Effects of drugs on chemical tests

Michaela Králíková, MD

Department of Biochemistry

Faculty of Medicine

Masaryk University

Drugs may have specific effects on the plasma/serum or urine levels of many substances.

• These effects are more apparent when large doses of a drug are administered for a long time than when administration of a single dose occurs on an isolated occasion.

• Drugs can either interfere with the laboratory tests in vitro or in vivo.

In vitro interferences

- color during spectrophotometric measurement
- chemical reaction with the analyte of interest or chemical substances used during analysis
- complexes formation
- Example: ascorbate or salicylate (reducing agents) and glucose in urine

In vivo interferences

- arise from the therapeutic intent of drugs, their side effects, and patient condition and drugresponse:
- interference with production, metabolism or elimination of the analyte (enzyme activation, inhibition or competition, transport mechanisms competition etc.)
- drug injuries to a certain organ / tissue → its function impairment

Interactions drug - diet

- physiochemical reciprocal interference with absorption or solubility, charge change, chelate and other complexes formation
- Example: tetracyklin Ca²⁺
- **physiological** ↓ or ↑ of appetite, influence on peristalsis
- patophysiological initiation of toxic effects of the drug by food

- peroral antidiabetics
- contraceptives
- antihypertensive agents
- salicylate
- peroral anticoagulants
- antibiotics
- vitamines
- diuretics etc.

Examples of drug interferences

- <u>ascorbate, salicylate, streptomycin</u>
 ↑ glc/U (non-specific reaction for reducing agents)
- <u>ascorbate</u> false positive gFOBT
- <u>theophyllin</u> determination of uric acid

Examples of drug interferences

- corticosteroids:
- ↑ synthesis of glycogen (liver)
- \downarrow proteosynthesis $\rightarrow \downarrow$ enzyme activities
- \downarrow glucose tolerance $\rightarrow \uparrow$ glc/S
- negative nitrogen balance (← ↑ protein catabolism)
- \uparrow cleavage of TG $\rightarrow \uparrow$ FA
- ↓ leucotriens synthesis (↓ arachidonic acid ← ↓ activity of phospholipase)
- ↑ resorption of Na⁺, Cl⁻ in renal tubules → Na⁺ and Cl⁻retention → water retention
- \uparrow renal secretion of K⁺, H⁺ $\rightarrow \downarrow$ K⁺/S, alkalosis

Examples of drug interferences

• morfium
non-specific ↑ ALT, LD, AMS

• contraceptives

↑ TG, chol

• <u>furosemid</u>

↑ glc, AMS, ALP, ↓ Na

Therapeutic drug monitoring (TDM)

the measurement of drugs in body fluids as an aid to controlling dosage

- Is a benefit in assessing the therapeutic response or possible toxic side-effects.
- Is a benefit where there is a clear difference between the therapeutic and toxic effects and where serum levels correlate well with therapeutic and toxic effects.
- Examples: digoxin, theophylline, anticonvulsants (phenytoin, phenobarbitone, carbamazepine), lithium, aminoglykoside antibiotics