Biochemistry of Selected Elements

© Department of Biochemistry (Jiří Dostál) 2010

Distribution of main elements (mass %)

Nature		Human body	
Oxygen	50.0	Oxygen	63.0
Silicium	26.0	Carbon	20.0
Aluminium	7.5	Hydrogen	10.0
Iron	4.7	Nitrogen	3.3
Calcium	3.4	Calcium	1.5

Hydrogen in the human body

• Elemental gaseous hydrogen (H₂)

formed in the large intestine by the action of microflora (not important in biochemistry)

• **Proton (H⁺)**

in body fluids determines the pH, constant pH values are kept

by the three systems of buffers – see the table, the next slide

Buffer systems in blood (pH = 7.40)

Buffer system	Buffer base	Buffer acid	Abundance	р <i>К</i> _А	Ratio [base] : [acid]
Ideal buffer	Ideal base	Ideal acid	100 %	7.4	1:1
Hydrogen carbonate	HCO ₃ -	$H_2CO_3 + CO_2$	50 %	6.1	20:1
Protein*	Protein-His	Protein-His-H ⁺	45 %	6.0 - 8.0	NA
Hydrogen phosphate	HPO ₄ ²⁻	H ₂ PO ₄ -	5 %	6.8	4:1

* In plasma mainly albumin, in erytrocytes hemoglobin

Covalently bound H in the molecules of nutrients

in metabolic dehydrogenations are 2H transferred to cofactors NAD⁺,
FAD. Oxidation of NADH and FADH₂ in respiratory chain releases
energy which is used to synthesize ATP (see lecture Bioenergetics)

Hydride anion (H⁻)

- formed transiently during dehydrogenation reactions by the action of NAD⁺ (2 H \rightarrow H⁻ + H⁺)
- for more detailed explanation see the lecture Heterocycles

Distinguish between proton and hydrogen

A donor of H^+ = acid A donor of H = reductant

An acceptor of H^+ = base An acceptor of H = oxidant

Oxygen in nature

- the most abundant element (water, CO₂, minerals)
- dioxygen (O_2) in atmosphere, ozone (O_3) in ozonosphere
- air composition (vol. %):

Oxygen

N ₂	78
O ₂	21
Noble gases	0.9
CO ₂	0.03

Reserves of O₂ in the adult body are very limited

- free O_2 in lungs (max. 1 litre)
- bound to Hb (blood), Mb (muscles) (1.5 litre)
- physically dissolved in blood (0.2 litre)

Biochemical role of dioxygen

- transported from lungs as oxy-Hb to cells, where it diffuses to mitochondria
- terminal acceptor of electrons in respiratory chain
- four-electron reduction of dioxygen gives water:

 $O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2O$

Dioxygen is also a hydroxylation agent

- phenylalanine \rightarrow tyrosine
- tyrosine $\rightarrow \rightarrow$ adrenaline
- cholesterol $\rightarrow \rightarrow$ calcitriol
- cholesterol $\rightarrow \rightarrow$ bile acids
- hydroxylation of xenobiotics

$R-H + O_2 + NADPH + H^+ \rightarrow R-OH + H_2O + NADP^+$

Reactive oxygen species (ROS) formed in the human body

- Superoxide anion-radical
- Hydroxyl radical
- Singlet oxygen
- Hydrogen peroxide

Positive effects - bactericidal (respiratory burst)

Negative effects – damage of biomolecules (membranes, enzymes, receptors, DNA)

Superoxide anion-radical •O₂

One-electrone reduction of dioxygen

 $O_2 + e^- \rightarrow O_2^-$

[redox pair]

Superoxide formation

- **Respiratory burst** (in neutrophils) $2 O_2 + NADPH \longrightarrow 2 \cdot O_2^- + NADP^+ + H^+$
- Spontaneous oxidation of hemoproteins

heme-Fe²⁺ + $O_2 \longrightarrow$ heme-Fe³⁺ + O_2^-

Elimination of superoxide

- Superoxide dismutase
- Catalyzes the dismutation of superoxide $2 \cdot O_2^- + 2 H^+ \longrightarrow O_2^- + H_2O_2^-$
- Oxidation numbers of oxygen

 $-\frac{1}{2} \longrightarrow 0 -I$

Dismutation is a special type of redox reaction in which an element is simultaneously reduced and oxidized so as to form two different products.

Hydroxyl radical •OH

- The most reactive species, very harmful
- The reactions of •OH with various biomolecules produce secondary radicals

$$\bullet O_2^- + H_2O_2 \rightarrow O_2 + OH^- + \bullet OH$$

hydroxide hydroxyl

Catalyzed by reduced metal ions (Fe²⁺, Cu⁺)

(Fenton reaction)

Hydrogen peroxide H₂O₂ is formed as a side product in the deamination of some amino acids

Elimination of H₂O₂

- <u>Catalase</u>: $H_2O_2 \longrightarrow \frac{1}{2}O_2 + H_2O_2$
- Glutathione peroxidase (selenocysteine) $2 \text{ G-SH} + \text{H-O-O-H} \longrightarrow \text{G-S-S-G} + 2 \text{ H}_2\text{O}$

Compare: reduction of dioxygen

Type of reduction	Partial scheme (= redox pair)
Four-electron	$O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2O$
One-electron	$O_2 + e^- \rightarrow \cdot O_2^-$
Two-electron	$O_2 + 2 e^- + 2 H^+ \rightarrow H_2O_2$

Antioxidant systems in the body

• Enzymes

superoxide dismutase, catalase, glutathione peroxidase

• Low molecular antioxidants

reducing substances with:

phenolic / enolic -OH group, -SH group

containing extended system of conjugated double bonds

Lipophilic and hydrophilic antioxidants

Antioxidant	Sources
Tocopherol	Plant oils, nuts, seeds, germs
Carotenoids	Fruits, vegetables (most effective is lycopene)
Ubiquinol	Formed in the body from tyrosine
L-ascorbate	Fruits, vegetables, potatoes
Flavonoids	Fruits, vegetables, tea, wine, cocoa
Dihydrolipoate	Made in the body from cysteine
Uric acid	Catabolite of purine bases
Glutathione	Made in the body from cysteine

Distribution of magnesium

Human body		Blood plasma (ECF)	
Bones	60 %	Ionized	60 %
Tissues (ICF)	39 %	Associated with proteins	33 %
ECF	1 %	Chelated	7 %

Biological role of magnesium

- typical intracellular cation
- associated with negative charges of proteins and nucleotides
- activator of many enzymes (kinases, ATPases)
- antagonist of calcium ions Mg²⁺ ions slow down neuromuscular transmission
- mineral component of bones

Food sources

most animal and plant foods, higher content in:

- green leafy vegetables (chlorophyl)
- wholemeal cereals, legumes, nuts, sesame seeds, halvah
- mineral waters (Magnesia)

Distinguish: Two types of mineral waters

Feature	Magnesia (CZ)	Šaratica (CZ)
Main cation	Mg^{2+}	Mg^{2+}
Main anion	HCO ₃ -	SO ₄ ²⁻
Usage	source of Mg	osmotic laxative

Calcium

Calcium in nature is abundant

- Minerals, sediments
- CaCO₃ (limestone, marble, chalk, karst)
- UK: White Cliffs of Dover (chalk)
- CZ: Moravian Karst (Macocha abyss)

Distribution of calcium

In body		In blood plasma (ECF)
Bones	99 %	Ionized 48 %
Tissues (ICF)	traces	Associated with proteins 46 %
ECF	1 %	Chelated 6 %

Calcium malate is an example of chelate

Ca²⁺ ions in body fluids

Extracellular fluid

- 2.4-2.7 mmol/l
- three forms
- blood clotting

Intracellular fluid

- cytosol (10⁻⁷ mol/l)
- Mitochondria, ER high deposits
- Regulation functions
- The second messenger
- Muscle contraction

Calcium ion concentrations

Hormones regulating calcium level

Feature	Parathyrin	Calcitriol	Calcitonin
Produced in	parathyroid glands	skin – liver – kidneys	thyroid gland
Chemical type	peptide	secosteroid	peptide
Main effect	release of Ca from bones	resorption of Ca from intestine	deposition of Ca into bones

Calcium phosphate Ca₃(PO₄)₂

- calcii phosphas
- Insoluble in water
- In body apatites binary phosphates (= two different anions)
- Bones hydroxylapatite Ca₅OH(PO₄)₃
- Teeth fluoroapatite $Ca_5F(PO_4)_3$

Biological apatites are presented by different formulas

Name	Stoichiometric formula (the least ratio of elements)	Crystal unit (multiple)
Hydroxylapatite	Ca ₅ (PO ₄) ₃ OH	$Ca_{10}(PO_4)_6(OH)_2$
Fluoroapatite	$Ca_5(PO_4)_3F$	$Ca_{10}(PO_4)_6F_2$
Octacalcium phosphate	$Ca_4H(PO_4)_3$	$Ca_8H_2(PO_4)_6$
Tricalcium phosphate	$Ca_3(PO_4)_2$	$Ca_9(PO_4)_6$

Solubility of calcium phosphates

(see also Medical chemistry – Practicals, p. 30-31)

 $Ca_3(PO_4)_2$ insoluble

CaHPO₄ insoluble

 $Ca(H_2PO_4)_2$ soluble

Calcium sulfate CaSO₄

- calcii sulfas
- Insoluble Caution! MgSO₄ is soluble (laxative mineral waters)
- hemihydrate ($\frac{1}{2}$ H₂O) plaster

$$a e \rightarrow CaSO_4 \cdot \frac{1}{2}H_2O \xrightarrow{a e} CaSO_4 \cdot 2H_2O$$

Calcium carbonate CaCO₃ (calcii carbonas)

External aplication

- insoluble
- powders
- tooth paste

Peroral aplication

- basic properties
- neutralizes gastric HCl antacid

Tums (GB), Rennie (F)

• Ca supplementation

 $CaCO_3 + 2 R-COOH \rightarrow CO_2^{\uparrow} + (R-COO)_2Ca + H_2O$

Calcium hydrogen carbonate Ca(HCO₃)₂

- calcii hydrogenocarbonas
- Exists only in aqueous solution
- Hardness of water
- By boiling CO₂ is removed to make hard scale Ca(HCO₃)₂ \rightarrow CO₂↑ + CaCO₃↓ + H₂O
- Very common in mineral waters

Hard water makes problems

Hard scale formation

 $Ca(HCO_3)_2 \rightarrow CO_2\uparrow + CaCO_3\downarrow + H_2O$

Soap does not work:

 $Ca^{2+}(aq) + 2 R-COONa \rightarrow (R-COO)_2Ca \downarrow + 2 Na^+(aq)$

R-COOH is a long-chain fatty acid (palmitic, stearic)
Calcium in food

Animal food

- milk
- dairy products
- bioavailability ~ 50 %

Recommended intake:		
Infants	1200 mg	
Adults	1000 mg	
Older people	1500 mg	

Plant food

- poppy seed
- nuts, almonds
- dates, legumes
- bioavailability ~ 10 %

Calcium content in some dairy products (mg/100 g)

Intestinal absorption of calcium

Increased by

- vitamin D
- proteins
- milk fermented products (kefir)

Decreased by

- phosphates (*Coca-Cola*, processed cheese)
- oxalates
- fibre excess

Sodium + Potassium

Distribution in the body

Sodium		Potassium	
ECF	50 %	ECF	2 %
ICF	10 %	ICF	98 %
Bones	40 %		

Mean concentrations of ions in blood plasma

Cation	mmol/l		Anion	mm	nol/l
	Cation	Charge	Amon	Anion	Charge
Na ⁺	142	142	Cl-	103	103
K^+	4	4	HCO ₃ -	25	25
Ca ²⁺	2.5	5	Protein ⁻	2	18
Mg^{2+}	1.5	3	HPO ₄ ²⁻	1	2
		Total: 154	SO ₄ ²⁻	0.5	1
			Org. A.	4	5

Total: 154

Biological roles of sodium and potassium

- Na⁺ is main cation of ECF, contributes to plasma osmolality
- Na⁺ is the most hydrated ion ⇒ sodium movement (retention, excretion) is followed by movement of water
- K⁺ is main cation of ICF, associated with polyanions of proteins
- the uneven distribution of ions is maintained by Na⁺,K⁺-ATPase

Ion	Ion diameter (nm)		
1011	Free	Hydrated	
Na ⁺	0,19	0,52	
K ⁺	0,27	0,46	

Food sources

Sodium – table salt, salty food, mineral waters
 Potassium – most foods, higher content in plant foods: potatoes, legumes, fresh and dried fruits, nuts

Hormones regulating sodium

Feature	Aldosterone	Atrial natriuretic peptide (ANP)
Produced in	adrenal cortex	heart atrium
Chemical type	steroid	peptide
Main effects	resorption of Na ⁺ excretion of K ⁺ in kidneys	excretion of Na ⁺ and water in kidneys

Carbon

Elemental carbon occurs in various modifications

- diamond, graphite, soot, coke, charcoal, fullerens
- graphene Nobel Prize in Physics 2010
- **adsorption coal** (carbo adsorbens, carbo activatus) is non-polar intestinal adsorbent

Carbon monoxide CO

- Colourless, odourless gas, molecule makes a dipole
- **Exogenous sources**: incomplete combustion of carbon and organic compounds (cigarette smoke)
- **Toxicity**: strong affinity to Fe^{2+} in hemoglobin to give **Carbonylhemoglobin (CO-Hb)** – does not transport O_2
- Endogenous source: heme catabolismus
 heme → Fe²⁺ + CO + biliverdin (→ bilirubin)

Hem degradation provides CO and bilirubin

Carbonylhemoglobin (CO-Hb) in blood

Subject / Situation	CO-Hb (%)*	
Newborns	0.4	
Adults (rural areas)	1-2	Endogenous CO
Adults (big cities)	4-5	
Smokers	10-12	
Traffic policemen	12-15	Exogenous CO
Poisoning	20-50	
Death	55-60	

* Percentage of total hemoglobin

Carbon dioxide CO₂

- carbonei dioxidum
- colourless gas, easily gets liquified
- linear molecule \Rightarrow zero dipol moment \Rightarrow non-polar compound \Rightarrow poorly soluble in water
- acidic oxide = acid anhydride $(H_2O + CO_2 \rightarrow H_2CO_3)$

Endogenous production of CO₂

- CO₂ is produced in <u>decarboxylation</u> metabolic reactions
- oxidative decarboxylation of pyruvate \rightarrow acetyl-CoA
- two decarboxylations in CAC (isocitrate, 2-oxoglutarate)
- Other sources:

decarboxylation of amino acids \rightarrow biogenous amines

non-enzymatic decarboxylation of acetoacetate \rightarrow acetone

Carbonic acid in vitro

$$H_2O + CO_2 \quad \leftrightarrows \quad H_2CO_3 \quad \leftrightarrows \quad HCO_3^- + H^+$$

$$800 \quad : \quad 1 \quad : \quad 0.03$$

- weak diprotic acid ($pK_{A1} = 6.37$; $pK_{A2} = 10.33$)
- does exist only in aq. solution, easily decomposes to CO_2 and water
- CO₂ predominates 800 × in sol. \Rightarrow therefore CO₂ included into K_A

$$K_{\text{A eff}} = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{CO}_2 + \text{H}_2\text{CO}_3]}$$

$$K_{A eff}$$
 = effective
dissociation constant

Carbonic acid in blood plasma

$$H_2O + CO_2 \leftrightarrows H_2CO_3 \leftrightarrows HCO_3^- + H^+$$

1 : traces : 20

- formation catalyzed by carbonic anhydrase
- under physiological conditions: $pK_{A1} = 6.10$
- CO₂ is continually eliminated from body by lungs
- the overall concentration of carbonic acid:

 $[CO_2 + H_2CO_3] = pCO_2 \times s = 0.23 pCO_2 (kPa)$

directly measurable quantity

Compare: CO₂ in water and blood

Liquid	рН	[CO ₂] : [HCO ₃ ⁻]
Carbonated water ^a	3.50 - 5.00	800:0.03
Blood ^b	7.36 - 7.44	1:20

^{*a*} Closed system (PET bottle), 25 °C, $pK_{A1} = 6.37$ pH ~ pCO_2 ~ the pressure of CO₂ applied in carbonating process

^{*b*} **Open system**, 37 °C, $pK_{A1} = 6.10$ CO₂ continually eliminated, pCO_2 in lung alveoli ~ 5.3 kPa, acid component of hydrogen carbonate buffer

Nitrogen

Metabolic pathway of nitrogen

Intake	Food proteins (meat, eggs, dairy products)
Metabolism	digestion (stomach, intestine): protein \rightarrow AA anabolic reactions: AA \rightarrow tissue proteins / other products catabolism (transamination + deamination): AA \rightarrow NH ₃ \rightarrow urea
Urine excretion	urea (300 - 600 mmol/day) NH ₄ ⁺ (30 - 50 mmol/day)

Compare

Feature	Nitrates	Nitrites
Formula	NO ₃ -	NO ₂ -
Food sources	water, vegetables	sausages
Limits for drinking water	50 mg/l	0.5 mg/l
Endogenous source	arginine $\rightarrow NO \rightarrow NO_3^-$	-
Acute toxicity	no	yes
Toxic mechanism	_	Hb-Fe(II) → Hb-Fe (III) $R^1R^2NH \rightarrow R^1R^2N-N=O$

Biochemical features of phosphorus

Intake	Most foods, phospholipids (meat, eggs), phytates (cereals), phosphoproteins (milk - casein)
Distribution in body	 ICF: mostly phosphoesters (metab. of glucose), macroergic compounds Nucleus: DNA Cell membranes: phospholipid bilayer ECF: hydrogen phosphate buffer, phospholipid monolayer of lipoproteins Bones, teeth: biological apatites
Urine excretion	$H_2PO_4^-$ (30 - 50 mmol/day)

Liquid	pН	Prevailing species
Blood	7.4	HPO ₄ ²⁻
Urine	5.5	H ₂ PO ₄ -
Coca-Cola	2.5	H ₃ PO ₄

Metabolic pathway of sulfur

Intake	food proteins (AA cysteine and methionine)	see also lecture			
	Anabolic:	Amino acids			
	Cys, Met \rightarrow tissue proteins				
	methionine \rightarrow SAM \rightarrow methylation reactions				
Metabolismcysteine \rightarrow taurine \rightarrow conjugation reactionscysteine \rightarrow glutathione (GSH) \rightarrow antioxidant, conjugation reactionscysteine \rightarrow SO ₄ ²⁻ \rightarrow PAPS \rightarrow sulfation reactions					
				Catabolic:	
				Cys, Met \rightarrow HSO ₃ ⁻ \rightarrow SO ₄ ²⁻ (excretion)	
bacterial decomposition (large intestine) \rightarrow thiols (R-SH) + sulfane					
Urine excretion	SO ₄ ²⁻ (8 - 35 mmol/day)				

Distinguish

Sulfite	anion SO_3^{2-} (alkyl sulfite R-O-SO ₂ H ester)		
Sulfide inorganic	anion S ²⁻ , ZnS zinc sulfide		
Sulfide organic	R-S-R dialkylsulfide R-S-S-R dialkyldisulfide		
Sulfate	anion SO ₄ ²⁻ (alkyl sulfate R-O-SO ₃ H ester)		

Iron in human body

- Essential microelement
- In body: about 4-5 g Fe
- Most in blood hemoglobin (60-85 %)
 myoglobin (10 %; muscles), and ferritin (10 %; liver)
- Iron in body is always associated with proteins (heme and non-heme)

Free Fe²⁺ ions are toxic

Hemoproteins

Protein	Redox state	Function
Hemoglobin	Fe ²⁺	transport of O_2 in blood
Myoglobin	Fe^{2+}	O ₂ deposit in muscles
Catalase	Fe ³⁺	H ₂ O ₂ decomposition
Peroxidase	Fe ³⁺	peroxide decomposition
Cytochromes	$Fe^{2+} \leftrightarrows Fe^{3+}$	components of resp. chain

Other iron-proteins

Protein	Redox state	Function
Transferrin	Fe ³⁺	transport of Fe in plasma
Ferritin	Fe ³⁺	cell storage of Fe
Hemosiderin	Fe ³⁺	cell storage of Fe
Fe-S proteins	$Fe^{2+} \leftrightarrows Fe^{3+}$	components of resp. chain

Food sources of iron

Animal

- pork blood
- blood sausage
- liver, liver pate
- red meat
- bioavailability ~ 20 %

Plant

- broccoli
- green leafy vegetables
- bioavailability $\sim 10 \%$

Intestinal resorption of iron

- Only as Fe²⁺
- Needed ascorbic acid (vitamin C), Fe^{3+} is reduced to Fe^{2+}
- Daily intake 10-30 mg
- Daily need 1 mg (males), 2 mg (females)
- Resorption hindered by: tanins, polyphenols (tea),
 phytates, oxalic acid (spinach), excess of dietary fibre (vegetarians)

The Latin names of iron salts

ferrosi × ferri

64

Distinguish

Iron salts for peroral supplementation

- Iron(II) sulfate (ferrosi sulfas)
- Iron(II) fumarate (ferrosi fumaras)
- Iron(II) gluconate (ferrosi gluconas)

Halogens in nature

Fluorine	minerals: fluorite CaF ₂ , fluoroapatite Ca ₅ (PO ₄) ₃ F
Chlorine	NaCl (rock salt), seawater (~ 3 %), salt lakes (up to 25 %): Dead Sea, Great Salt Lake
Bromine	seawater
Iodine	seawater, seaweed

Halogens in human body

Fluorine	bones, teeth (fluoroapatite)
Chlorine	Cl ⁻ is the main anion of blood plasma HCl in stomach (H ⁺ from H_2CO_3 , Cl ⁻ from plasma)
Bromine	traces in tissues and body fluids
Iodine	thyroid gland (thyroxine)

Halogens in food

Fluorine	tap water, mineral waters, sea food, black tea (<i>Camellia sinensis</i>)
Chlorine	table salt NaCl
Bromine	sea food
Iodine	sea food, iodinated salt, Czech mineral water Vincentka

Fluorine compounds

- Sodium fluoride NaF (natrii fluoridum) in tablets – caries prevention in infants, tooth paste, oral rinse, dental floss
- Sodium monofluorophosphate Na_2PO_3F (dinatrii fluorophosphas) tooth paste etc. $Na^{\oplus} \Theta_C$

	Osmolarity	Osmolality
Definition	i c	i c _m
Unit	mmol/l	mmol/kg H ₂ O
Temperature dependent	yes	no

Saline solution NaCl (natrii chloridi solutio) is isotonic with blood plasma: **154 mmol/l** (0.9 %)

Osmolarity i $c = 2 \times 154 = 308$ mmol/l

Usage: infusions

Osmolality of blood plasma:

NaCl in medicine

280-295 mmol/kg $H_2O \approx 2 [Na^+] + [glucose] + [urea]$

Compare concentrations (mmol/l)

Blood plasma			Saline sol. NaCl	
Na ⁺	C1-		Na ⁺	C1-
133-150	97-108		154	154
	~ 100	-		

Saline solution of NaCl has increased concentration of chloride ions compared to plasma!!
Chloride balance

- Usual daily intake: 5-12 g NaCl
- <u>Chloride loss</u>: vomiting \Rightarrow increased HCO₃⁻ in plasma \Rightarrow alkalosis
- <u>Chloride excess</u>: infusions of saline sol. \Rightarrow decreased HCO₃⁻ in plasma \Rightarrow acidosis

HCl in stomach

- acidum hydrochloricum, strong acid
- H^+ comes from H_2CO_3 (parietal cells), Cl⁻ from plasma
- Concentration ~ 0.1 mol/l, pH 1-2
- Bactericidal effect
- Protein denaturation for better digestion
- Pepsin activation (pepsinogen \rightarrow pepsin)

Iodine in human body

- Essential microelement
- Daily need: 150-300 µg
- the best food source: sea products
- For the production of iodinated thyronines amino acids thyroxine and triiodothyronine

Conversion of tyrosine to thyroxine

The iodination of table salt

- 35 mg I / kg salt
- Sodium/potassium iodide (NaI, KI) not very stable due to possible oxidation and sublimation:
 2 NaI + ½ O₂ + CO₂ → Na₂CO₃ + I₂↑
- **Sodium iodate** NaIO₃ stable substance

Elementary iodine is a strong disinfectant

But has some disadvantages:

- Possible allergen
- Be very carefull in thyroid gland diseases!!
- Only short-term application!!

Solutions of elemental iodine

Elemental iodine is non-polar, insoluble in water.

English name	Latin name	Composition
Tincture of iodine	tinctura iodi	I_2 + ethanol
Lugol's solution	solutio iodi aquosa	$I_2 + KI + H_2O$
Povidone-iodine ^a	sol. povidoni iodinati	$I_2 + povidone^b + H_2O$

^{*a*} Commercial names: Jodisol, Betadine, Jox

^b Synthetic polymer <u>**po**</u>ly<u>vi</u>nylpyrroli<u>done</u>

