Rheumatoid arthritis	Unknown synovial joint antigen	Joint inflammation and destruction	
Multiple sclerosis	Myelin basic protein, proteolipid protein	Brain degeneration. Paralysis	
Celiac disease	Gluten modified by tissue transglutaminase	Malabsorption of nutrients Atrophy of intestinal villi	

Figure 11-1 part 3 of 3 The Immune System, 2/e (© Garland Science 2005)

Prevalence and gender-specific differences

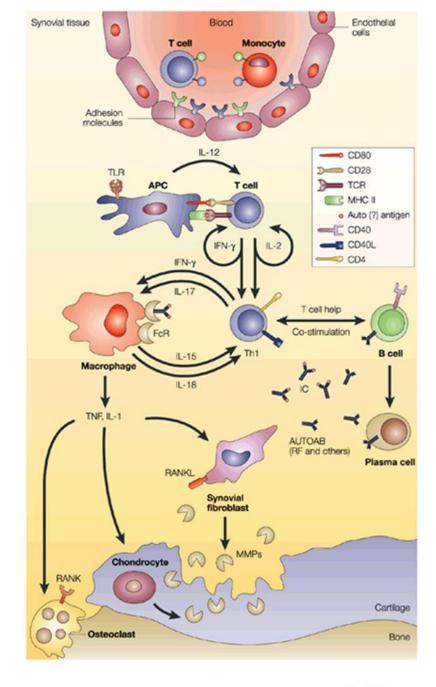
- Sex-based differences in AD can be traced to sex hormones
 - sex hormones circulate throughout the body and alter immune response by influencing gene expression
 - (in general) estrogen can trigger autoimmunity and testosterone can protect against it
- Gender-difference in immune response
 - ♀ produce a higher titre of antibodies and mount more vigorous immune responses than ♂
 - — ♀ have a slightly higher cortisol secretion than ♂
 - — ♀ have higher levels or CD4+ T-cells and serum IgM
- Pregnancy
 - during this, ♀ mount more of a TH2-like response
 - the change in hormones creates an anti-inflammatory environment (high cortisol levels)
 - diseases enhanced by TH2-like responses are exaggerated
 - diseases that involve TH1 inflammatory responses are suppressed
- Fetal cells can persist in the mother's blood or the mother's cells may appear in the fetus (microchimerism)
 - this can result in autoimmunity if the fetal cells mount an immune response in the mother's body (or vice versa)

Systemic lupus erythematodes (SLE)

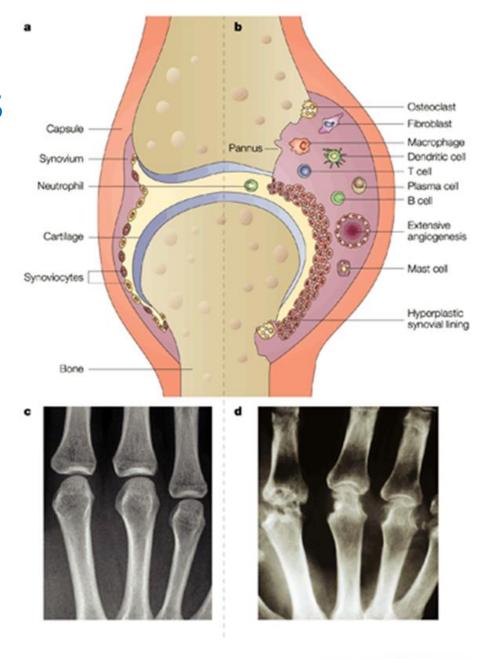
- affected organs
 - skin (butterfly rash)
 - vessels (vasculitis)
 - kidneys (lupus nephritis)
 - joints (arthritis)
 - CNS (encephalopathy)
- Immune mechanism
 - abnormal activation of DNA specific B cells by engagement of their TLR9 (binding of CpG motifs) and DNA receptors by antigens released from apoptotic cells
 - production of Ab against nuclear components
 - dsDNA (double stranded)
 - RNA-protein complexes
 - histones
 - complexes are formed (e.g. anti-dsDNS-DNA) and deposited in predilection sites (e.g. glomerulus, synovia, vessel wall) or in sites of death cells releasing DNA and DAMPs
 - this explains rash after sun exposure (UV-induced apoptosis of keratinocytes)
- very variable clinical course
 - 80% patients survive 10 yrs after diagnosis

Rheumatoid Arthritis (RA)

- Demographics
 - affects 1-2% of worldwide population
 - patients are 75% women between 40-60 years of age
- RA mostly damages joints, but it can also affect the heart, kidneys and eyes
- Molecular Mechanism
 - T-cell mediated AD, however Ab are Also produced
 - Rheumatoid Factor (Rf): IgM antibodies to Fc fragment of IgG
 - HLA-DR4 association (MHC II)
- Mechanism of Tissue Damage
 - Invasion of T lymphocytes in the synovia and proinflammatory cytokine production
 - immune cells accumulate in the joints (bones, cartilage, surrounding tissue) and cause chronic inflammation.
 The inflammation causes destruction and scarring of the joints. Later the joints deform and loose their structure



Molecular mechanism operating in RA

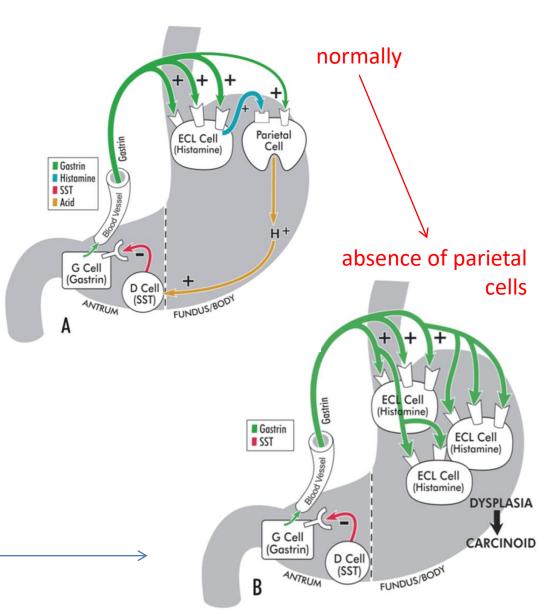

T cells (primarily CD4⁺ memory cells) invading the synovial membrane produce IL-2 and IFN-gamma. Through cell-cell contact and through cytokines (produced also by APCs, such as IFN-gamma, TNFa IL-17) these T cells activate monocytes, macrophages and synovial fibroblasts. They then overproduce pro-inflammatory cytokines, mainly TNF-, IL-1 and IL-6 causing chronic inflammation. These cytokines also activate a variety of genes characteristic of inflammatory responses, including genes coding for various cytokines and matrix metalloproteinases (MMPs) involved in tissue degradation. TNF- and IL-1 also induce RANK expression on macrophages which, when interfering with RANKL on stromal cells or T cells, differentiate into osteoclasts that resorb and destroy bone. in addition, chondrocytes also become activated, leading to the release of MMPs

Inflammatory response of the synovial membrane ('synovitis

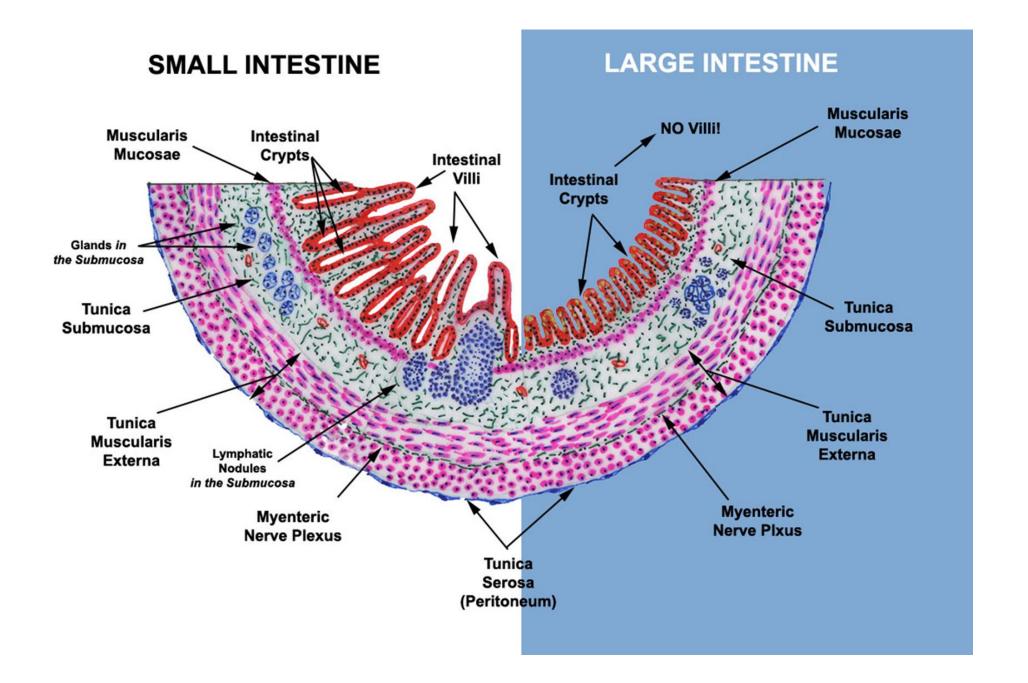
Transendothelial influx and/or local activation of a variety of mononuclear cells, such as T cells, B cells, plasma cells, dendritic cells, macrophages, mast cells, as well as by new vessel formation. The lymphoid infiltrate can be diffuse or, commonly, form lymphoid-follicle-like structures. The lining layer becomes hyperplastic (it can have a thickness of >20 cells) and the synovial membrane expands and forms villi. However, in addition, the hallmark of RA is bone destruction. The destructive portion of the synovial membrane is termed 'pannus', and the destructive cellular element is the osteoclast; destruction mostly starts at the cartilage-bonesynovial membrane junction. Polymorphonuclear leukocytes are found in high numbers in the joint fluid, enzymes, together with enzymes secreted by synoviocytes and chondrocytes, lead to cartilage degradation.

EXAMPLES OF AUTOIMMUNE DISEASES IN GIT (CELIAC AND INFLAMMATORY BOWEL DISEASES)

GIT is a common site of immune disorders

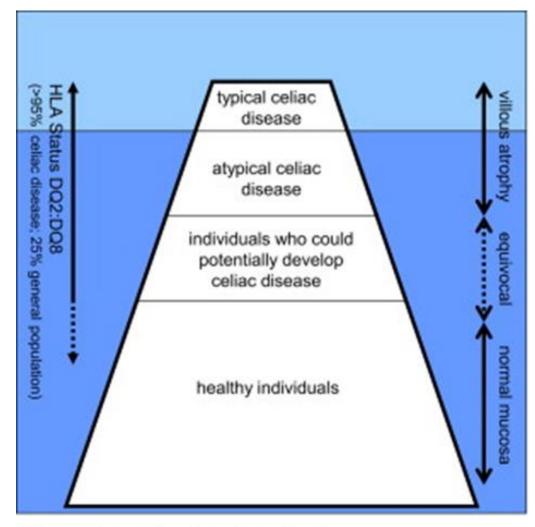

autoimmune

- salivary glands (Sjögren syndrome)
- stomach (atrophic gastritis)
- intestine (celiac disease, IBD such as Crohn's disease and ulcerative colitis)
- liver (primary sclerosing cholangitis, primary biliary cirrhosis, autoimmune hepatitis)
- pancreas (autoimmune pancreatitis)
- allergy food allergy
 - e.g. milk or dairy products (more precisely to particular proteins)
 - difference from lactose intolerance due to enzyme disorder (lactase deficiency)
 - extremely frequent mainly due to the fact that lifetime ability to digest milk (i.e. lactose) is considered a normal state
 - however, most mammals and part of human population loses the activity of lactase after weaning
 - the lifetime activity could be considered exceptional persistence of lactase
 - genetic polymorphism (geographical distribution is evidently a consequence of genetic selection) in promoter of gene for lactase
 - » highest prevalence of lactase persistence in Europe in Swedes a Danes (~90 %)
 - » Czech population ~ 70 %
 - » lowest in Turks (~ 20 %)
 - » outside Europe high fervency of persistence e.g. in desert nomadic populations in North Africa
 - the reason for selection of persistence haplotype in northwest Europe could be the richer source of calcium in low vit. D generation climate
 - manifestation
 - intestinal discomfort after fresh milk intake (not after diary fermented products such as cheese or yogurt)
 - diarrhea, flatulence, abdominal pain



Atrophic gastritis

- destruction of mainly parietal cells cytotoxic T-lymphocytes
 - compensatory ↑ gastrin
- antibodies against
 - intrinsic factor (IF) and complexes IF/B
 - Na/K-ATPase
 - carbonic anhydrase
 - gastrin receptor
- consequences
 - achlorhydria leading to sideropenic anaemia
 - later megaloblastic (pernicious)
 anaemia
 - precancerosis



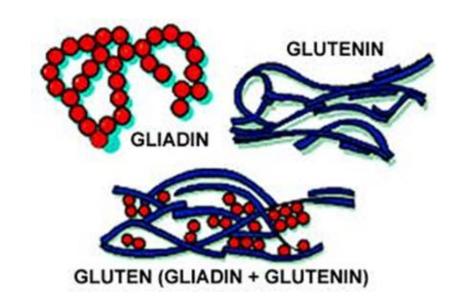
Celiac disease

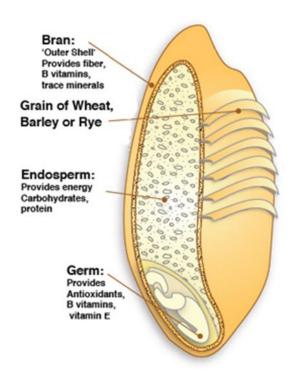
HLA = Human Leukocyte antigen.

- synonyms: celiac sprue, gluten-sensitive enteropathy, gluten intolerance
- T-cell mediated autoimmune reaction against intestinal mucosa (mainly duodenum and jejunum) initiated by gluten and its products (gliadins)
- prevalence ~1% of populations
 - but commonly underdiagnosed
- manifestation:
 - often starts in child after the stop of breast feeding when flour is introduced (though latency of many years)
 - but anytime in life
- symptoms are very variable!!!
 - typical
 - untypical

Pathophysiology of celiac disease

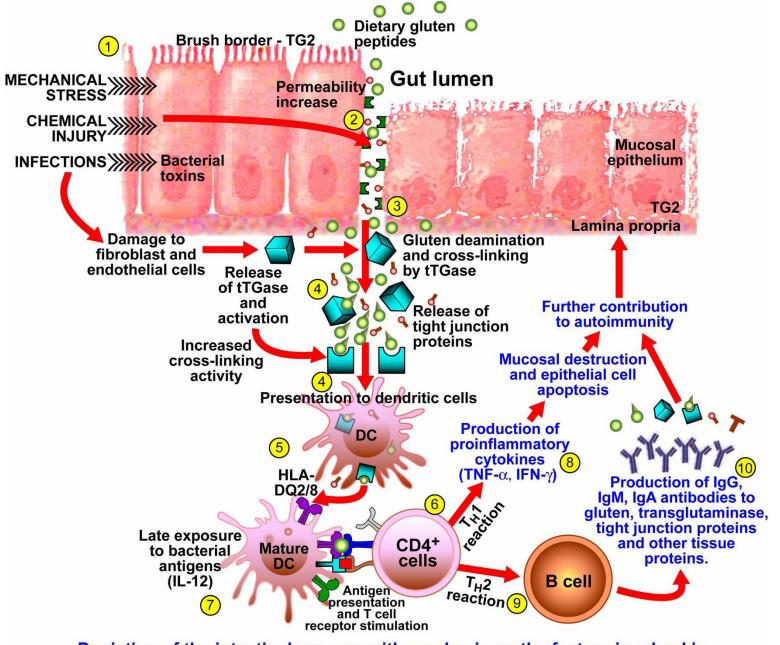
- etiology
 - gen. predisposition
 - variants of MHC II genes
 - DQ2 and DQ8 haplotypes
 - celiac d. often associated with other autoimmunities, e.g.
 T1DM
 - other non-HLA alleles
 - external factors
 - gluten in diet
 - gluten consist of two component (= peptides) gliadin and glutenin polypeptides
 - » i.e. a heterogeneous mixture of gliadins (prolamines) and glutenins
 - relatively resistant to digestion by GIT enzymes, and allow immunogenic peptides to reach mucosal surfaces
 - infection by adenoviruses
 - molecular mimicry
 - damage of intestinal barrier





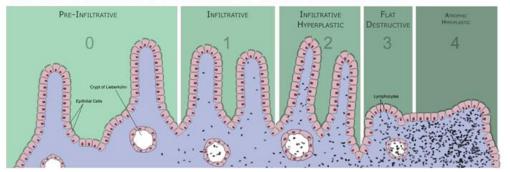
What is gluten

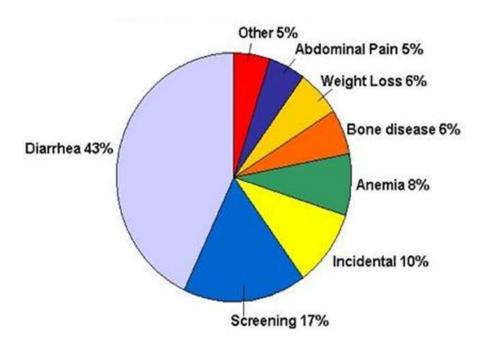
- gluten (= proteins) is a part of endosperm of cereals (especially wheat)
 - "gluten" is a term applied specifically to the combination of the prolamin proteins (called gliadins) and the glutelin proteins (called glutenins) that are found in wheat
- gluten is found in the following grains:
 - wheat, barley, bulgur, rye, spelt, oats (possibly, the proportion of individuals with gluten sensitivity that are also sensitive to the storage proteins in oats is likely less than 1%), kamut, triticale, semolina, pumpernickel, farro
- gluten is not found in the following grains:
 - rice (all varieties), buckwheat, teff, amaranth, quinoa, corn, hominy, millet
- gluten adds elasticity to dough (makes bakery products chewy, pizza dough stretchy, and pasta noodles elastic so that they can be pulled through the pasta press without breaking when they are made
 - thus, getting a desirable texture in gluten free baked goods can be difficult



Pathophysiology of celiac disease

- pathogenesis
- HLA-DQ2 and HLA-DQ8 prefer to bind peptides with negative charges, but gluten peptides are
 usually devoid of these
 - enzyme transglutaminase 2 (TG2) can modify gluten peptides, either by introducing negative charges through deamination or through crosslinking gliadin peptides with each other or the TG2 enzyme itself
 - TG2 is usually expressed intracellularly in an inactive form and is released when inflammation or other stressors damage the cell
 - thus under normal circumstances gluten proteins are unaltered and cannot bind to HLA-DQ
 - if TG2 is present and native gluten peptides are presented to CD4+ cells, IFNy is released and an inflammatory response
 occurs
 - this in turn leads to more damage and release of TG2, and this loop leads to the damage caused by celiac disease
 - HLA-DQ8 usually binds to peptides that are not proline rich, and thus several deamination steps are required before the gluten peptide becomes immunogenic
 - this limits the risk of developing celiac disease in individuals that are only HLA-DQ8+
- activated gluten-specific CD4+ T helper 1 (Th1) cells secrete high levels of pro-inflammatory cytokines (e.g. IFN)gamma and IL-21 that promote the activation of intraepithelial cytotoxic CD8+ T lymphocytes
- Th2 response via B cells leads to production of antibodies against gliadin, reticulin and transglutaminase

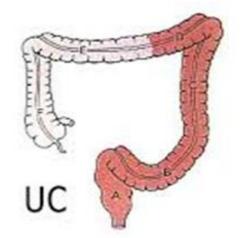


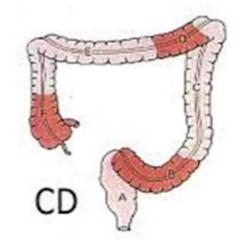


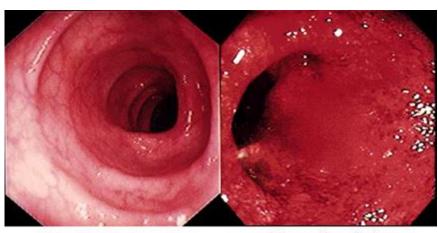
Manifestation of celiac disease

- consequences of auto-aggressive inflammation villous atrophy, crypt hyperplasia and intraepithelial lymphocytosis (typical markers for celiac disease)
- clinical course & symptoms
 - diarrhea
 - abdominal pain
 - bloating
 - malabsorption of main nutrients, vitamins, trace elements
 - hypo-/malnutrition or weight loss
 - non-gastrointestinal manifestation
 - children: short stature, anemia, neurological symptoms
 - adults: dermatitis herpetiformis, anaemia, reduced bone density, infertility, irritable bowel syndrome, dyspepsia, esophageal reflux, neurological symptoms
 - in 20-40 years risk of intest. lymphoma (50%) or carcinoma (10%)

UPPER JEJUNAL MUCOSAL IMMUNOPATHOLOGY

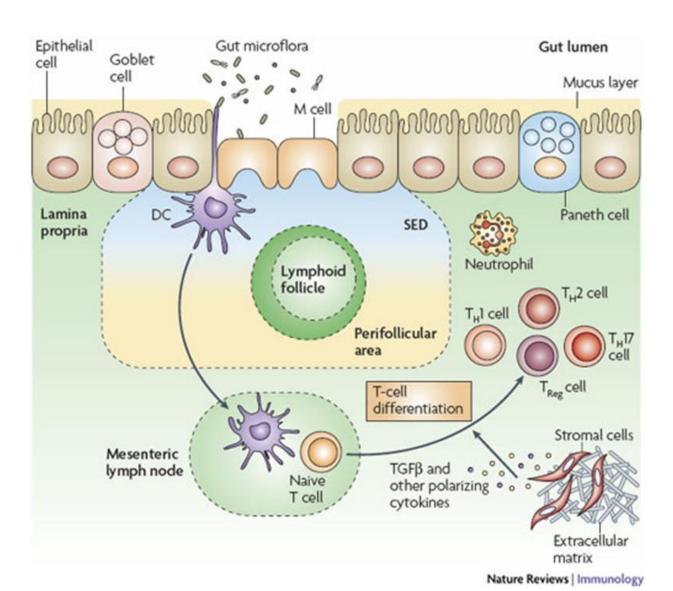



"Maybe she's gluten intolerant."



Inflammatory bowel diseases (IBD)

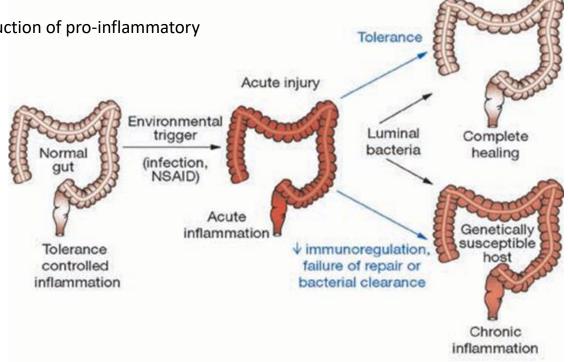
- both Crohn's disease (CD) and ulcerative colitis (UV) exhibit certain similar features
 - manifestation in young adults
 - clinical course
 - intermittent flares (exacerbations) followed by remissions
 - genetic predisposition
 - though different genes in CD and UC
 - abnormal reactivity of innate immune system to intestinal microbiota (bacteria)
 - abnormal lymphocyte activity and subsequent cytokine spectrum
 - predominance of Th1/Th17 in CD
 - atypical Th2 in UC
- localization
 - m. Crohn any segment of GIT, transmural, granulomatous inflammation
 - ulcerative colitis only rectum and colon, inflammation confined to mucosa



Healthy Colon

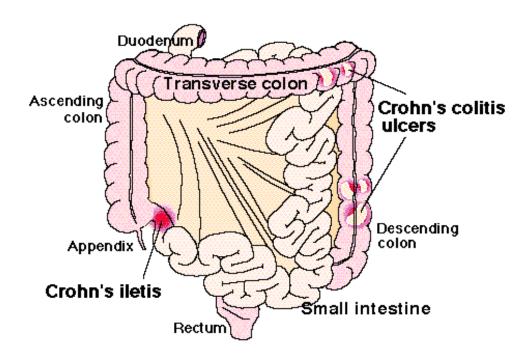
Ulcerative Colon

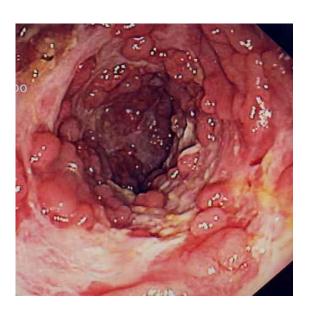
The intestinal immune system



- Unique with respect to its close apposition to intraluminal bacteria, which are separated from the underlying lamina propria by only a single layer of epithelial cells
- The epithelial-cell layer is comprised of absorptive and secretory cells, goblet cells (formation of the protective mucus layer) and Paneth cells.
- Immune Microfold cells (M cells) and dendritic cells (DCs) sample intestinal luminal contents
 - under normal conditions, the innate immune cells in the intestinal mucosa are largely tolerogenic, in order to prevent inflammatory responses to beneficial commensal bacteria in the gut
 - macrophages and dendritic cells have a key role in this regard. Intestinal
 macrophages are involved in phagocytosis of pathogens and removal of cell
 debris. Unlike most macrophages, intestinal macrophages do not produce proinflammatory cytokines in response to phagocytic activities
 - due to downregulation in the expression of certain cell surface receptors, like CD14 (which reduces ability to response to lipopolysaccharide) and several of the TLRs
 - CD103+ DCs in the gut are able to induce the formation of regulatory T cells, which are one of the cell types involved in the adaptive component of tolerance
 - the anti-inflammatory environment of the intestinal mucosa is promoted by the presence of cytokines such as IL-10 and TGFb which are associated with many anti-inflammatory functions
- The presence of either pathogenic bacteria or disruption of the epithelial-cell barrier results in activation and migration of DCs to the mesenteric lymph nodes, where they activate naive T cells, which then undergo differentiation under the influence of factors released by DCs and other stromal elements.

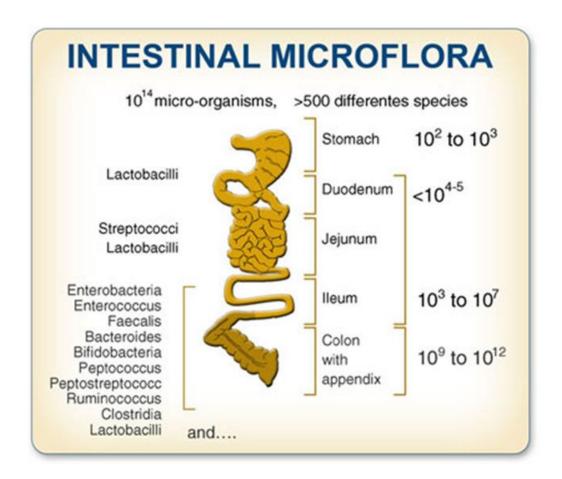
IBD etiology

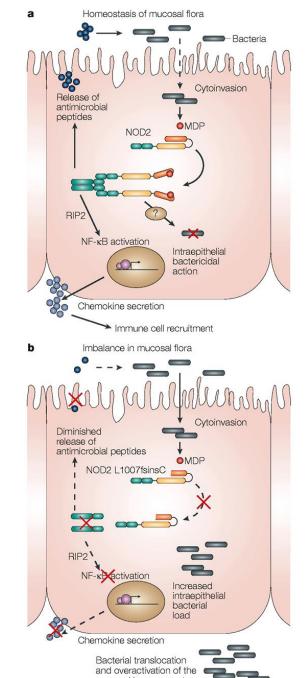

- genetic factors cases abnormal immune reactivity of innate immune system
 - CD
 - mutation causing altered expression of pattern-recognition receptors (PRRs), e.g. Toll-like receptors (UC) or NOD2 and abnormal activity of autophagy → bacterial invasion and defective bacterial clearance → low production of pro-inflammatory cytokines → granulomatous lesions
 - UC
 - primary defects in intestinal barrier (tight junctions) → excessive production of pro-inflammatory cytokines (TNFa) → inflammatory infiltration of mucosa by leucocytes
 - abnormal adaptive immune response is likely secondary
 - therefore some propose CD and UC are in fact immune deficiencies
- environmental factors
 - incidence rises in Europe and N. America
 - the same is now evident on southern hemisphere and in Asia
- microbial factors
 - gut microflora is very complex
 - Bacteroidestes
 - Firmicutes
 - Actionobacteria
 - Preoteobacteria
 - modified by plethora of factors
 - way delivery (vaginal vs. CS), use of ATB (esp. in sensitive periods such as infancy), quality and quantity of food, food additives, xenobiotics, drugs etc.



Crohn's disease

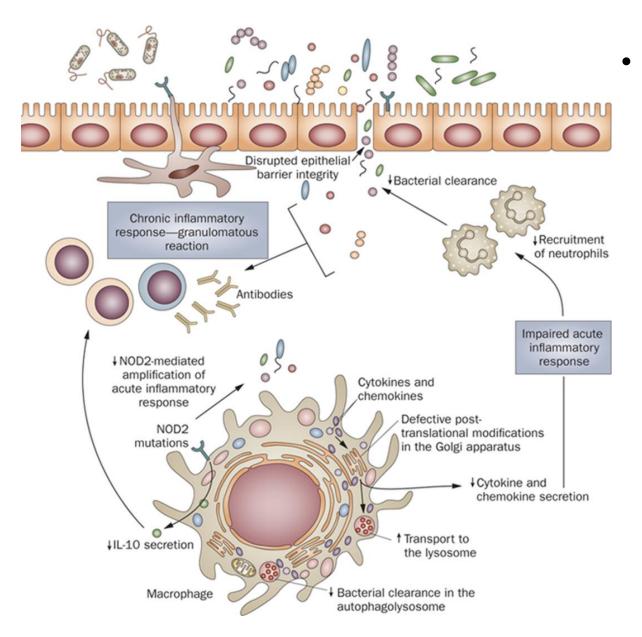
- = ileitis terminalis, enteritis regionalis
- chronic, relapsing, systemic inflammatory disease of
 - commonly small intestine
 - but can affect any part of GIT beginning with oral cavity to anus
 - manifestation typically between 3. to 6. decade, more often women
 - extraintestinal manifestations
 - arthritis
 - uveitis
 - pyoderma gangrenosum and erythema nodosum
- manifestation & clinical course
 - periods of exacerbations (stomach pain, diarrhea, fever, seizures, blood in stools (enterororhagia)/remissions
- histopathology
 - granulomatous type of inflammation affects all layers of intest.
 wall
 - ulcerations and bleeding
 - penetrated ulcers create fistulas (often perirectal)
 - affected areas interspersed by unaffected





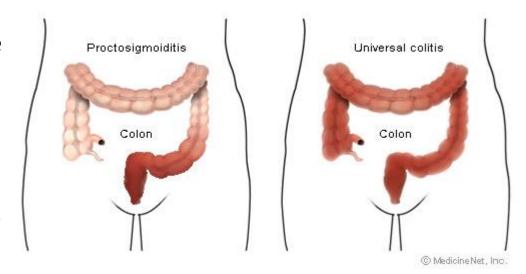
Etiopathogenesis of CD

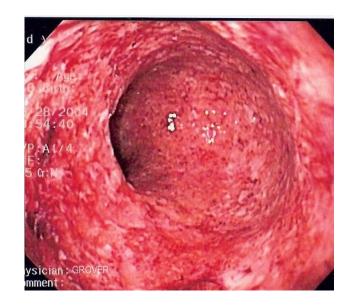
- multifactorial
 - genetic factors (= predisposition) lead to abnormal immune response of intest. mucosa to natural commensal bacterial antigens (>500 bact. strains, aerobes and anaerobes)
 - normally opposed by production of defensins
 - GWAS
 - mutation in gene for CARD15
 - autophagy protein ATG16L1
 - many other loci
 - triggering environmental factors nor known (infection?) = sterile animals protected
 - lipopolysaccharide, peptidoglycan, flagellin, ...
 - suspects Mycobacteria, Listeria and Yersinia (the latter two unconfirmed)



- reaction to intraluminal bacteria normally "controlled inflammation"
- intracellular recognition of components of bacterial wall (pathogen-associated molecular patterns, PAMPs), e.g. muramyl-dipeptide (MDP) by NOD2 (product of CARD15 gene) lead to oligomerization and activation of NFk-B
 - secretion of chemokines and defensins by Paneth cells
- variants of NOD2 associated with Crohn's d. lead to deficient epithelial response, loss of barrier function and increased exposition to intest. microflora
 - impaired secretion of chemokines and defensins
 - altered expression of pattern-recognition receptors (PRRs), e.g. Toll-like receptors
 - production of inflammatory cytokines
 - activation of dendritic cells and production of Ig and activation of Th1 lymph.

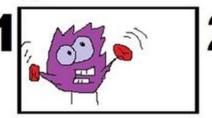
Defective bacterial clearance in CD

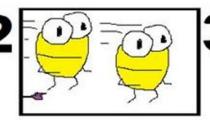



Defective post-translational modifications in macrophages direct cytokines and chemokines to the lysosome, thus reducing secretion and leading to decreased neutrophil recruitment and persistence of bacteria in the intestinal mucosa. Vesicle transport defects also lead to reduced bacterial clearance in the autophagolysosome. Impaired epithelial barrier integrity contributes to increased bacterial load, thereby exacerbating the adaptive immune response. Mutations in the NOD2 receptor reduce the acute inflammatory response to bacteria and amplify the chronic inflammatory response by inhibiting the transcription of IL-10

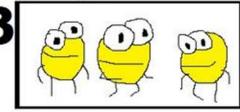
Ulcerative colitis

- two peak incidence between 20 40. na after 50 years of age
- typically Caucasian race, north-south gradient
- inflammation limited to mucosa
 - starts at the bottom of Lieberkuhn's crypts (infiltration by immune cells)
 - · mainly rectum and sigmoideum
 - hyperemia, abscesses and ulcerations, bleeding, pseudopolyps, event. strictures
 - high activity of TNFa (\rightarrow treatment with anti-TNFa antibodies)
- clinical course
 - periodical = exacerbations x remissions (diarrhea, bleeding, abdominal pain, fever)
 - extraintestinal manifestations (5 15%):
 - polyarthritis, osteoporosis, uveitis, cholangitis
 - chronic anemia, strictures, hemorrhoids
 - carcinoma
- in severe form indication for colectomy

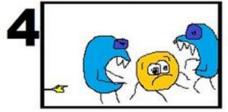




Immunology in a nutshell

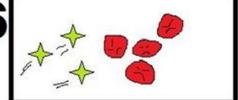

Macrophage shows antigen to other cells.

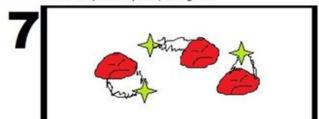
The antigens activate the Helper T cells.

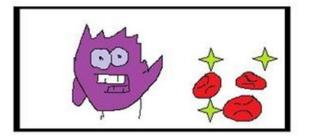

Helper t cells start dividing to make more helper t cells.

Helper T cells activate the killer t cells so that they can kill off the infected cells.

Helper T cells then activate the B cells so they can make a lot of antibodies


Antibodies attach onto bacteria.


5


6

Protiens attach themselves to antibodies that are stuck on pathogens, then they destroy the pathogens.

And last the macrophages eat up pathogens that have antibodies stuck onto them.

