ABR: acid-base balance

Normal pH - very close ranges

Analyte	Unit	Reference intervale
рН		7.35 - 7.45
pCO ₂	kPa	4.8 - 5.6
pO ₂	kPa	10 - 13
actual HCO ₃	mmol/l	22 - 26
standart HCO ₃	mmol/l	22 - 26
BE (base exces)	mmol/l	± 2

pH - activity of hydrogen ions

- pH: 7.35-7.45
- Acidosis: pH < 7.35
 - "common": 7.35 7.10
 - ▶ serious: 7.10 6.80
 - extremely: < 6.80 (life threatening)
- Alkalosis: > 7.45
 - serious: 7.45 7.70
 - extremely: > 7.70

Not serious acid-base disorders

- "Common" acidosis: pH 7.35-7.10
 - "Physiological" situation
- Physiologic acids
 - Kenotic acids
 - Lactic acid
- There is no "common" alkalosis
 - Alkalosis is always serious disorder
 - It often results from inadequate therapy of acidosis
- Normal pH
 - Aide-base disorder may be present

- Buffers
 - To correct the influence of acids and bases
- Reaction of buffers
 - Immediately
- Compensation
 - With delay
 - Lungs and/or kidney

Buffers

- Bicarbonate
 - Extracellular fluid (blood, interstitial fluid)
 - Cerebrospinal liquor activity of the respiratory centre
- Haemoglobin
 - Intravasal fluid
- Phosphate
 - Intracellular fluid
 - Connection to the concentration of K⁺!
- Proteins
 - Both intra and extracellular fluid
 - Small capacity

Buffers

- Blood
 - Bicarbonate 53 %
 - Phosphate 5 %
 - Haemoglobin 35 %
 - Proteins7 %

HCO_3^- a Hb system

- Bicarbonate
 - Concentration: 24 ± 2 mmol/l
 - Regulation of their blood level: kidney
 - Standard x actual HCO₃⁻
- Haemoglobin

HCO

Similar capacity as HCO₃⁻

H+ ₽

HbO is stronger acid than Hb: it releases H⁺

H₂CO₃ **₽** H₂O + CO₂

\starTissues: HbO \rightarrow Hb: binding of H⁺

★Lungs: Hb \rightarrow HbO: release of (H^+)

Compensation of A-B disorders

- Respiratory A-B disorder
 - Renal compensation
- "Metabolic" A-B disorder
 Lung and renal compensation

Respiratory compensation of A-B disorders \uparrow or \downarrow of ventilation

Acidosis

$HCO_3^- + H^+ \neq H_2CO_3 \neq H_2O + CO_2$

Excretion of CO₂ by lungs drives reaction to right.

Respiratory compensation of A-B disorders \uparrow or \downarrow of ventilation

- Metabolic acidosis: hyperventilation
 - Stimulation of respiratory centre by low pH
 Very effective mechanism
 - \downarrow pCO₂, improved tissues saturation with O₂
- Metabolic alkalosis: hypoventilation = hypoxia !!
 Inhibition of respiratory centre by elevated pH
 - Low effective mechanism
 - \uparrow pCO₂, \downarrow pO₂, hypoxia = hypoventilation is cancelled

Respiratory compensation of A-B disorders \uparrow or \downarrow of ventilation

- Respiratory compensation started immediately, but
 - Maximal compensation: 24 hours
 - Hyperventilation persists after adjustment of acidosis
 - ★Risk of respiratory alkalosis development

Renal compensation of A-B disorders

Renal compensation of A-B disorders

- Acidosis
 - Synthesis of HCO₃⁻
 - Excretion of H⁺ to urine
 - \star Ammonium ions (NH₄⁺)
 - *****Phosphate ions $(H_2PO_4^-)$
- Alkalosis:
 - Excretion of HCO_3^- to the urine
 - Inhibition of H⁺ elimination
 - \star Stop of NH₄ synthesis
 - \star HPO₄²⁻ synthesis is started

Renal compensation of A-B disorders

- Renal compensation starts during 24 hours
 - It is complete is after 1 week
 - When is acidosis or alkalosis removed (therapy), compensation continues several days
 - ★Risk of reverse A-B disorder !

Acid-base disorders

- Simple disorders
 - 1. Metabolic acidosis
 - 2. Metabolic alkalosis
 - 3. Respiratory acidosis
 - 4. Respiratory alkalosis
- Combined acid-base disorders
 - Result of compensation mechanisms
 - Primary combined disorders

Metabolic acidosis

- Laboratory diagnosis:
 - ↓ pH
 - $\downarrow HCO_3^-$
 - \leftrightarrow pCO₂ (acute), \downarrow (lung compensation)
- Causes:
 - a) Without HCO_3^{-1} loss
 - \star \uparrow acids
 - b) Due to loss of HCO_3^{-1}

Acidosis without HCO₃⁻ loss

- ↑ production of acids
 - Kenotic acids
 - *Starvation, decom. DM, high grade fever
 - Others acids
 - *Intoxications
 - Salicylate, ethylene glycol (oxalic acid), methanol (formate)
- Acid retention
 - Acute renal failure, chronic renal failure

Acidosis without HCO₃⁻ loss Lactic acidosis

- Type A (hypoxic): hypoxia from any causes
 - Respiratory insufficiency, shock
 - Anaemia (Hb < 70 g/l), carbon monoxide poisoning, extreme muscular activity
 - Blood stagnation
- Type B (insufficient utilization of lactic acid)
 - Hepatic failure
 - Biguanide poisoning
 - Sepsis

Acidosis due to bicarbonate loss

- Real bicarbonates loss
 - Diarrhoea
 - Pancreatic fistula
- Decline of bicarbonates: Hyperchloremic acidosis

 \star KCI, NaCI, NH₄CI

Therapy of the metabolic acidosis

- NaHCO₃
 - How much ?
- Calculation

• mmol $HCO_3 = BE \times 0.3 \times weight (kg)$

Therapy of the metabolic acidosis

The rules for therapy of met. ac.

- Therapy must be causal (if possible) !!!
- Maximal dose of bicarbonate
 - 1/3 1/2 of the calculated dose
- HCO_3^- is indicated only when
 - Causal therapy is not possible
 - ▶ pH < 7,1
- Chronic met. ac.: treatment with caution
 - Compensation with both hyperventilation and kidney
 - ★Risk of alkalosis after therapy

Therapy of MAC with HCO_3^- : YES or NO ?

- Ketoacidosis: No
 - Starvation nutrition
 - Decom. DM insulin
 - Intoxication (ethylene glycol, methanol)
 *Dialysis
- Renal failure: No
 Haemodialysis

Therapy of MAC with HCO_3^- : YES or NO ?

- Lactic hypoxic acidosis type A: NO !!!
 - Oxygen therapy
- Type B
 - Hepatic failure, sepsis: specific therapy
 - Biguanide poisoning: Yes, but dialysis and/or hemoperfusion is necessary
- Loss of bicarbonates
 - Diarrhoea, pancreatic fistula: Yes
 - Hyperchloremic acidosis: No
 Thiazid diuretics

Metabolic alkalosis

- Dg:
 - ▶ ↑ pH

 - \leftrightarrow pCO₂ (acute), \uparrow (lung compensation)
- Types of MAL:
 - Responding for treatment with chlorides
 - ★ MAL due to loss of CI
 - Not responding for treatment with chlorides

Metabolic alkalosis

MAL due to loss of CI

- Vomiting
- Drainage of gastric juice
- Overdosing of diuretics (thiazides)

Concentration of the ions in the extracel. fluid

Lack of chlorides = alkalosis

MAL due to lack of CI: therapy

- Cl⁻
 - ▶ NaCl, KCl, NH₄Cl, arginin hydrochlorid
- How much of Cl⁻?
 - BE x 0.3 x weight (kg)
 - Deficite of Cl⁻ x 0.3 x weight (kg)
- The rules for therapy of met. alkalosis
 - Therapy is always indicated
 - The full calculated dose of Cl⁻ should be given
- Alkalosis is more dangerous than acidosis!

MAL not responding for treatment with Cl-

- Hyperaldosteronism
- Long-term therapy with glukocorticoides
- latrogenic
 - \uparrow supplementation of HCO₃-

MAL not responding for treatment with CI-:

- Therapy must be causal
- Hypokalemia KCI
- Live- threatening MAL Hemodialysis

Respiratory acidosis (RAC)

- It is characterized by retention of CO₂
- Dg:
 - ↓ pH
 - \uparrow pCO₂
 - $\leftrightarrow HCO_3$, then \uparrow (kidney compensation)
- Cause of RAC: retention CO₂
 - Central
 - Ventilatory
 - Cardiac

Respiratory acidosis

Deviation of pH may be greatly reduced by the process of compensation

- Central (depression of respiratory centre)
 - Drug induced sedatives, narcotics
 - Lesions of resp. centre tumour, trauma, ...

- Ventilatory
 - Neuromuscular (myastenia gravis, botulism)
 - Muscles (myositis, muscular dystrophy)
 - Thorax (pneumothorax)
 - Respiratory tract (asthma, bronchostenosis, tumour)
 - Lung parenchyma (lung oedema, ARDS, pneumonia)

Respiratory acidosis (RAC)

- Cardiac
 - Low minute volume of cardiac output

Respiratory acidosis: Therapy

- Therapy must be causal !!
- Hypoxia is more serious problem then acidosis !!!
- Improvement of ventilation, sometime oxygen
- In the life threatening RAC
 - Mechanical ventilation
- Bicarbonate is contraindicated !!!
- Oxygen must be done with caution !
 - Hypoxia stimulated respiratory centre
 High O₂ doses can stop respiration

Respiratory alkalosis (RAL)

- Stimulation of the respiratory center
- Dg:
 - ↑ pH
 - \downarrow pCO₂
 - \leftrightarrow HCO₃, then \downarrow (kidney compenzation)

Respiratory alkalosis

Respiratory alkalosis (RAL)

- Causes of RAL
 - Hyperventilatory syndrom
 - Anxiety, hysteria
 - Lesions of the CNS
 - Encephalitis, meningitis, tumours, trauma

Respiratory alkalosis (RAL): Therapy

- Depression of the respiratory center
- Hyperventilatory syndrom

Sedatives

- Life threatening RAL
 - Mechanical ventilation

Combined A-B disorders

- Primary combined A-B disorders
- Result of the compensation mechanisms
 - Metabolic acidosis is compensated by respiratory alkalosis
 - Metabolic alkalosis is compensated by respiratory acidosis
 - Respiratory acidosis is compensated by metabolic alkalosis
 - Respiratory alkalosis is compensated by metabolic acidosis

How to recognized combined A-B disorders ?

- Respiratory component can be found easy
 pCO₂ is changed
- Metabolic components may be sometimes difficult to detect, as both acidosis and alkalosis may be present and they result to the relatively normal laboratory values (pH, HCO₃, pCO₂, pO₂):
 - Concentration of Cl⁻, K⁺, Na⁺ must be measured !
 - Some calculation may be useful

How to recognized combined A-B disorders ?

- An interpretation of the blood's A-B status must take into account the electrolyte status
- Cl and K deserve special attention!
- Changes in Cl⁻ conc. are followed by the changes in A-B status
 - \uparrow of CI⁻ results in \downarrow of HCO₃⁻ and it is followed by metabolic acidosis (hyperchloremic acidosis)
 - \downarrow of Cl⁻ results in \uparrow of HCO₃⁻ and it is followed by metabolic alkalosis (hypochloremic alkalosis)

Formulas that can contribute to the detection of the combined disorders:

- Buffer Base = $Na^+ + K^+ Cl^-$
 - Normal result: 42 mmol/l
 - \uparrow = metabolic alkalosis is probably present

Formulas that can contribute to the detection of the combined disorders:

- Anion gap = $(Na^+ + K^+) (Cl^- + HCO_3^-)$
- Normal result = 18 mmol/l)
- - Lactate, kenotic acids, multiple acid radicals

How to recognized combined A-B disorders ?

- Normal pH do not exclude A-B disorders !
- What we need for interpretation of A-B status ?
 - ▶ pH, HCO₃⁻, pCO₂, pO₂
 - Na, K, Cl
 - Patients's history and clinical examination!

Physiologic values of AB balance

Parameter	Unit	Reference ranges	Critical values
рН		7.35 - 7.45	< 7.1; > 7.6
pCO ₂	kPa	4.8 - 5.6	< 3.3; > 8.1
pO ₂	kPa	10 - 13	< 6.7
aktHCO ₃	mmol/l	22 - 26	< 5; > 55
stanHCO ₃	mmol/l	22 - 26	< 5; > 55
BE	mmol/l	± 2	

Laboratory diagnostic of A-B disorders

		HCO ₃	рН	pCO ₂
Metabol. acidosis	Acute	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	Ν
	Chron.	\downarrow	\downarrow	\downarrow
Metabol. alkalosis	Acute	$\uparrow\uparrow$	$\uparrow\uparrow$	Ν
	Chron.	1	\uparrow	\uparrow
Respir. acidosis	Acute	N,↑	$\downarrow\downarrow\downarrow$	$\uparrow\uparrow$
	Chron.	\uparrow	\downarrow	$\uparrow\uparrow$
Respir. alkalosis	Acute	N, ↓	$\uparrow\uparrow$	$\downarrow\downarrow$
	Chron.	\downarrow	\uparrow	$\downarrow\downarrow\downarrow$