Medical chemistry

Autumn 2010

Recommended textbooks:

Táborská, Sláma: Medical Chemistry I (General and Inorganic Chemistry) Brno 2006

Dostál: Medical Chemistry II (Organic Chemistry) Brno 2006

Lecture files (ppt,pdf).

Solutions of electrolytes

- **Acid-base reactions**
- •**acid-base theory (recapitulation)**
- •**pH of acids and bases (recapitulation)**
- •**hydrolysis of salts (recapitulation)**
- •**buffers**

© Department of Biochemistry LF MU (E.T.) 2009

Terms from the secondary school chemistry that is necessary to repeat to understand the lecture topics:

- electrolytes, their types and properties
- chemical equilibrium, equilibrium constant
- acids, bases, conjugate pairs
- autoprotolysis of water, pH
- strong and weak acids and bases
- calculation of pH of strong and weak acids

These terms are included in the textbook Medical chemistry I

Electrolytes and non-electrolytes

Electrolytes

ions are surrounded by a certain number of water molecules (hydrated).

Compounds that dissolve in water with the formation of ions.

Electrolytes are ionic compounds or polar molecular compounds

Classification of electrolytes

Strong electrolytes Weak electrolytes

They are 100% ionized (fully dissociated)

There is an equilibrium between ions and molecules

Characterization of electrolytes

Strong electrolytes: AB (s) \rightarrow A⁺ (aq) + B⁻(aq) $NaCl(s) \rightarrow Na^+(aq) + Cl^-(aq)$ H_2O

Dissociation is complete

Weak electrolytes: $AB(s) \rightarrow AB(aq) \leq A^+(aq) + B^-(aq)$ $HCN(g) \rightarrow HCN(aq) \leftrightarrows H^+(aq) + CN^-(aq)$ Dissociation is partial $H₂O$

Electrolytes

Strong

Strong acids (HCl, HBr,HI, H_2SO_4 , HNO₃, HClO₄, …………)

Strong hydroxydes (NaOH, KOH, Ca $(OH)_2$, Mg $(OH)_2...$

All salts

 $Na₂SO₄$, NaCl, $K₂CO₃$, FeCl₃..........

Weak

Weak acids $CH₃COOH$, $H₂CO₃$, $HNO₂...$ Weak bases $Fe(OH)_3$, NH₃, C₆H₅NH₂.....

Strong electrolytes

Weak electrolytes

Examples

Acids and bases according to Brønsted concept

Acid: molecule or ion that can lose a proton H^+

 $HA \rightarrow H^+ + A^$ acid conjugate base

Base: molecule or ion that can bind a proton H+

 $B + H^+$ \rightarrow BH^+

base conjugate acid

Conjugate pair acid/base

Conjugate pair

Acids and bases in water

Water behaves as an acid

pH

Acidity of a medium is assessed according to the concentration of hydrogen cations

$$
pH = -\log |H^+|.
$$

similarly

$$
pOH = -\log \text{OH}^{-1}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
14 = pH + \text{pOH}
$$

pH values of some body fluids

pH of strong acids and strong hydroxides solutions

Strong acid and strong hydroxides are **strong electrolytes** that are fully dissociated in aqueous solutions.

Dissociation of a strong acid: HA + $H_2O \rightarrow H_3O^+ + A^-$ The concentration [H⁺] is equal to the total strong acid concentration c_{HA} :

 $[H^+] = c_{HA}$ and $P = -\log [H^+] = -\log c_{HA}$

Dissociation of a strong hydroxide: MeOH(aq) \rightarrow Me⁺ + OH⁻ In solutions of monobasic **strong hydroxides**,

 $[OH^-] = c_{\text{MeOH}}$, **pOH** = – log $[OH^-] = - \log c_{\text{MeOH}}$ and **pH** = **14 – pOH**

pH of weak acids and bases

What pH has vinegar ?

What pH has a solution of vitamin C?

Why can I drink solutions of carbonic and phosphoric acid, but not hydrochloric acid?

Disssociation of weak acids and bases

Weak monoprotic acid

Weak monobasic base

 $HA + H_2O \xrightarrow{\longleftarrow} H_3O^+ + A^ B + H_2O \xrightarrow{\longleftarrow} BH^+ + OH^-$

equilibrium constant of ionization

$$
K_c = \frac{[H_3O^+J.[A^-]}{[HA][H_2O]}
$$

$$
K_c = \frac{[BH^+J.[OH^-]}{[B][H_2O]}
$$

acid and base ionization constant

$$
K_{A} = \frac{[H_{3}O^{+}]\cdot[A^{-}]}{[HA]}
$$

$$
K_{B} = \frac{[BH^{+}]\cdot[OH^{-}]}{[B]}
$$

 K_A – acid ionization constant K_B – base ionization constant

 $pK = -\log K$

What does express the pK_A (pK_B) values ?

The **lower** the value of p K_A , the stronger is the weak acid.

pK^A values of weak acids

pK^B values of weak bases

Relation between K_A a K_B (pK_A a pK_B)

$$
K_A
$$
. $K_B = K_v = 1.10^{-14}$

$$
pK_A + pK_B = 14
$$

Calculation of pH of weak acids and bases

Weak monoprotic acid

$HA + H_2O \longrightarrow H_3O^+ + A^-$

$$
K_A = \frac{[H^+] \cdot [A^-]}{[HA]}
$$

$$
pH = \frac{1}{2}pK_A - \frac{1}{2} \log c_A
$$

Weak monobasic base

$B + H₂O \longrightarrow BH^{+} + OH^{-}$

$$
K_B = \frac{[BH^+] \cdot [OH^-]}{[B]}
$$

pOH =
$$
\frac{1}{2}
$$
 pK_B - $\frac{1}{2}$ log c_B
pH = $14 - \frac{1}{2}$ pK_B + $\frac{1}{2}$ log c_B

Strong and weak acid with the same concentration– comparison of pH

 CH_3COOH c=0,1 mol/l pK_A = 4,7 2 IOS ϵ _{HA} 1 2 μ A $pH = \frac{1}{2} pK_A - \left(\frac{1}{2} \log c\right)$ $pH = 2,35 + 0,5 = 2,85$ HCl c=0,1 mol/l $pH = -\log c_{HA} = -\log 0,1 \neq 1$

Why soap has alkaline reaction?

Why solution of soda (Na_2CO_3) is alkaline?

Why solution of $Na₃PO₄$ is alkaline?

Hydrolysis of salts

Salts are formed in reaction between an acid and base – neutralization.

The final pH of a solution after the neutralization reaction is not always neutral.

This is because some salts undergo to hydrolysis

Cl-is a spectator anion, it does not react with water

 $CH₃COO⁻$ is an anion of weak acid, it tends to react with water and form acetic acid.

Such amount of CH_3COOH will be formed, to be in equilibrium with $CH₃COOH$ given by ionization constant

Reactions of salts in water

examples

Example 1:

 $CH₃COONa - sodium acetate$

(salt of weak acid $CH₃COOH$ and strong hydroxide NaOH)

1. Dissociation

 $CH_3COONa \rightarrow CH_3COO^- + Na^+$

2. Hydrolysis of the anion of weak acid $CH₃COO⁻ + H₂O = CH₃COOH + OH⁻$

pH is slightly alkaline

Example 2:

 NH_{4} Cl – ammonium chloride

(salt of weak base $NH₃$ and strong acid HCI)

1. Dissociation $NH_4Cl \rightarrow NH_4^+ + Cl^-$

2. Hydrolysis of cation of weak base $NH_4^+ + H_2O \quad \Leftrightarrow \quad H_3O^+ + NH_3$

pH is slightly acidic

Example 3:

```
CuCl<sub>2</sub> - copper (II) chloride
```
(salt of Cu^{2+} cation derived from weak $Cu(OH)_{2}$ and strong HCl)

1. Dissociation

 $CuCl₂$ \rightarrow $Cu²⁺ + 2Cl⁻$

2. Hydration of a metal cation

 $Cu^{2+} + 6 H_2O \rightarrow [Cu(H_2O)_6]^{2+}$

3. Hydrolysis of hydrated cation

pH is slightly acidic $[Cu(H₂O)₆]^{2+}$ + $H₂O \Leftrightarrow [Cu(H₂O)₅OH]^{+}$ + $H₃O^{+}$

Example 4: $NH₄NO₂$ (salt of weak base NH₃ and weak acid $\mathsf{HNO_2)}$)

1. Dissociation

 $NH_4NO_2 \rightarrow NH_4^+ + NO_2^-$

2. hydrolysis of cation of a weak base and anion of a weak acid $NH_4^+ + H_2O \quad \Leftrightarrow \quad NH_3 + H_3O^+ \longrightarrow \quad pH \approx 7$ NO_2^- + H_2O \implies HNO_2 + OH^-

Example 5:

 $NaNO₃$

(salt of strong hydroxide NaOH and strong acid $\mathsf{HNO_3)}$

1. Dissociation

 $\text{NaNO}_2 \rightarrow \text{Na}^+ + \text{NO}_2^-$

Hydrolysis of salts - summary

Complete

How to maintain the constant pH of our blood?

Buffer solutions

• A **buffer solution** is a solution able to absorb a certain quantity of acid or base without undergoing a strong variation in pH

• It serves to maintain a fairly constant pH value.

Simple buffer solutions are mixtures of

a weak acid and the conjugate base of that **(e.g. acetic acid and sodium acetate)**

or

a weak base and its conjugate acid **(e.g. ammonia and ammonium chloride)**

Function of a buffer

Example: solution of $(CH_3COOH + CH_3COONa)$

Particles present in the solution:

mainly from the salt from the acid from the salt from the acid

The presence of $CH₃COO⁻$ from the salt supresses dissociation of $CH₃COOH$

The equilibrium in the solution: $CH_3COOH \cong CH_3COO^+ + H^+$

$$
K_A = \frac{\left[H^+\right] \cdot \left[A^-\right]}{\left[HA\right]} = \frac{\frac{1}{H^+} \cdot \frac{1}{H^+} \cdot \cos \theta}{\left[HA\right]} = \frac{\frac{1}{H^+} \cdot \frac{1}{H^+} \cdot \cos \theta}{\frac{1}{H^+} \cdot \cos \theta}
$$

salt acid A 3 3 A c c K CH_3COO CH COOH H^{\top} = K

The concentration of H^+ ions (and also pH) depends on the ratio **of the acidic and basic component concentrations and** K_A **.**

The logarithmic form of that relation is known as **Henderson-Hasselbalch equation:**

$$
pH = pK_A + log \frac{c_{Salt}}{c_{Acid}}
$$

How does the buffer work ?

- **H⁺ ions of the strong acid are added to the solution:**
- **-** concentration of H+ increases that upsets the equilibrium.

[H+] increases proportionally to the increase of $c_{\text{acid}}/c_{\text{base}}$, pH decreases proportionally to the decrease of the log $c_{\text{base}} / c_{\text{acid}}$.

• **OH-ions of the strong hydroxide are added to the solution**

 $CH_3COOH + OH \longrightarrow CH_3COO^+ + H_2O$

Increase in OH– concentration withdraws H+ from the buffer acid that transforms into its conjugate base.

CH₃COO⁺ H⁺
$$
\overrightarrow{CH_3COOH}
$$

\n
$$
K_A = \frac{\mathbf{h}^+ \cdot \mathbf{c}_{H_3}COO}{\mathbf{c}_{H_3}COOH} \overrightarrow{H^+} = K_A \frac{\mathbf{c}_{H_3}COOH}{CH_3COOH}
$$
\n
$$
G_{H_3}COOH
$$

[H+] decreases proportionally to the decrease of $c_{\text{acid}}/c_{\text{base}}$, pH increases proportionally to the increase of the log $c_{\text{base}} / c_{\text{acid}}$.

pH of a buffer

Acid

 $A \quad P \in \mathcal{C}$

Henderson-Hasselbalch equation

For weak base and its salt with the strong acid

$$
pOH = pK_B + log \frac{c_{Salt}}{c_{Base}} = pK_B + log \frac{c_{acid}}{c_{base}}
$$

$$
\bigcup_{\text{pH}} = 14 - pK_B - log \frac{c_{Salt}}{c_{Base}} = 14 - pK_B - log \frac{c_{acid}}{c_{base}}
$$

Henderson-Hasselbalch equation in general form:

$$
pH = pK_A + \log \frac{c_{\text{Base}}}{c_{\text{Acid}}}
$$

where cbase isthe concentration of basic component and c_{Acid} the concentration of acidic component of conjugate pairs that **form the buffer.**

pH of a buffer depends on

$$
pH = pK_A + log \frac{c_B}{c_A}
$$

ratio of buffer
approx.

components

if
$$
c_B/c_A = 1
$$

\n
$$
\downarrow
$$
\n
$$
pH = pK_A
$$

Capacity of a buffer – expresses the effectivity of a buffer

$$
pH = pK_A + \log \frac{c_B}{c_A}
$$

Capacity is highest if $c_{\rm B}/c_{\rm A} = 1$

In sufficient buffer solutions, the ratio $c_{\text{base}}/c_{\text{acid}}$ should take values from 1:10 to 10:1, i.e. in the range pK_A 1.

Capacity depends also on the total buffer concentration

Buffer systems in human body

The pH value of blood is 7.40 0.04. Most biological happenings occur in the pH range 6 to 8.

All those buffer systems cooperate $-$ a surplus of H^+ is accepted by all buffer bases but distributed proportinally to their concentration in blood. Each of those four buffer systems has its own pK_A .

Hydrogencarbonate buffer

$CO_2 + H_2O \quad \Rightarrow \quad H_2CO_3 \Rightarrow \quad H^+ + HCO_3$

- $\cdot CO$, originates from metabolism
- •CO₂ dissolves in water and its small part forms H_2CO_3
- The concentration of H_2CO_3 depends on concentration of CO_2
- Instead the concentration $[H_2CO_3]$ is used effective concntration $[H_2CO_3]_{eff}$

 $[CO_2 + H_2CO_3] = [H_2CO_3]_{\text{ef}}$ effective concentration It is proportional to the partial pressure of CO_2 in blood K_A of carbonic acid is replaced by K_{Aef}

$$
K_{\text{Aef}} = \frac{H^+}{[O_2 + H_2CO_3]} = 4,3.10
$$
 (water, 25 °C)

$$
pK_{Aef} = 6{,}37
$$

In blood ($t = 37$ °C, higher ionic stregth)

 $pK_{\text{Aeff}} = 6,10$

Henderson-Hasselbalch equation for hydrogencarbonate buffer in blood

$$
pH = pK_{(H_2CO_3)} + log \frac{[HCO_3^-]}{[CO_2^+ + H_2CO_3]} = 6,1 + log \frac{[HCO_3^-]}{H_2CO_3^-}
$$

How does hydrogencarbonate buffer function?

Open system – the amount of $CO₂$ may be regulated by ventilation

Hydrogencarbonate buffer functions as open buffering system

Concentrations of both components can be regulated :

 $CO₂$ by respiration

 $HCO₃$ by function of liver and kidney

Plasma proteins and haemoglobin as buffers

In all proteins, only ionizable groups can take part in acid-base reaction At physiological pH values, imidazol groups of histidine residues alone act as effective buffer bases.

The most important blood protein buffer is hemoglobin

Hydrogen/dihydrogenphosphate buffer

 $H_2PO_4^-$ - acidic component $HPO₄²$ - bazic component $pK_{\Delta 2} = 6,8$ 2 ¹ \rightarrow 4 $\overline{\mathbf{H}_2 \mathbf{PO}}$ HPO $pH = 6,8 + log$

2

4

Buffer is of second-rate significance in the blood due to relatively low concentration.

However, within the cells, phosphates with proteins are the major buffer bases.