Magnesium

Michaela Králíková, MD
Department of Biochemistry
Faculty of Medicine
Masaryk University

Mg^{2+}

• Reference values S, P = 0.8 - 1.1 mmol/l

- ↑ concentration = hypermagnesemia
- ↓ concentration = hypomagnesemia
- Total body $Mg^{2+} = 1.1 \text{ mol} = 27 \text{ grams}$:
- 65 % within bones (14 g)
- 20% within muscles and other soft tissues (12 g)
- 170 mg within the EC fluid, 60 mg within the plasma
- 55% as Mg²⁺, 32% protein-bound, 13% Mg complexes

Mg^{2+}

- absorption 24 76 % of intake Mg, augmented by calcitriol
- RDI = 12.5 mmol
- alimentary sources:
- leafy green vegetables, meats, grains, seafood, coconuts

 urinary excretion: 1.7 – 8.2 mmol/day; reduced by PTH which stimulates the tubular absorption

Mg²⁺ significance

- essential cofactor of ~ 300 different enzymes, including transphosphorylation reactions involving ATP \rightarrow
- central to cellular energy metabolism and the macromolecules synthesis
- stabilisation of cell membranes
- needed for production of bone matrix, blood coagulation
- protects from urinary concrements production

Clinical symptoms of hypermagnesemia:

- peripheral vasodilatation \rightarrow hypotension
- depression of cardiac conduction system \rightarrow bradyarrhythmias
- depression of the CNS
- curarelike effect on neuromuscular junctions → muscle weekness
- emesis

Clinical symptoms of hypomagnesemia:

- Hypocalcemia (← ↓ PTH secretion) → lethargy, weakness, fatigue, paresthesias, tremor, muscle fasciculations
- **Hypokalemia** (← urinary K wasting)
- Arrhythmias (ventricular tachycardia, fibrillation)

Mg²⁺/S and myocardial ischemia

- As a co-enzyme participates in lipids, steroids, saccharides and AA metabolism, NA degradation, ATP involved reactions, that is reactions of energy transport needed for muscle contraction.
- physiological antagonist of Ca²⁺
- It protects the myocardial cells from excessive influx of Ca²⁺ and supports the stripping of Ca²⁺.
- Mechanism of influence of hypomagnesemia on myocardial ischemia:
 - ↓ Mg²⁺ \rightarrow ↑ Ca²⁺ influx \rightarrow vasoconstriction \rightarrow aggravation of myocardial ischemia

Mg²⁺/S and myocardial ischemia

control group

 $0.75 \pm 0.04 \text{ mmol/l}$

- IHD or cardiomyopathy
 - with diuretics (\uparrow urinary loss of Mg²⁺) 0.64 ± 0.08 mmol/l
 - without diuretics

 $0.68 \pm 0.09 \text{ mmol/l}$

- Control Mg²⁺/S in patients with cardiovascular dis.
- Mg administration in these patients is helpful.