**Topic J03: Cultivation of bacteria and yeasts**Materials for study (from textbooks, internet etc.): Bacterial culture. Use also your notes from Chemistry and Biochemistry (e. g. Schiff reagent etc.)

## Task 1: Characterisation of media and their production

# Task 1a: Most important media in medical microbiology

Look at given media and write here the type of medium according to explanation given by your teacher. Do not

|                                  | er the medium is solid                        | or liquid and whether it   | t is in a Petri dish or in a | a test tube.           |
|----------------------------------|-----------------------------------------------|----------------------------|------------------------------|------------------------|
| Name of medium                   | Liquid/solid<br>Petri dish/test t.            | Colour                     | Type of medium (selective,)  | Used for bacteria*:    |
| 1. Broth                         |                                               |                            |                              |                        |
| 2. VL-broth                      |                                               |                            |                              |                        |
| 3. Selenite broth                |                                               |                            |                              |                        |
| 4. Sabouraud agar                |                                               |                            |                              |                        |
| 5. Löwenstein-<br>Jenssen medium |                                               |                            |                              |                        |
| 6. Blood agar (BA)               |                                               |                            |                              |                        |
| 7. Endo agar (EA)                |                                               |                            |                              |                        |
| 8. Mueller Hinton (MH medium)    |                                               |                            |                              |                        |
| 9. BA with 10 %<br>NaCl          |                                               |                            |                              |                        |
| 10. VL agar (VLA)                |                                               |                            |                              |                        |
| 11. XLD                          |                                               |                            |                              |                        |
| 12. Chocolate agar               |                                               |                            |                              |                        |
| 13. Levinthal agar               |                                               |                            |                              |                        |
| 14. Slanetz-Bartley medium       |                                               |                            |                              |                        |
| *not necessary to fill           | everywhere, only in m                         | edia used for diagnostic   | s of certain bacteria        |                        |
|                                  | ncturing of blood at l in missing parts of fo |                            |                              |                        |
| If we want to manufa             | cture blood agar, we ha                       | ave to mix together follo  | owing components:            |                        |
| Now, the components              | are heated using Arno                         | old apparatus, and sterili | sed. Now, we let the ter     | mperature to decrease. |
| At temperature benea             | th 55 °C we add                               |                            | Then we po                   | our the agar into      |
|                                  | or we                                         | use                        |                              | ·                      |
| Eventual more notes              | to blood agar manufac                         | turing:                    |                              |                        |

General Medicine Date \_\_\_\_. \_\_\_. 2009 Page 1

#### Task 2: Influence of physical and chemical conditions on the bacterial growth

### Task 2a: Influence to oxygen

Five strains (J, K, L, M, N) were cultured on agar plates in four types of conditions:

- a) normal athmosphere
- b) elevated CO<sub>2</sub> concentration
- c) decreased oxygen concentration
- d) no oxygen at all (oxygen replaced by a mixture of other gases)

Write "G" (growing) or "N"(not growing); assess, which strain is strictly aerobic, facultatively anaerobic, strictly anaerobic, microaerophilic, capnophilic

Result:

| Strain | normal air | elevated CO <sub>2</sub> | traces of oxygen only | no oxygen | conclusion |
|--------|------------|--------------------------|-----------------------|-----------|------------|
| J      |            |                          |                       |           |            |
| K      |            |                          |                       |           |            |
| L      |            |                          |                       |           |            |
| M      |            |                          |                       |           |            |
| N      |            |                          |                       |           |            |

#### Task 2b: Influence of salts and antibiotics

You can see three strains on various types of media. Describe the presence/absence of growth

Mark: GROWS – DOES NOT GROW

| Strain              | Blood agar<br>(BA) | BA + NaCl (6,5 %) | BA + NaCl (10<br>%) | Slanetz Bartley agar (Na-azide) | BA with amicacine |
|---------------------|--------------------|-------------------|---------------------|---------------------------------|-------------------|
| E – Enterococcus    |                    |                   |                     |                                 |                   |
| SR – Streptococcus  |                    |                   |                     |                                 |                   |
| ST – Staphylococcus |                    |                   |                     |                                 |                   |

#### Task 2c: Influence of temperature

Like the previous task, only with the same medium, but different temperature.

Mark: GROWS - DOES NOT GROW

| Strain | 4 °C | 37 °C | 42 °C |
|--------|------|-------|-------|
| PSAE   |      |       |       |
| PSFL   |      |       |       |

#### Task 3: Properties of the two most common diagnostic and selective-diagnostic media

## Task 3a: Blood agar – viridation and hemolysis

Blood agar may be considered to be an enriched medium (with RBCs) but it is also a diagnostic medium. Following changes may be observed on it:

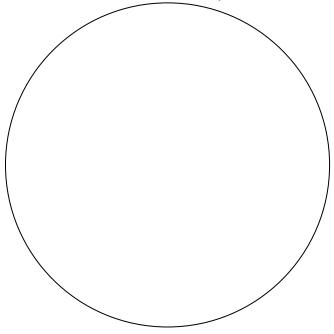
**Total haemolysis** – bacterie with their activity destroy the erythrocytes around them tolally, blood agar becomes serum-colloured, it is transparent

**Partial haemolysis** – bacterie using their activity destroy erythrocytes only partially, blood agar around colonies is only half-translucent and its colour is yellowish (no greenish tone)

Viridation - change of red blood colour to a green one; agar around colony becomes greenish

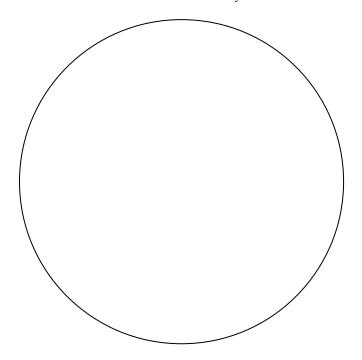
No change – majority of bacteria do not change the agar

Describe haemolytical properties of four strains on blood agar. Read against light. Observe the colour of the haemolysis, not the colour of the bacterial colony itself.


| Name | General Medicine | Date . | . 2009 | Page 2 |
|------|------------------|--------|--------|--------|
|      |                  |        |        |        |

| Streptococcus<br>pyogenes (SRP                                          | Y)         |                   |                                 |                             |  |
|-------------------------------------------------------------------------|------------|-------------------|---------------------------------|-----------------------------|--|
| Streptococcus<br>agalactiae (SR                                         | AG)        |                   |                                 |                             |  |
| Streptococcus<br>pneumoniae (S                                          | RPN)       |                   |                                 |                             |  |
| Enterococcus f<br>(ECFS)                                                | aecalis    |                   |                                 |                             |  |
|                                                                         |            |                   | absence of growth, lact         |                             |  |
| Staphylococcus<br>epidermidis (S                                        | 5          | win, and onlinges | or are meaning surrounding      | ino commes.                 |  |
| Escherichia co<br>(ESCO)                                                | li         |                   |                                 |                             |  |
| Salmonella<br>Enteritidis (SA                                           | EN)        |                   |                                 |                             |  |
|                                                                         |            |                   |                                 |                             |  |
|                                                                         |            |                   | ogic characteristics of         |                             |  |
|                                                                         | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Describe three Size                                                     |            |                   |                                 |                             |  |
| Describe three                                                          | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Describe three Size                                                     | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Size Colour                                                             | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Size Colour Shape                                                       | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Size Colour Shape Profile                                               | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Size Colour Shape Profile Surface                                       | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Size  Colour  Shape  Profile  Surface  Edges                            | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Size Colour Shape Profile Surface Edges Translucency                    | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |
| Size  Colour  Shape  Profile  Surface  Edges  Translucency  Consistency | strains of |                   | mpossilbe to fill a cell, enter | a reason (e.g.,,too small") |  |

Task 5: Inoculation of samples and strains on solid media


## Task 5a: Inoculation of a swab

Inoculate a swab on the medium. Draw your result.



## Task 5b: Inoculation of a strain

Inoculate a strain on the medium. Draw your result.



# **Check-up questions:**

- 1. Why VL broth is covered by parafin oil?
- 2. Why red blood cells are used only after the agar gets cold?

Name \_\_\_\_\_ General Medicine Date \_\_\_. \_\_\_. 2009 Page 4

| T | opic J03     |
|---|--------------|
| 2 | Why galatina |

3. Why gelatine is usually not used at making solid media? 4. Microaerophilic and capnophilic conditions: is it the same? 5. Is the ability of staphylococci to grow at high NaCl concentrations related with its adaptation related to the macroorganism? 6. What characteristics cannot be seen by one's eye? And what characteristic requires touching the colony? 7. Why it is so important to obtain isolated colonies at cultivation? 8. Blood agar is made of "basis for blood agar" (in fact it is nutrient agar) and defibrinated sheep blood. Is it possible to add blood to other bases?