Medical chemistry

Autumn 2010

Recommended textbooks:

Táborská, Sláma: Medical Chemistry I (General and Inorganic Chemistry) Brno 2006

Dostál: Medical Chemistry II (Organic Chemistry) Brno 2006

Lecture files (ppt,pdf).

Solutions of electrolytes

- **Acid-base reactions**
- acid-base theory (recapitulation)
- pH of acids and bases (recapitulation)
- hydrolysis of salts (recapitulation)
- buffers

© Department of Biochemistry LF MU (E.T.) 2009

Terms from the secondary school chemistry that is necessary to repeat to understand the lecture topics:

- electrolytes, their types and properties
- chemical equilibrium, equilibrium constant
- acids, bases, conjugate pairs
- autoprotolysis of water, pH
- strong and weak acids and bases
- calculation of pH of strong and weak acids

These terms are included in the textbook Medical chemistry I

Electrolytes and non-electrolytes

Electrolytes

ions are surrounded by a certain number of water molecules (hydrated).

Compounds that dissolve in water with the formation of ions.

Electrolytes are ionic compounds or polar molecular compounds

Classification of electrolytes

Strong electrolytes

They are 100% ionized (fully dissociated)

Weak electrolytes

There is an equilibrium between ions and molecules

Characterization of electrolytes

Strong electrolytes: $AB(s) \rightarrow A^+(aq) + B^-(aq)$ $NaCl(s) \rightarrow Na^+(aq) + Cl^-(aq)$

Dissociation is complete

 H_2O Weak electrolytes: AB (s) → AB(aq) 与 A⁺ (aq) + B⁻(aq) HCN(g) → HCN(aq) 与 H⁺(aq) + CN⁻(aq)

Dissociation is partial

Electrolytes

Strong

Strong acids (HCl, HBr,HI, H₂SO₄, HNO₃, HClO₄,)

Strong hydroxydes (NaOH, KOH, Ca(OH)₂, Mg(OH)₂...

All salts

Na₂SO₄, NaCl, K₂CO₃, FeCl₃.....

Weak

Weak acids CH₃COOH, H₂CO₃, HNO₂... Weak bases

 $Fe(OH)_3$, NH_3 , $C_6H_5NH_2$

Strong electrolytes

Weak electrolytes

Examples

Nonelectrolyte	Strong electrolyte	Weak electrolyte
Ethanol	HCI	H ₂ CO ₃
Urea	H_2SO_4	CH ₃ COOH
Glucose	NaOH	NH ₃
Aceton	Ca(OH) ₂	Mg(OH) ₂
Sucrose	NaCl	HCN
Glycerol	Na ₂ SO ₄	pyridine

Acids and bases according to Brønsted concept

Acid: molecule or ion that can lose a proton H^+

 $HA \rightarrow H^{+} + A^{-}$
acid conjugate base

Base: molecule or ion that can bind a proton H+

 $B + H^+ \rightarrow BH^+$

base conjugate acid

Conjugate pair acid/base

Conjugate pair

Acids and bases in water

Water behaves as an acid

рΗ

Acidity of a medium is assessed according to the concentration of hydrogen cations

$$pH = -log H^+$$
.

similarly

$$pOH = -\log \mathbf{b}H^{-}$$
$$\downarrow$$
$$14 = \mathbf{p}H + \mathbf{p}OH$$

pH values of some body fluids

Body fluid	рН
Blood plasma	7,34 - 7,43
Urine	4,8 - 7,5
Gastric juice	≈ 2
Pancreatic juice	7,5 - 8,8
Intracelular fluid	6,4 - 6,5
(liver cells)	
Saliva	7 - 8

pH of strong acids and strong hydroxides solutions

Strong acid and strong hydroxides are **strong electrolytes** that are fully dissociated in aqueous solutions.

Dissociation of a strong acid: $HA + H_2O \rightarrow H_3O^+ + A^-$ The concentration [H⁺] is equal to the total strong acid concentration c_{HA} :

 $[H^+] = c_{HA}$ and $pH = -\log [H^+] = -\log c_{HA}$

Dissociation of a strong hydroxide: MeOH(aq) \rightarrow Me⁺ + OH⁻ In solutions of <u>monobasic</u> strong hydroxides,

 $[OH^-] = c_{MeOH}, \qquad pOH = -\log [OH^-] = -\log c_{MeOH},$ and pH = 14 - pOH pH of weak acids and bases

What pH has vinegar?

What pH has a solution of vitamin C?

Why can I drink solutions of carbonic and phosphoric acid, but not hydrochloric acid?

Disssociation of weak acids and bases

Weak monoprotic acid

Weak monobasic base

 $HA + H_2O \longleftarrow H_3O^+ + A^- \qquad B + H_2O \longleftarrow BH^+ + OH^-$

equilibrium constant of ionization

$$K_{c} = \frac{[H_{3}O^{+}].[A^{-}]}{[HA].[H_{2}O]} \qquad K_{c} = \frac{[BH^{+}].[OH^{-}]}{[B].[H_{2}O]}$$

acid and base ionization constant

$$K_{A} = \frac{[H_{3}O^{+}] \cdot [A^{-}]}{[HA]} \qquad \qquad K_{B} = \frac{[BH^{+}] \cdot [OH^{-}]}{[B]}$$

Wh

 K_A – acid ionization constant K_B – base ionization constant

 $pK = -\log K$

What does express the $pK_A(pK_B)$ values ?

The lower the value of pK_A , the stronger is the weak acid.

pK_A values of weak acids

Kyselina	pK _{A1}	pK _{A2}	pK _{A3}
$(COOH)_2$	1,25	4,3	
HNO_2	2,29		
H_3PO_4	2,16	7,2	12,3
CH ₃ COOH	4,76		
H_2CO_3	6,35	10,3	
H_2S	7,07	12,2	
H ₃ BO ₃	9,24	12,7	

pK_B values of weak bases

Báze	рК _В	pK _A
guanidin	1,50	12,5
methylamin	3,36	10,64
amoniak	4,75	9,25
imidazol	6,90	7,1
pyridin	8,82	5,18
anilin	9,38	4,62
kofein	13,40	0,6

Relation between K_A a K_B (pK_A a pK_B)

$$K_A \cdot K_B = K_v = 1.10^{-14}$$

Calculation of pH of weak acids and bases

Weak monoprotic acid

$HA + H_2O \longrightarrow H_3O^+ + A^-$

$$K_{A} = \frac{[H^{+}] \cdot [A^{-}]}{[HA]}$$

$$pH = \frac{1}{2} pK_A = \frac{1}{2} \log c_A$$

Weak monobasic base

$B + H_2O \longrightarrow BH^+ + OH^-$

$$K^{B} = \frac{[BH_{+}] \cdot [OH_{-}]}{[B]}$$

pOH =
$$\frac{1}{2} pK_{B} - \frac{1}{2} \log c_{B}$$

pH = $\frac{14 - \frac{1}{2} pK_{B} + \frac{1}{2} \log c_{B}$

Strong and weak acid with the same concentration– comparison of pH

HCl c=0,1 mol/1 $pH = -\log c_{HA} = -\log 0, 1 = 1$ CH₃COOH c=0,1 mol/l $pK_{A} = 4,7$ $pH = \frac{1}{2} pK_{A} - \frac{1}{2} \log c_{HA}$ pH = 2,35 + 0,5 = 2,85

Why soap has alkaline reaction?

Why solution of soda (Na_2CO_3) is alkaline?

Why solution of Na₃PO₄ is alkaline?

Hydrolysis of salts

Salts are formed in reaction between an acid and base – neutralization.

The final pH of a solution after the neutralization reaction is not always neutral.

This is because some salts undergo to hydrolysis

Cl⁻ is a spectator anion, it does not react with water

 CH_3COO^- is an anion of weak acid, it tends to react with water and form acetic acid.

Such amount of CH_3COOH will be formed, to be in equilibrium with CH_3COOH given by ionization constant

Reactions of salts in water

examples

Example 1:

CH₃COONa – sodium acetate

(salt of weak acid CH_3COOH and strong hydroxide NaOH)

1. Dissociation

 $CH_3COONa \rightarrow CH_3COO^- + Na^+$

2. Hydrolysis of the anion of weak acid $CH_3COO^- + H_2O \leftrightarrows CH_3COOH + OH^-$

pH is slightly alkaline

Example 2:

NH₄Cl – ammonium chloride

(salt of weak base NH₃ and strong acid HCI)

1. Dissociation $NH_4Cl \rightarrow NH_4^+ + Cl^-$

2. Hydrolysis of cation of weak base $NH_4^+ + H_2O \leftrightarrows H_3O^+ + NH_3$

pH is slightly acidic

Example 3:

```
CuCl_2 – copper (II) chloride
```

(salt of Cu^{2+} cation derived from weak $Cu(OH)_2$ and strong HCI)

1. Dissociation

 $CuCl_2 \rightarrow Cu^{2+} + 2Cl^{-}$

2. Hydration of a metal cation

 $\mathrm{Cu}^{2+} + 6 \mathrm{H}_2\mathrm{O} \rightarrow [\mathrm{Cu}(\mathrm{H}_2\mathrm{O})_6]^{2+}$

3. Hydrolysis of hydrated cation

 $[Cu(H_2O)_6]^{2+} + H_2O \leftrightarrows [Cu(H_2O)_5OH]^+ + H_3O^+$ pH is slightly acidic Example 4: NH_4NO_2 (salt of weak base NH_3 and weak acid HNO_2)

1. Dissociation

 $NH_4NO_2 \rightarrow NH_4^+ + NO_2^-$

2. hydrolysis of cation of a weak base and anion of a weak acid $NH_4^+ + H_2O \implies NH_3 + H_3O^+ \implies pH\approx7$ $NO_2^- + H_2O \implies HNO_2 + OH^- \Longrightarrow$ Example 5:

NaNO₃

(salt of strong hydroxide NaOH and strong acid HNO₃)

1. Dissociation

 $NaNO_2 \rightarrow Na^+ + NO_2^-$

Hydrolysis of salts - summary

Complete

Composition of salt - origin of ions		
cation	anion	рН
Strong base	Strong acid	
Weak base	Strong acid	
Strong base	Weak acid	
Weak base	Weak acid	

How to maintain the constant pH of our blood?

Buffer solutions

• A **buffer solution** is a solution able to absorb a certain quantity of acid or base without undergoing a strong variation in pH

• It serves to maintain a fairly constant pH value.

Simple buffer solutions are mixtures of

a weak acid and the conjugate base of that (e.g. acetic acid and sodium acetate)

or

a weak base and its conjugate acid (e.g. ammonia and ammonium chloride)

Function of a buffer

Example: solution of $(CH_3COOH + CH_3COONa)$

Particles present in the solution:

The presence of CH₃COO⁻ from the salt supresses dissociation of CH₃COOH

The equilibrium in the solution: $CH_3COOH \iff CH_3COO^- + H^+$

$$K_{A} = \frac{[H^{+}] \cdot [A^{-}]}{[HA]} = \frac{H^{+} \cdot CH_{3}COO^{-}}{COOH^{-}} = \frac{H^{+} \cdot C_{salt}}{c_{acid}}$$

 $H^+ = K_A \frac{CH_3COOH}{CH_3COO} =$ acid K C salt

The concentration of H^+ ions (and also pH) depends on the ratio of the acidic and basic component concentrations and K_A .

The logarithmic form of that relation is known as **Henderson-Hasselbalch equation:**

pH = pK _A + log
$$\frac{c_{Salt}}{c_{Acid}}$$

How does the buffer work ?

- H⁺ ions of the strong acid are added to the solution:
- concentration of H+ increases that upsets the equilibrium.

[H+] increases proportionally to the increase of c_{acid} / c_{base} , pH decreases proportionally to the decrease of the log c_{base} / c_{acid} .

• OH⁻ ions of the strong hydroxide are added to the solution

 $CH_3COOH + OH^- \longrightarrow CH_3COO^- + H_2O$

Increase in OH– concentration withdraws H+ from the buffer acid that transforms into its conjugate base.

$$CH_{3}COO^{-} + H^{+} \longleftarrow CH_{3}COOH$$

$$K_{A} = \underbrace{H^{+} \cdot H_{3}COO^{-}}_{H^{+} GOOH} \underbrace{H^{+}}_{H^{+}} = K_{A} \underbrace{CH_{3}COOH}_{CH_{3}COOH}$$

[H+] decreases proportionally to the decrease of $c_{\text{acid}} / c_{\text{base}}$, pH increases proportionally to the increase of the log $c_{\text{base}} / c_{\text{acid}}$.

pH of a buffer

For the weak acid and its salt $K_{A} = \frac{[H^{+}] \cdot [A^{-}]}{[HA]}$ with a strong base $[H^{+}] = K_{A} \cdot \frac{[HA]}{[A^{-}]}$ from which $[H^+] = K_A \cdot \frac{c_{Acid}}{c_{Acid}} = K_A \cdot \frac{c_{Acid}}{c_{Acid}}$ C base c_{Salt} Salt can be considered as conjugate base to the acid

$$pH = pK_{A} + \log \frac{c_{Base}}{c_{Acid}}$$

Henderson-Hasselbalch equation

For weak base and its salt with the strong acid

$$pOH = pK_{B} + \log \frac{c_{Salt}}{c_{Base}} = pK_{B} + \log \frac{c_{acid}}{c_{base}}$$
$$\downarrow$$
$$pH = |4 - pK_{B} - \log \frac{c_{Salt}}{c_{Base}} = |4 - pK_{B} - \log \frac{c_{acid}}{c_{base}}$$

Henderson-Hasselbalch equation in general form:

$$pH = pK_{A} + \log \frac{c_{Base}}{c_{Acid}}$$

where c_{base} is the concentration of basic component and c_{Acid} the concentration of acidic component of conjugate pairs that form the buffer.

pH of a buffer depends on

$$pH = pK_{A} + \log \frac{c_{B}}{c_{A}}$$
ratio of buffer
pK_A value components

components

if
$$c_B/c_A = 1$$

 \downarrow
 $pH = pK_A$

Capacity of a buffer – expresses the effectivity of a buffer

$$pH = pK_A + \log \frac{c_B}{c_A}$$

Capacity is highest if $c_B/c_A = 1$

In sufficient buffer solutions, the ratio $c_{\text{base}}/c_{\text{acid}}$ should take values from 1:10 to 10:1, i.e. in the range p K_{A} 1.

Capacity depends also on the total buffer concentration

Buffer systems in human body

The pH value of blood is 7.40 0.04. Most biological happenings occur in the pH range 6 to 8.

Blood buffer bases:	Buffer:
Hydrogen carbonate	$HCO_{3}^{-} / (H_{2}CO_{3} + CO_{2})$
Plasma proteins	protein / protein-H ⁺
Haemoglobin of red blood cells	haemoglobin / haemoglobin-H ⁺
Hydrogen phosphate	$HPO_{4}^{2-}/H_{2}PO_{4}^{-}$

All those buffer systems cooperate – a surplus of H⁺ is accepted by all buffer bases but distributed proportinally to their concentration in blood. Each of those four buffer systems has its own pK_A .

Hydrogencarbonate buffer

$CO_2 + H_2O \quad \leftrightarrows \quad H_2CO_3 \leftrightarrows \quad H^+ + HCO_3^-$

- •CO₂ originates from metabolism
- •CO₂ dissolves in water and its small part forms H₂CO₃
- The concentration of H_2CO_3 depends on concentration of CO_2
- Instead the concentration $[H_2CO_3]$ is used effective concentration $[H_2CO_3]_{eff}$

 $[CO_2 + H_2CO_3] = [H_2CO_3]_{ef}$ effective concentration It is proportional to the partial pressure of CO_2 in blood $K_{\rm A}$ of carbonic acid is replaced by $K_{\rm Aef}$

$$K_{Aef} = \frac{H^{+} HCO_{3}^{-}}{CO_{2} + H_{2}CO_{3}^{-}} = 4,3.10^{-}$$
(water, 25 °C)

$$pK_{Aef} = 6,37$$

In blood (t =37 °C, higher ionic strength)

 $pK_{Aeff} = 6,10$

Henderson-Hasselbalch equation for hydrogencarbonate buffer in blood

$$pH = pK_{(H_{2}CO_{3})} + \log \frac{[HCO_{3}]}{[CO_{2} + H_{2}CO_{3}]} = 6,1 + \log \frac{[HCO_{3}]}{H_{2}CO_{3}}$$

How does hydrogencarbonate buffer function?

Open system – the amount of CO_2 may be regulated by ventilation

Hydrogencarbonate buffer functions as open buffering system

Concentrations of both components can be regulated :

CO₂ by respiration

HCO₃⁻ by function of liver and kidney

Plasma proteins and haemoglobin as buffers

In all proteins, only ionizable groups can take part in acid-base reaction: At physiological pH values, imidazol groups of histidine residues alone act as effective buffer bases.

Amino acid	lonizable group in the side chain	р <i>К</i> _А
Glutamate	γ-carboxyl (-COOH)	4,3
Histidine	imidazolium	6,0
Cysteine	sulfanyl (-SH)	8,3
Tyrosine	phenolic hydroxyl	10,1
Lysine	ε-ammonium (-NH ₃ +)	10,5
Arginine	guanidinium –NH-C(NH ₂)=NH ₂ ⁺	12,5

The most important blood protein buffer is hemoglobin

Hydrogen/dihydrogenphosphate buffer

H₂PO₄⁻ - acidic component HPO₄²- - bazic component $pK_{A2} = 6.8$ $pH = 6.8 + log \frac{HPO_4^2}{H_2PO_4^2}$

Buffer is of second-rate significance in the blood due to relatively low concentration.

However, within the cells, phosphates with proteins are the major buffer bases.