Selected reactions of organic compounds

© Department of Biochemistry (Jiří Dostál) 2010

This lecture is an extract of main ideas from chapters 1-14 + 29, Medical Chemistry II

- Hemiacetals, acetals, aldimines
- Derivatives of acids (esters, anhydrides, amides)
- Dehydrogenations of various substrates
- Oxygenation, hydroxylation, deoxygenation
- Conjugate vs. Redox pair
- Transamination of amino acids
- Reactions of citric acid cycle

Mutual reactions of selected compounds

	Acid	Aldehyde	Thiol	Alcohol
Alcohol	ester	hemiacetal	-	ether
Thiol	thioester	thiohemiacetal	sulfide	
Amine	salt ^a / amide ^b	aldimine ^c	Me	See also ed. Chem. II
Aldehyde	-	aldol ^d		ppendix 1
Acid	anhydride	^a Acid-base rea ^b Condensation	ction. (water eliminated).

^cCalled also Schiff base.

^dOnly in strongly alkaline environment.

Hemiacetals and acetals

Hemiacetals are made by addition of alcohol to carbonyl group.

Acetals are made by **substitution** of the hydroxyl group of hemiacetal by the alkoxyl group (-OR) of alcohol.

Aldimines (Schiff bases) are formed by addition-elimination reaction

C=NH or C=NR is imino group

Schiff bases in the organism

- Non-enzymatic glycation of proteins (Med. Chem. II, p. 40)
- Transamination of AA intermediate with pyridoxal phosphate (see later, lecture Amino acids)
- Crosslinks in collagen (Lys ... alLys) (Med. Chem. II, p. 42)
- Linkage of retinal to opsin (biochemistry of vision)

Esters of carboxylic acids are made by condensation reaction with alcohols and water is liberated

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 CH_8

Esterification in vitro requires acidic catalysis.

Enzyme esterifications have different mechanism using acyl-CoA.

The reverse reaction is the hydrolysis of ester.

Distinguish: hydrolysis hydration

Hydrolysis = decomposition of substrate by the action of water (typical in esters, amides, peptides, glycosides, anhydrides)

Hydration = addition of water (to unsaturated substrates)

substrate +
$$H_2O \rightarrow product$$
H OH

Acetylsalicylic acid has <u>acidic</u> group and <u>ester</u> group

salicylic acid

acetylsalicylic acid

Selected inorganic acids

H₂SO₄

H₃PO₄

HNO_2

$$HO-N=O$$

HNO₃

$$HO-N \stackrel{\bigcirc}{\stackrel{\bigcirc}{\stackrel{\bigcirc}{\longleftarrow}} HO-N \stackrel{\bigcirc}{\stackrel{\bigcirc}{\stackrel{\bigcirc}{\longleftarrow}} HO-N \stackrel{\bigcirc}{\stackrel{\bigcirc}{\stackrel{\bigcirc}{\bigcirc}}$$

Esters of sulfuric acid

sodium dodecyl sulfate (SDS) is an anionic surfactant

Compare: alkyl sulfate × alkanesulfonate

bond C-O
4 O atoms around S
made by esterification

$$R-OH + HO-SO_2-OH \rightarrow$$

$$R-O-SO_2-OH + H_2O$$

alkanesulfonate

bond C-S
3 O atoms around S
made by sulfonation

$$R-H + SO_3 \rightarrow R-SO_3H$$

Esters of nitric acid

$$R-OH + HO-NO_2 \rightarrow R-O-NO_2 + H_2O$$

$$CH_{2}-O-NO_{2}$$

 $CH-O-NO_{2}$
 $CH_{2}-O-NO_{2}$

glycerol trinitrate (glyceroli trinitras)

isosorbide dinitrate (isosorbidi dinitras)

both exhibit vasodilatation effect

Monoesters of phosphoric acid

glucose

glucose 6-phosphate

14

<u>Di</u>esters of phosphoric acid are linkage elements in nucleic acids

3'-konec

<u>Diesters of phosphoric acid are</u> linkage moieties in phospholipids

$$\begin{array}{c} O \\ O \\ C \\ O - CH_2 \\ O - CH \\ C \\ O - CH \\ CH_2 - O - P - O - CH_2 - CH_2 - N - CH_3 \\ O \\ O - CH_2 - O - P - O - CH_2 - CH_2 - N - CH_3 \\ O - CH$$

Organophosphates

thiophosphoric acid

fluorophosphoric acid

cyanophosphoric acid

Compare: sulfonic ac. (C-S) × phosphonic ac. (C-P)

methylphosphonic acid

methylfluorophosphonic acid

sarin

Compare the structures

alkyl sulfate

alkanesulfonate

alkyl phosphate

alkanephosphonate

Carboxylic acid anhydride

Phosphoric acid anhydride is diphosphoric acid (diphosphate)*

occurs in ATP, ADP, NAD⁺, FAD

^{*} Historical term is "pyrophosphate" (e.g. Harper's Biochemistry)

Compare: <u>diphosphate</u> × <u>bisphosphate</u>

$$\Theta_{O} - P - O - P - O \Theta$$
 $O O O$
 $O O$

diphosphate (anhydride)

fructose 1,6-bisphosphate (double ester)

Hexakisphosphate of inositol is phytic acid

Mixed anhydride of carboxylic acid and phosphoric acid is acyl phosphate

acyl phosphate

Acyl phosphates are macroergic compounds

- 3-phosphoglyceroyl phosphate (1,3-bisphosphoglycerate)
- carbamoyl phosphate

1,3-Bisphosphoglycerate

1,3-bisphosphoglycerate

Activation of amino acid by ATP in proteosynthesis

aminoacyl-AMP (mixed anhydride)

Carbamoyl phosphate

carbonic acid H₂CO₃

$$H_2N-C_{\setminus}^{O}$$

carbamoyl (acyl of carbamic ac.)

carbamic acid phosphate

carbamoyl phosphate

Amines and acids can react in two ways

Low temperature: acid-base reaction

$$R-C$$
 + $R-NH_2$ - $R-C$ \oplus $O \cap H_3N-R$ acid base (alkylamine) alkylammonium salt

High temperature: condensation

Amides are polar non-electrolytes

Free el. pair on nitrogen is in conjugation with double bond

Compare properties

Feature	Amines	Amides
General formula	R-NH ₂	R-CO-NH ₂
El. pair on nitrogen	free and available	conjugated with C=O
Basic properties	yes	no
Salt formation	yes	no
In water behaves as	weak electrolyte	non-electrolyte
Polar compound	yes	yes
pH of aqueous solution	basic	neutral

Urea is diamide of carbonic acid

Compare

Feature	Urea	Uric acid	
Chemical name	carbonic ac. diamide	2,6,8-trihydroxypurine	
Latin name	urea	acidum uricum	
In water	non-electrolyte	weak diprotic acid	
Solubility in water	excelent	poor*	
Aqueous solution is	neutral	weakly acidic	
Reducing property	no	yes ⇒ antioxidant	
Salt formation	no	yes (two types)	
Catabolite of	amino acids	adenine and guanine	

^{*} Depends on pH, in acidic pH precipitates from solution !!!!

Lactone versus Lactam

$$\begin{array}{c|c}
C = O & \longrightarrow \\
O & O & \longrightarrow \\
H & O & \longrightarrow \\
H & O & \longrightarrow \\
O & O & \bigcirc
\end{array}$$

lactone is cyclic ester

lactam is cyclic amide

Compare properties

Carboxylic acid	Ester	Amide
weak electrolyte	non-electrolyte	non-electrolyte
polar	non-polar	polar
soluble in H ₂ O	insoluble in H ₂ O	soluble in H ₂ O

$$R - C \setminus \begin{array}{c} O \\ NH - R \end{array} \longrightarrow \begin{array}{c} R - C \setminus \\ NH - R \end{array}$$

Polarity of organic compounds

(see Medical Chemistry II, chapter 4)

hydrocarbons halogen derivatives non-polar compounds ethers esters polarity ketones amines amides alcohols carboxylic acids

Dehydrogenations of various substrates

Substrate	Product	
alkane	alkene	
primary alcohol	aldehyde	
secondary alcohol	ketone	
endiol	diketone	see
aldehyde hydrate	carboxylic acid	Med. Chem. II
hemiacetal / cyclic hemiacetal	ester / lactone	Appendix 3
hydroxy acid	oxo acid	
<i>p</i> -diphenol	<i>p</i> -quinone	
thiol	disulfide	
amino acid	imino acid	35

Dehydrogenations in enzyme reactions

- Substrate loses **2** H atoms from typical groups:

 primary alcohol group -CH₂-OH (e.g. ethanol, cholin)

 secondary alcohol group >CH-OH (lactate, malate)

 endiol group HO-(R)C=C(R)-OH (vitamin C)

 secondary amine group >CH-NH₂ (amino acid)

 saturated hydrocarbon group -CH₂-CH₂- (fumarate, acyl-CoA)
- Product acquires a double bond (C=O, C=NH, CH=CH)
- 2 H atoms are transferred to cofactor

Enzyme dehydrogenations require the cooperation of three components

Dehydrogenation of ethanol

(simplified scheme = redox pair)

ethanol

acetaldehyde

Dehydrogenation of ethanol

(complete reaction with cofactor, two redox pairs)

 $NAD^+ = \underline{n}icotinamide \underline{a}denine \underline{d}inucleotide$

Oxidation of methanol

(simplified scheme)

Two ways of glycerol oxidation

Oxidation of ethylene glycol proceeds stepwise with a number of intermediates

Dehydrogenation of aldehyde hydrate

$$R-C$$
 H_2O
 $R-CH$
 R

Dehydrogenation of hemiacetal

$$OH$$
 $R-CH$
 $O-R$
 $O-R$
 $O-R$
 $O-R$
 $O-R$
 $O-R$
 $O-R$
 $O-R$
 $O-R$

Hydroxy acids as dehydrogenation substrates

lactic acid (lactate) acidum lacticum

$$\begin{array}{c} \mathsf{HOOC}\!-\!\mathsf{CH}_2\!-\!\!\mathsf{CH}\!-\!\!\mathsf{COOH} \\ \mathsf{OH} \end{array}$$

malic acid (malate) acidum malicum

$$H_3C-CH-CH_2-COOH$$

β-hydroxybutyric acid β-hydroxybutyrate

Dehydrogenation of lactic acid (lactate)

$$H_3C + COOH + NAD^+ \implies H_3C + COOH + NADH + H^+$$

lactate pyruvate

Other examples

NAD⁺

$$CH_3$$
 CH_2
 COO^{\ominus}
ADH + H⁺

Beta-hydroxybutyrate

Ketone bodies

acetoacetate

$$\Theta$$
OOC $-CH_2-C-COO\Theta$
malate

$$^{\Theta}$$
OOC $-$ CH $_2$ $-$ C $-$ COO $^{\Theta}$

oxaloacetate

CAC reaction

α,β-Dehydrogenation of acyl (catabolism of fatty acids)

saturated acyl-CoA
$$R-CH_2-CH_2-CH_2-CH_2-C$$
 s $-II$ $-II$ $/O$ $//$ $S-CoA$

α,β-unsaturated acyl-CoA R-CH₂-CH=CH-C
$$^{\prime\prime}$$
S-CoA

Dehydrogenation of amino compounds

$$R-CH_2-NH_2 + FMN \rightarrow R-CH=NH + FMNH_2$$
 amine imine

imino group >C=NH

$$R-CH-COOH + NAD^{\dagger} \longrightarrow R-C-COOH + NADH + H^{\dagger}$$
 NH_2
 NH

2-amino acid

2-imino acid

The hydrolysis of imino acid gives oxo acid and free (toxic) ammonia

Dehydrogenation of diphenol

benzene-1,4-diol (hydroquinone) (aromatic ring)

p-benzoquinone (not aromatic)

Dehydrogenation of -SH substrates proceeds with two molecules (mild oxidation)*

2 HS-CH₂-CH-COOH
$$\frac{-2H}{+2H}$$
 HOOC-CH-CH₂-S-S-CH₂-CH-COOH NH₂ NH₂ NH₂ cystin

disulfide bridges in proteins

^{*} Strong oxidation occurs with one molecule to give sulfonic acid.

Oxygenation of aldehyde

Indirect:

$$R-C \xrightarrow{O} \xrightarrow{H_2O} \qquad R-CH \xrightarrow{-2H} \qquad R-C \xrightarrow{O}$$

$$OH \xrightarrow{-2H} \qquad OH$$

aldehyde

aldehyde hydrate

carboxylic acid

Hydroxylation of phenylalanine

tetrahydrobiopterine (BH₄) is a donor of 2H to make water from the second oxygen atom

Biochemical hydrogenations

- Substrate gains 2 H
- Mainly from NADPH + H⁺
- Reduction syntheses (FA, cholesterol)

-CH=CH- + NADPH+H $^+$ \rightarrow -CH₂-CH₂- + NADP $^+$

Hydrogenation of ubiquinone

ubiquinone

ubiquinol

Deoxygenation is quite rare reaction

HO OH NADPH+H+ OH
$$+$$
 HO OH $+$ H₂O + NADP+ D-ribose 2-deoxy-D-ribose

Redox versus Conjugate pair

Distinguish:

A donor of H^+ = acid

A donor of H = reductant

An acceptor of H^+ = base

An acceptor of H = oxidant

Example 1

Conjugate pair

$$H_3C-CH-C$$

lactic acid

lactate (conjugate base)

Redox pair

lactate

$$H_3C-C-C$$

pyruvate

Example 2

L-Ascorbic acid is a weak diprotic acid

$$pK_{A1} = 4.2$$
 $pK_{A2} = 11.6$

$$pK_{A2} = 11.6$$

two enol hydroxyls

Two conjugate pairs:

Ascorbic acid / hydrogen ascorbate Hydrogen ascorbate / ascorbate

L-Ascorbic acid has reducing properties (antioxidant)

$$CH_2OH$$
 $H-C-OH$
 O
 O
 O
 O
 O

ascorbic acid (reduced form)

$$CH_2OH$$
 $H-C-OH$
 O

dehydroascorbic acid (oxidized form)

Uric acid (lactim) is a weak diprotic acid

$$pK_{A1} = 5.4$$

$$pK_{A2} = 10.3$$

$$\begin{array}{c|c} OH \\ \hline N \\ N \\ \hline N \\ N \\ H \\ \end{array} \\ \begin{array}{c} OH \\ \\ OH \\ \\ H \\ \end{array}$$

uric acid

hydrogen urate

urate

2,6,8-trihydroxypurine

Uric acid has reducing properties (physiological antioxidant)

OH
$$\begin{array}{c}
OH\\
N\\
N
\end{array}$$

$$\begin{array}{c}
OH\\
N\\
N
\end{array}$$

$$\begin{array}{c}
OH\\
N\\
N
\end{array}$$

$$\begin{array}{c}
O\bullet\\
HO
\end{array}$$

$$\begin{array}{c}
N\\
N\\
N\\
H
\end{array}$$

$$\begin{array}{c}
O\bullet\\
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
O\bullet\\
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

hydrogen urate anion (reduced form)

hydrogen urate radical relatively stable (oxidized form)

various products

Hydrogen urate anion affords one electron

R· is oxygen radical like ·OH, superoxide.

Transaminations of amino acids

Catabolic pathway of nitrogen (in blue colour)

- nitrogen input dietary proteins → AA (stomach, intestine)
- transamination of AA in cells → glutamate
- dehydrogenation + deamination of glutamate $\rightarrow NH_3$
- detoxication of ammonia (liver) \rightarrow urea

Transamination

- amino group is transferred from AA to 2-oxoglutarate
- enzyme: aminotransferase
- cofactor: pyridoxal phosphate
- amino acid gives the corresponding oxo acid
- the second product is glutamate

General scheme of transamination

Dehydrogenation deamination of glutamate

Transamination of alanine

ALT = alanine aminotransferase

Transamination of aspartate

aspartate

oxaloacetate

Remember

pyruvate / lactate = redox pair
pyruvate / alanine = transamination pair

oxaloacetate / malate = redox pair oxaloacetate / aspartate = transamination pair

Reactions of citric acid cycle

How is CO₂ made from acetyl-CoA?

Citric acid cycle

- Initial substrate: acetyl-CoA
- Three types of products:
 - $2 \times CO_2 \rightarrow$ eliminated from body by lungs
 - 4× reduced cofactors → reoxidized in respiratory chain
 - $1 \times GTP \rightarrow$ substrate-level phosphorylation

Condensation of oxaloacetate with acetyl-CoA

$$O = C - COOH + CH_3 - C - COOH + CH_2 - COOH$$

$$CH_2 - COOH + CH_3 - C - COOH - COOH$$

$$CH_2 - COOH$$

Isomeration of citrate to isocitrate

Decarboxylation and dehydrogenation of isocitrate

Decarboxylation and dehydrogenation of 2-oxoglutarate

Substrate phosphorylation gives GTP

$$O = C - S - C_0 A$$

$$C H_2$$

$$C H_2 - C_0 O H$$

Dehydrogenation of succinate

Hydration of fumarate

$$H \subset COOH$$

$$-1 \subset H$$

$$+ H_2O \longrightarrow HO-H$$

fumarate

$$\Sigma = -\Pi$$

L-malate

$$\Sigma = -II$$

Hydration is not a redox reaction

Dehydrogenation of L-malate

