Biological causes of variation of test results

Michaela Králíková, MD
Department of Biochemistry
Faculty of Medicine
Masaryk University

- The discrimination between normal and abnormal results is affected by various physiological factors which must be considered when interpreting any given result.
- These include:

- *AGE*
- SEX OF THE PATIENT
- PREGNANCY
- MENSTRUAL CYCLE
- RACE
- EFFECTS OF ENVIRONMENTAL FACTORS
- SEASONAL INFLUENCES
- CIRCADIAN VARIATION
- POSTURE OF THE PATIENT
- EFFECTS OF EXERCISE
- EFFECTS OF DIET
- SMOKING

AGE

- different reference ranges for neonates, children, adults, and the elderly
- Newborn infant:
- the body fluids reflect:
- trauma of birth
- the changes related to adaptation to an independent existence
- maturity of the infant at birth (HbA HbF)
- The serum activities of several enzymes (CK, AST, GMT) are high.
- The concentration of bilirubin rises following birth and peaks about the 3rd to 5th day of life = physiological jaundice of the newborn.

Examples

• total body water: newborn 80% of body weight, the elderly 50%

• most important enzyme activities (ALT, AST, ALP, GMT, LD, HBD, CK) higher in childhood (growth and development)

```
• ALP < 1 m. 0.6 - 5.3 \,\mu kat/l 1 m. -15 \, y. 1.0 - 4.8 \,\mu kat/l adults 0.5 - 2.4 \,\mu kat/l
```

• examples of succesive increase during life: LDL-chol, hcy

```
• NH_3/P 0-1 m. \leq 100 \,\mu\text{mol/l} > 1 \,\text{m}. \leq 55 \,\mu\text{mol/l}
```

• K/S 0-1 m. 4.0-7.7 mmol/l adults 3.8 – 5.5 mmol/l

Examples

• Fe/S 0-1 m. 9 - 36 μ mol/l

adults $10 - 25 \mu mol/l$

• ferritin /S < 18 y.
$$15-120 \,\mu\text{g/l}$$
 $18-45 \,y$. $30-220 \,\mu\text{g/l}$ $9 \,10-70 \,\mu\text{g/l}$ $45-55 \,y$. $30-350 \,\mu\text{g/l}$ $20-110 \,\mu\text{g/l}$ $30-400 \,\mu\text{g/l}$ $30-120 \,\mu\text{g/l}$

• total bil /S 1st weeek \leq 150 (300) μ mol/l adults \leq 20 μ mol/l

creatinin 0-2 d. 20-140 μmol/l 2-7 d. 17-100 μmol/l 7-14 d. 15-80 μmol/l 14-28 d. 10-70 μmol/l
$$< 1~\rm y.$$
 17-50 μmol/l 1-5 y. 17-60 μmol/l 5-10 y. 26-90 μmol/l $> 10~\rm y.$ 35-110 μmol/l

• The same values in both children and adults: pH and osmolality

SEX OF THE PATIENT

- Different values since pubescence occurs
- sex hormones and their metabolites
- Fe/S, ferritin
- hemoglobin
- lipoproteins
- urea, creatinin
- uric acid
- homocysteine
- ALT, AST, ALP, GMT, LD, CK
- CRP
- generally higher values in males

PREGNANCY

- · Change of the values:
- Estradiol
- FSH
- LH
- Progesterone
- Prolactin
- hCG

PREGNANCY

- Increased plasma volume → hemodilution
- † in glomerular filtration rate († creatinine clearance)
- † in total urine volume, mainly during the 3rd trimester (25%)
- † in serum apolipoproteins, TG and chol
- ↑ in ALP activity
- \uparrow in ceruloplasmin, T_4 , acute phase proteins (CRP) synthesis
- relative deficiency of Fe, ferritin
- **↓** hcy

MENSTRUAL CYCLE

- Influents mainly:
- Estradiol
- FSH
- LH
- Progesterone

· Hcy, chol, Fe

RACE

Examples:

- Afroamericans | glucose tolerance than Caucasians
- Afroamericans ↑ total CK and LD than Caucasians
- Hispanics and Afroamericans
 † AFP and hCG
- Afroamericans † Cu /S
- Far-east Asians † salivary AMS

EFFECT OF ENVIRONMENTAL FACTORS

• geographical location (drinkink water composition, pollution)

altitude

Effects of altitude

- †in:
- Haematocrit
 - \rightarrow (difference sea level 1 400 m.a.s.l. = 8%)
- Haemoglobin
- Erythropoetin
- **CRP** (difference sea level 3 600 m.a.s.l. = 65%)

Increase in htc, Hb, ercs

Initially, Hb increases as a result of plasma volume decline caused by dehydratation (trend not to drink + water lost by hyperventilation + lower humidity), subsequently increased production of ercs (← erythropoetin) gives in.

Erythropoetin synthesis and erythrogenesis starts to increase in 2 hours after hypoxia occurs.

SEASONAL INFLUENCES

on the composition of body fluids are small.

• Evaluations of seasonal variation are difficult, since they depend on the definition of a season and on the magnitude of temperature change from one season to another. Day-to-day variability in the composition of body fluids is greater in summer than in winter.

- Examples:
- D vitamin ↑ in summer (lenght of sun exposure)
- thyroid hormones ↓ in summer (20%)

CIRCADIAN VARIATION

• = time when sample was taken

• examples:

• cortisol maximal value at 6 a.m.

morning 250-650 nmol/l

afternoon 50-280 nmol/l

• Fe 30% higher in the morning

• creatinine 10-20% higher in the afternoon

• STH secreted at midnight

POSTURE OF THE PATIENT

- head pressure → redistribution of body fluids
- The blood volume of an adult in an upright position compared to an adult in a lying position is typically 600 700 ml less. Fluid reduction in plasma is associated with a comparable increase in the plasma protein concentration.
- adrenalin and noradrenalin values in an upright position almost 2times higher compared to a lying position

blood drawing to the

sitting pacient

EFFECTS OF EXERCISE

- Exercise changes blood levels of all substances that participate in energy metabolism, e.g. glucose, lactate, FA, phosphate, creatinine.
- Strenuous exercise can release enzymes from tissues.
- Blood pH, oxygen saturation, and venous bicarbonate are decreased.

• Long-term exercise increases the concentrations of sex hormones.

EFFECTS OF DIET

• The sample may be inappropriate if taken when the patient is fasting or after a meal.

Define the term fasting patient!

Fasting patient

- didn't eat 10-12 h. during night
- was all quiet (didn't ride a bicycle or walk a long time),
- didn't smoke,
- didn't drink coffee or alcohol or sweetened drinks

• blood drawing between 6-9 a.m.

EFFECTS OF DIET

- food rich in fats: ↑ TG, chol; ↓ nitrogen compounds (uric acid)
- food rich in proteins: ↑ urea, uric acid, phosphates
- food rich in saccharides: ↑ ALP, LD; ↓ TG, chol, total proteins

EFFECTS OF DIET

• immediate food intake:

```
↑ glc, TG, uric acid, Fe, Na

↓ LD
```

- other examples of diet interferences:
- gFOBT test: violation of the blood- and Fe –less diet
- clearance determination: insufficient fluid intake

EFFECTS OF DIET – LONG-TERM FASTING

= FASTING LONGER THAN 24 HOURS

- glycogenolysis in liver (→ glc energy for CNS and ercs)
- proteolysis in muscles (→ AA for gluconeogenesis)
- TG degradation in adipose tissue → glycerol (→ gluconeogenesis) and FA (direct energy for myocardium, muscles and kidneys + in liver → keton bodies)
- † TG, FA, glycerol
- **↓** glc
- ↑ bil

EFFECTS OF DIET - CAFFEINE CONSUMPTION

phosphodiesterase inhibition → ↑ cAMP →
 ↑ glycolysis → ↑ energy + alertness of an
 organism
 TG cleavage→ ↑ glycerol and FA

• † renin and catecholamines (within 3 h)

EFFECTS OF DIET - ALCOHOL CONSUMPTION

• degradation velocity = 0.15 % / h

• acute consumption: ↑ TG, aldosterone

↓ prolactin, ADH, cortisol

• chronic consumption:

↑ ALT, AST, GMT; cortisol, adrenaline, estradiol, uric acid, lactate (MAc) ↓ glc; ketoacidosis

hepatotoxicity

SMOKING

- ↑ HbCO (8%)
- \downarrow vit. B_{12} and Ig
- ↑ total chol and TG, ↓ HDL-chol
- ↑ cortisol, CEA, Pb, Cd

Beware smoking as a risk factor.

There is a maxim that doctors should always 'treat the patient, rather than the laboratory report'.

Beware of overreacting to the slightly abnormal result in the otherwise healthy individual.